Exemple #1
0
void NVPTXFloatMCExpr::PrintImpl(raw_ostream &OS) const {
  bool Ignored;
  unsigned NumHex;
  APFloat APF = getAPFloat();

  switch (Kind) {
  default: llvm_unreachable("Invalid kind!");
  case VK_NVPTX_SINGLE_PREC_FLOAT:
    OS << "0f";
    NumHex = 8;
    APF.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, &Ignored);
    break;
  case VK_NVPTX_DOUBLE_PREC_FLOAT:
    OS << "0d";
    NumHex = 16;
    APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &Ignored);
    break;
  }

  APInt API = APF.bitcastToAPInt();
  std::string HexStr(utohexstr(API.getZExtValue()));
  if (HexStr.length() < NumHex)
    OS << std::string(NumHex - HexStr.length(), '0');
  OS << utohexstr(API.getZExtValue());
}
Exemple #2
0
void NVPTXFloatMCExpr::printImpl(raw_ostream &OS, const MCAsmInfo *MAI) const {
  bool Ignored;
  unsigned NumHex;
  APFloat APF = getAPFloat();

  switch (Kind) {
  default: llvm_unreachable("Invalid kind!");
  case VK_NVPTX_HALF_PREC_FLOAT:
    // ptxas does not have a way to specify half-precision floats.
    // Instead we have to print and load fp16 constants as .b16
    OS << "0x";
    NumHex = 4;
    APF.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &Ignored);
    break;
  case VK_NVPTX_SINGLE_PREC_FLOAT:
    OS << "0f";
    NumHex = 8;
    APF.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, &Ignored);
    break;
  case VK_NVPTX_DOUBLE_PREC_FLOAT:
    OS << "0d";
    NumHex = 16;
    APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &Ignored);
    break;
  }

  APInt API = APF.bitcastToAPInt();
  std::string HexStr(utohexstr(API.getZExtValue()));
  if (HexStr.length() < NumHex)
    OS << std::string(NumHex - HexStr.length(), '0');
  OS << utohexstr(API.getZExtValue());
}
int FunctionComparator::cmpAPFloats(const APFloat &L, const APFloat &R) const {
  // Floats are ordered first by semantics (i.e. float, double, half, etc.),
  // then by value interpreted as a bitstring (aka APInt).
  const fltSemantics &SL = L.getSemantics(), &SR = R.getSemantics();
  if (int Res = cmpNumbers(APFloat::semanticsPrecision(SL),
                           APFloat::semanticsPrecision(SR)))
    return Res;
  if (int Res = cmpNumbers(APFloat::semanticsMaxExponent(SL),
                           APFloat::semanticsMaxExponent(SR)))
    return Res;
  if (int Res = cmpNumbers(APFloat::semanticsMinExponent(SL),
                           APFloat::semanticsMinExponent(SR)))
    return Res;
  if (int Res = cmpNumbers(APFloat::semanticsSizeInBits(SL),
                           APFloat::semanticsSizeInBits(SR)))
    return Res;
  return cmpAPInts(L.bitcastToAPInt(), R.bitcastToAPInt());
}
// Create an MCInst from a MachineInstr
void llvm::HexagonLowerToMC(const MachineInstr* MI, HexagonMCInst& MCI,
                            HexagonAsmPrinter& AP) {
  MCI.setOpcode(MI->getOpcode());
  MCI.setDesc(MI->getDesc());

  for (unsigned i = 0, e = MI->getNumOperands(); i < e; i++) {
    const MachineOperand &MO = MI->getOperand(i);
    MCOperand MCO;

    switch (MO.getType()) {
    default:
      MI->dump();
      llvm_unreachable("unknown operand type");
    case MachineOperand::MO_Register:
      // Ignore all implicit register operands.
      if (MO.isImplicit()) continue;
      MCO = MCOperand::CreateReg(MO.getReg());
      break;
    case MachineOperand::MO_FPImmediate: {
      APFloat Val = MO.getFPImm()->getValueAPF();
      // FP immediates are used only when setting GPRs, so they may be dealt
      // with like regular immediates from this point on.
      MCO = MCOperand::CreateImm(*Val.bitcastToAPInt().getRawData());
      break;
    }
    case MachineOperand::MO_Immediate:
      MCO = MCOperand::CreateImm(MO.getImm());
      break;
    case MachineOperand::MO_MachineBasicBlock:
      MCO = MCOperand::CreateExpr
              (MCSymbolRefExpr::Create(MO.getMBB()->getSymbol(),
               AP.OutContext));
      break;
    case MachineOperand::MO_GlobalAddress:
      MCO = GetSymbolRef(MO, AP.Mang->getSymbol(MO.getGlobal()), AP);
      break;
    case MachineOperand::MO_ExternalSymbol:
      MCO = GetSymbolRef(MO, AP.GetExternalSymbolSymbol(MO.getSymbolName()),
                         AP);
      break;
    case MachineOperand::MO_JumpTableIndex:
      MCO = GetSymbolRef(MO, AP.GetJTISymbol(MO.getIndex()), AP);
      break;
    case MachineOperand::MO_ConstantPoolIndex:
      MCO = GetSymbolRef(MO, AP.GetCPISymbol(MO.getIndex()), AP);
      break;
    case MachineOperand::MO_BlockAddress:
      MCO = GetSymbolRef(MO, AP.GetBlockAddressSymbol(MO.getBlockAddress()),AP);
      break;
    }

    MCI.addOperand(MCO);
  }
}
Exemple #5
0
void MBlazeMCInstLower::Lower(const MachineInstr *MI, MCInst &OutMI) const {
  OutMI.setOpcode(MI->getOpcode());

  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    const MachineOperand &MO = MI->getOperand(i);

    MCOperand MCOp;
    switch (MO.getType()) {
    default: llvm_unreachable("unknown operand type");
    case MachineOperand::MO_Register:
      // Ignore all implicit register operands.
      if (MO.isImplicit()) continue;
      MCOp = MCOperand::CreateReg(MO.getReg());
      break;
    case MachineOperand::MO_Immediate:
      MCOp = MCOperand::CreateImm(MO.getImm());
      break;
    case MachineOperand::MO_MachineBasicBlock:
      MCOp = MCOperand::CreateExpr(MCSymbolRefExpr::Create(
                         MO.getMBB()->getSymbol(), Ctx));
      break;
    case MachineOperand::MO_GlobalAddress:
      MCOp = LowerSymbolOperand(MO, GetGlobalAddressSymbol(MO));
      break;
    case MachineOperand::MO_ExternalSymbol:
      MCOp = LowerSymbolOperand(MO, GetExternalSymbolSymbol(MO));
      break;
    case MachineOperand::MO_JumpTableIndex:
      MCOp = LowerSymbolOperand(MO, GetJumpTableSymbol(MO));
      break;
    case MachineOperand::MO_ConstantPoolIndex:
      MCOp = LowerSymbolOperand(MO, GetConstantPoolIndexSymbol(MO));
      break;
    case MachineOperand::MO_BlockAddress:
      MCOp = LowerSymbolOperand(MO, GetBlockAddressSymbol(MO));
      break;
    case MachineOperand::MO_FPImmediate: {
      bool ignored;
      APFloat FVal = MO.getFPImm()->getValueAPF();
      FVal.convert(APFloat::IEEEsingle, APFloat::rmTowardZero, &ignored);

      APInt IVal = FVal.bitcastToAPInt();
      uint64_t Val = *IVal.getRawData();
      MCOp = MCOperand::CreateImm(Val);
      break;
    }
    case MachineOperand::MO_RegisterMask:
      continue;
    }

    OutMI.addOperand(MCOp);
  }
}
Exemple #6
0
/// addConstantFPValue - Add constant value entry in variable DIE.
bool CompileUnit::addConstantFPValue(DIE *Die, const MachineOperand &MO) {
  assert (MO.isFPImm() && "Invalid machine operand!");
  DIEBlock *Block = new (DIEValueAllocator) DIEBlock();
  APFloat FPImm = MO.getFPImm()->getValueAPF();

  // Get the raw data form of the floating point.
  const APInt FltVal = FPImm.bitcastToAPInt();
  const char *FltPtr = (const char*)FltVal.getRawData();

  int NumBytes = FltVal.getBitWidth() / 8; // 8 bits per byte.
  bool LittleEndian = Asm->getTargetData().isLittleEndian();
  int Incr = (LittleEndian ? 1 : -1);
  int Start = (LittleEndian ? 0 : NumBytes - 1);
  int Stop = (LittleEndian ? NumBytes : -1);

  // Output the constant to DWARF one byte at a time.
  for (; Start != Stop; Start += Incr)
    addUInt(Block, 0, dwarf::DW_FORM_data1,
            (unsigned char)0xFF & FltPtr[Start]);

  addBlock(Die, dwarf::DW_AT_const_value, 0, Block);
  return true;
}
static std::string toString(const APFloat &FP) {
  // Print NaNs with custom payloads specially.
  if (FP.isNaN() &&
      !FP.bitwiseIsEqual(APFloat::getQNaN(FP.getSemantics())) &&
      !FP.bitwiseIsEqual(APFloat::getQNaN(FP.getSemantics(), /*Negative=*/true))) {
    APInt AI = FP.bitcastToAPInt();
    return
        std::string(AI.isNegative() ? "-" : "") + "nan:0x" +
        utohexstr(AI.getZExtValue() &
                  (AI.getBitWidth() == 32 ? INT64_C(0x007fffff) :
                                            INT64_C(0x000fffffffffffff)),
                  /*LowerCase=*/true);
  }

  // Use C99's hexadecimal floating-point representation.
  static const size_t BufBytes = 128;
  char buf[BufBytes];
  auto Written = FP.convertToHexString(
      buf, /*hexDigits=*/0, /*upperCase=*/false, APFloat::rmNearestTiesToEven);
  (void)Written;
  assert(Written != 0);
  assert(Written < BufBytes);
  return buf;
}
Exemple #8
0
/// This function converts a Constant* into a GenericValue. The interesting 
/// part is if C is a ConstantExpr.
/// @brief Get a GenericValue for a Constant*
GenericValue ExecutionEngine::getConstantValue(const Constant *C) {
  // If its undefined, return the garbage.
  if (isa<UndefValue>(C)) 
    return GenericValue();

  // If the value is a ConstantExpr
  if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
    Constant *Op0 = CE->getOperand(0);
    switch (CE->getOpcode()) {
    case Instruction::GetElementPtr: {
      // Compute the index 
      GenericValue Result = getConstantValue(Op0);
      SmallVector<Value*, 8> Indices(CE->op_begin()+1, CE->op_end());
      uint64_t Offset =
        TD->getIndexedOffset(Op0->getType(), &Indices[0], Indices.size());

      char* tmp = (char*) Result.PointerVal;
      Result = PTOGV(tmp + Offset);
      return Result;
    }
    case Instruction::Trunc: {
      GenericValue GV = getConstantValue(Op0);
      uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
      GV.IntVal = GV.IntVal.trunc(BitWidth);
      return GV;
    }
    case Instruction::ZExt: {
      GenericValue GV = getConstantValue(Op0);
      uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
      GV.IntVal = GV.IntVal.zext(BitWidth);
      return GV;
    }
    case Instruction::SExt: {
      GenericValue GV = getConstantValue(Op0);
      uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
      GV.IntVal = GV.IntVal.sext(BitWidth);
      return GV;
    }
    case Instruction::FPTrunc: {
      // FIXME long double
      GenericValue GV = getConstantValue(Op0);
      GV.FloatVal = float(GV.DoubleVal);
      return GV;
    }
    case Instruction::FPExt:{
      // FIXME long double
      GenericValue GV = getConstantValue(Op0);
      GV.DoubleVal = double(GV.FloatVal);
      return GV;
    }
    case Instruction::UIToFP: {
      GenericValue GV = getConstantValue(Op0);
      if (CE->getType() == Type::FloatTy)
        GV.FloatVal = float(GV.IntVal.roundToDouble());
      else if (CE->getType() == Type::DoubleTy)
        GV.DoubleVal = GV.IntVal.roundToDouble();
      else if (CE->getType() == Type::X86_FP80Ty) {
        const uint64_t zero[] = {0, 0};
        APFloat apf = APFloat(APInt(80, 2, zero));
        (void)apf.convertFromAPInt(GV.IntVal, 
                                   false,
                                   APFloat::rmNearestTiesToEven);
        GV.IntVal = apf.bitcastToAPInt();
      }
      return GV;
    }
    case Instruction::SIToFP: {
      GenericValue GV = getConstantValue(Op0);
      if (CE->getType() == Type::FloatTy)
        GV.FloatVal = float(GV.IntVal.signedRoundToDouble());
      else if (CE->getType() == Type::DoubleTy)
        GV.DoubleVal = GV.IntVal.signedRoundToDouble();
      else if (CE->getType() == Type::X86_FP80Ty) {
        const uint64_t zero[] = { 0, 0};
        APFloat apf = APFloat(APInt(80, 2, zero));
        (void)apf.convertFromAPInt(GV.IntVal, 
                                   true,
                                   APFloat::rmNearestTiesToEven);
        GV.IntVal = apf.bitcastToAPInt();
      }
      return GV;
    }
    case Instruction::FPToUI: // double->APInt conversion handles sign
    case Instruction::FPToSI: {
      GenericValue GV = getConstantValue(Op0);
      uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
      if (Op0->getType() == Type::FloatTy)
        GV.IntVal = APIntOps::RoundFloatToAPInt(GV.FloatVal, BitWidth);
      else if (Op0->getType() == Type::DoubleTy)
        GV.IntVal = APIntOps::RoundDoubleToAPInt(GV.DoubleVal, BitWidth);
      else if (Op0->getType() == Type::X86_FP80Ty) {
        APFloat apf = APFloat(GV.IntVal);
        uint64_t v;
        bool ignored;
        (void)apf.convertToInteger(&v, BitWidth,
                                   CE->getOpcode()==Instruction::FPToSI, 
                                   APFloat::rmTowardZero, &ignored);
        GV.IntVal = v; // endian?
      }
      return GV;
    }
    case Instruction::PtrToInt: {
      GenericValue GV = getConstantValue(Op0);
      uint32_t PtrWidth = TD->getPointerSizeInBits();
      GV.IntVal = APInt(PtrWidth, uintptr_t(GV.PointerVal));
      return GV;
    }
    case Instruction::IntToPtr: {
      GenericValue GV = getConstantValue(Op0);
      uint32_t PtrWidth = TD->getPointerSizeInBits();
      if (PtrWidth != GV.IntVal.getBitWidth())
        GV.IntVal = GV.IntVal.zextOrTrunc(PtrWidth);
      assert(GV.IntVal.getBitWidth() <= 64 && "Bad pointer width");
      GV.PointerVal = PointerTy(uintptr_t(GV.IntVal.getZExtValue()));
      return GV;
    }
    case Instruction::BitCast: {
      GenericValue GV = getConstantValue(Op0);
      const Type* DestTy = CE->getType();
      switch (Op0->getType()->getTypeID()) {
        default: assert(0 && "Invalid bitcast operand");
        case Type::IntegerTyID:
          assert(DestTy->isFloatingPoint() && "invalid bitcast");
          if (DestTy == Type::FloatTy)
            GV.FloatVal = GV.IntVal.bitsToFloat();
          else if (DestTy == Type::DoubleTy)
            GV.DoubleVal = GV.IntVal.bitsToDouble();
          break;
        case Type::FloatTyID: 
          assert(DestTy == Type::Int32Ty && "Invalid bitcast");
          GV.IntVal.floatToBits(GV.FloatVal);
          break;
        case Type::DoubleTyID:
          assert(DestTy == Type::Int64Ty && "Invalid bitcast");
          GV.IntVal.doubleToBits(GV.DoubleVal);
          break;
        case Type::PointerTyID:
          assert(isa<PointerType>(DestTy) && "Invalid bitcast");
          break; // getConstantValue(Op0)  above already converted it
      }
      return GV;
    }
    case Instruction::Add:
    case Instruction::Sub:
    case Instruction::Mul:
    case Instruction::UDiv:
    case Instruction::SDiv:
    case Instruction::URem:
    case Instruction::SRem:
    case Instruction::And:
    case Instruction::Or:
    case Instruction::Xor: {
      GenericValue LHS = getConstantValue(Op0);
      GenericValue RHS = getConstantValue(CE->getOperand(1));
      GenericValue GV;
      switch (CE->getOperand(0)->getType()->getTypeID()) {
      default: assert(0 && "Bad add type!"); abort();
      case Type::IntegerTyID:
        switch (CE->getOpcode()) {
          default: assert(0 && "Invalid integer opcode");
          case Instruction::Add: GV.IntVal = LHS.IntVal + RHS.IntVal; break;
          case Instruction::Sub: GV.IntVal = LHS.IntVal - RHS.IntVal; break;
          case Instruction::Mul: GV.IntVal = LHS.IntVal * RHS.IntVal; break;
          case Instruction::UDiv:GV.IntVal = LHS.IntVal.udiv(RHS.IntVal); break;
          case Instruction::SDiv:GV.IntVal = LHS.IntVal.sdiv(RHS.IntVal); break;
          case Instruction::URem:GV.IntVal = LHS.IntVal.urem(RHS.IntVal); break;
          case Instruction::SRem:GV.IntVal = LHS.IntVal.srem(RHS.IntVal); break;
          case Instruction::And: GV.IntVal = LHS.IntVal & RHS.IntVal; break;
          case Instruction::Or:  GV.IntVal = LHS.IntVal | RHS.IntVal; break;
          case Instruction::Xor: GV.IntVal = LHS.IntVal ^ RHS.IntVal; break;
        }
        break;
      case Type::FloatTyID:
        switch (CE->getOpcode()) {
          default: assert(0 && "Invalid float opcode"); abort();
          case Instruction::Add:  
            GV.FloatVal = LHS.FloatVal + RHS.FloatVal; break;
          case Instruction::Sub:  
            GV.FloatVal = LHS.FloatVal - RHS.FloatVal; break;
          case Instruction::Mul:  
            GV.FloatVal = LHS.FloatVal * RHS.FloatVal; break;
          case Instruction::FDiv: 
            GV.FloatVal = LHS.FloatVal / RHS.FloatVal; break;
          case Instruction::FRem: 
            GV.FloatVal = ::fmodf(LHS.FloatVal,RHS.FloatVal); break;
        }
        break;
      case Type::DoubleTyID:
        switch (CE->getOpcode()) {
          default: assert(0 && "Invalid double opcode"); abort();
          case Instruction::Add:  
            GV.DoubleVal = LHS.DoubleVal + RHS.DoubleVal; break;
          case Instruction::Sub:  
            GV.DoubleVal = LHS.DoubleVal - RHS.DoubleVal; break;
          case Instruction::Mul:  
            GV.DoubleVal = LHS.DoubleVal * RHS.DoubleVal; break;
          case Instruction::FDiv: 
            GV.DoubleVal = LHS.DoubleVal / RHS.DoubleVal; break;
          case Instruction::FRem: 
            GV.DoubleVal = ::fmod(LHS.DoubleVal,RHS.DoubleVal); break;
        }
        break;
      case Type::X86_FP80TyID:
      case Type::PPC_FP128TyID:
      case Type::FP128TyID: {
        APFloat apfLHS = APFloat(LHS.IntVal);
        switch (CE->getOpcode()) {
          default: assert(0 && "Invalid long double opcode"); abort();
          case Instruction::Add:  
            apfLHS.add(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
            GV.IntVal = apfLHS.bitcastToAPInt();
            break;
          case Instruction::Sub:  
            apfLHS.subtract(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
            GV.IntVal = apfLHS.bitcastToAPInt();
            break;
          case Instruction::Mul:  
            apfLHS.multiply(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
            GV.IntVal = apfLHS.bitcastToAPInt();
            break;
          case Instruction::FDiv: 
            apfLHS.divide(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
            GV.IntVal = apfLHS.bitcastToAPInt();
            break;
          case Instruction::FRem: 
            apfLHS.mod(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
            GV.IntVal = apfLHS.bitcastToAPInt();
            break;
          }
        }
        break;
      }
      return GV;
    }
    default:
      break;
    }
    cerr << "ConstantExpr not handled: " << *CE << "\n";
    abort();
  }

  GenericValue Result;
  switch (C->getType()->getTypeID()) {
  case Type::FloatTyID: 
    Result.FloatVal = cast<ConstantFP>(C)->getValueAPF().convertToFloat(); 
    break;
  case Type::DoubleTyID:
    Result.DoubleVal = cast<ConstantFP>(C)->getValueAPF().convertToDouble();
    break;
  case Type::X86_FP80TyID:
  case Type::FP128TyID:
  case Type::PPC_FP128TyID:
    Result.IntVal = cast <ConstantFP>(C)->getValueAPF().bitcastToAPInt();
    break;
  case Type::IntegerTyID:
    Result.IntVal = cast<ConstantInt>(C)->getValue();
    break;
  case Type::PointerTyID:
    if (isa<ConstantPointerNull>(C))
      Result.PointerVal = 0;
    else if (const Function *F = dyn_cast<Function>(C))
      Result = PTOGV(getPointerToFunctionOrStub(const_cast<Function*>(F)));
    else if (const GlobalVariable* GV = dyn_cast<GlobalVariable>(C))
      Result = PTOGV(getOrEmitGlobalVariable(const_cast<GlobalVariable*>(GV)));
    else
      assert(0 && "Unknown constant pointer type!");
    break;
  default:
    cerr << "ERROR: Constant unimplemented for type: " << *C->getType() << "\n";
    abort();
  }
  return Result;
}
SDNode *AMDGPUDAGToDAGISel::Select(SDNode *N) {
  const R600InstrInfo *TII =
                      static_cast<const R600InstrInfo*>(TM.getInstrInfo());
  unsigned int Opc = N->getOpcode();
  if (N->isMachineOpcode()) {
    return NULL;   // Already selected.
  }
  switch (Opc) {
  default: break;
  case AMDGPUISD::CONST_ADDRESS: {
    for (SDNode::use_iterator I = N->use_begin(), Next = llvm::next(I);
                              I != SDNode::use_end(); I = Next) {
      Next = llvm::next(I);
      if (!I->isMachineOpcode()) {
        continue;
      }
      unsigned Opcode = I->getMachineOpcode();
      bool HasDst = TII->getOperandIdx(Opcode, AMDGPU::OpName::dst) > -1;
      int SrcIdx = I.getOperandNo();
      int SelIdx;
      // Unlike MachineInstrs, SDNodes do not have results in their operand
      // list, so we need to increment the SrcIdx, since
      // R600InstrInfo::getOperandIdx is based on the MachineInstr indices.
      if (HasDst) {
        SrcIdx++;
      }

      SelIdx = TII->getSelIdx(I->getMachineOpcode(), SrcIdx);
      if (SelIdx < 0) {
        continue;
      }

      SDValue CstOffset;
      if (N->getValueType(0).isVector() ||
          !SelectGlobalValueConstantOffset(N->getOperand(0), CstOffset))
        continue;

      // Gather constants values
      int SrcIndices[] = {
        TII->getOperandIdx(Opcode, AMDGPU::OpName::src0),
        TII->getOperandIdx(Opcode, AMDGPU::OpName::src1),
        TII->getOperandIdx(Opcode, AMDGPU::OpName::src2),
        TII->getOperandIdx(Opcode, AMDGPU::OpName::src0_X),
        TII->getOperandIdx(Opcode, AMDGPU::OpName::src0_Y),
        TII->getOperandIdx(Opcode, AMDGPU::OpName::src0_Z),
        TII->getOperandIdx(Opcode, AMDGPU::OpName::src0_W),
        TII->getOperandIdx(Opcode, AMDGPU::OpName::src1_X),
        TII->getOperandIdx(Opcode, AMDGPU::OpName::src1_Y),
        TII->getOperandIdx(Opcode, AMDGPU::OpName::src1_Z),
        TII->getOperandIdx(Opcode, AMDGPU::OpName::src1_W)
      };
      std::vector<unsigned> Consts;
      for (unsigned i = 0; i < sizeof(SrcIndices) / sizeof(int); i++) {
        int OtherSrcIdx = SrcIndices[i];
        int OtherSelIdx = TII->getSelIdx(Opcode, OtherSrcIdx);
        if (OtherSrcIdx < 0 || OtherSelIdx < 0) {
          continue;
        }
        if (HasDst) {
          OtherSrcIdx--;
          OtherSelIdx--;
        }
        if (RegisterSDNode *Reg =
                         dyn_cast<RegisterSDNode>(I->getOperand(OtherSrcIdx))) {
          if (Reg->getReg() == AMDGPU::ALU_CONST) {
            ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(I->getOperand(OtherSelIdx));
            Consts.push_back(Cst->getZExtValue());
          }
        }
      }

      ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(CstOffset);
      Consts.push_back(Cst->getZExtValue());
      if (!TII->fitsConstReadLimitations(Consts))
        continue;

      // Convert back to SDNode indices
      if (HasDst) {
        SrcIdx--;
        SelIdx--;
      }
      std::vector<SDValue> Ops;
      for (int i = 0, e = I->getNumOperands(); i != e; ++i) {
        if (i == SrcIdx) {
          Ops.push_back(CurDAG->getRegister(AMDGPU::ALU_CONST, MVT::f32));
        } else if (i == SelIdx) {
          Ops.push_back(CstOffset);
        } else {
          Ops.push_back(I->getOperand(i));
        }
      }
      CurDAG->UpdateNodeOperands(*I, Ops.data(), Ops.size());
    }
    break;
  }
  case ISD::BUILD_VECTOR: {
    const AMDGPUSubtarget &ST = TM.getSubtarget<AMDGPUSubtarget>();
    if (ST.getGeneration() > AMDGPUSubtarget::NORTHERN_ISLANDS) {
      break;
    }

    unsigned RegClassID;
    switch(N->getValueType(0).getVectorNumElements()) {
    case 2: RegClassID = AMDGPU::R600_Reg64RegClassID; break;
    case 4: RegClassID = AMDGPU::R600_Reg128RegClassID; break;
    default: llvm_unreachable("Do not know how to lower this BUILD_VECTOR");
    }
    // BUILD_VECTOR is usually lowered into an IMPLICIT_DEF + 4 INSERT_SUBREG
    // that adds a 128 bits reg copy when going through TwoAddressInstructions
    // pass. We want to avoid 128 bits copies as much as possible because they
    // can't be bundled by our scheduler.
    SDValue RegSeqArgs[9] = {
      CurDAG->getTargetConstant(RegClassID, MVT::i32),
      SDValue(), CurDAG->getTargetConstant(AMDGPU::sub0, MVT::i32),
      SDValue(), CurDAG->getTargetConstant(AMDGPU::sub1, MVT::i32),
      SDValue(), CurDAG->getTargetConstant(AMDGPU::sub2, MVT::i32),
      SDValue(), CurDAG->getTargetConstant(AMDGPU::sub3, MVT::i32)
    };
    bool IsRegSeq = true;
    for (unsigned i = 0; i < N->getNumOperands(); i++) {
      if (dyn_cast<RegisterSDNode>(N->getOperand(i))) {
        IsRegSeq = false;
        break;
      }
      RegSeqArgs[2 * i + 1] = N->getOperand(i);
    }
    if (!IsRegSeq)
      break;
    return CurDAG->SelectNodeTo(N, AMDGPU::REG_SEQUENCE, N->getVTList(),
        RegSeqArgs, 2 * N->getNumOperands() + 1);
  }
  case ISD::BUILD_PAIR: {
    SDValue RC, SubReg0, SubReg1;
    const AMDGPUSubtarget &ST = TM.getSubtarget<AMDGPUSubtarget>();
    if (ST.getGeneration() <= AMDGPUSubtarget::NORTHERN_ISLANDS) {
      break;
    }
    if (N->getValueType(0) == MVT::i128) {
      RC = CurDAG->getTargetConstant(AMDGPU::SReg_128RegClassID, MVT::i32);
      SubReg0 = CurDAG->getTargetConstant(AMDGPU::sub0_sub1, MVT::i32);
      SubReg1 = CurDAG->getTargetConstant(AMDGPU::sub2_sub3, MVT::i32);
    } else if (N->getValueType(0) == MVT::i64) {
      RC = CurDAG->getTargetConstant(AMDGPU::VSrc_64RegClassID, MVT::i32);
      SubReg0 = CurDAG->getTargetConstant(AMDGPU::sub0, MVT::i32);
      SubReg1 = CurDAG->getTargetConstant(AMDGPU::sub1, MVT::i32);
    } else {
      llvm_unreachable("Unhandled value type for BUILD_PAIR");
    }
    const SDValue Ops[] = { RC, N->getOperand(0), SubReg0,
                            N->getOperand(1), SubReg1 };
    return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE,
                                  SDLoc(N), N->getValueType(0), Ops);
  }

  case ISD::ConstantFP:
  case ISD::Constant: {
    const AMDGPUSubtarget &ST = TM.getSubtarget<AMDGPUSubtarget>();
    // XXX: Custom immediate lowering not implemented yet.  Instead we use
    // pseudo instructions defined in SIInstructions.td
    if (ST.getGeneration() > AMDGPUSubtarget::NORTHERN_ISLANDS) {
      break;
    }

    uint64_t ImmValue = 0;
    unsigned ImmReg = AMDGPU::ALU_LITERAL_X;

    if (N->getOpcode() == ISD::ConstantFP) {
      // XXX: 64-bit Immediates not supported yet
      assert(N->getValueType(0) != MVT::f64);

      ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N);
      APFloat Value = C->getValueAPF();
      float FloatValue = Value.convertToFloat();
      if (FloatValue == 0.0) {
        ImmReg = AMDGPU::ZERO;
      } else if (FloatValue == 0.5) {
        ImmReg = AMDGPU::HALF;
      } else if (FloatValue == 1.0) {
        ImmReg = AMDGPU::ONE;
      } else {
        ImmValue = Value.bitcastToAPInt().getZExtValue();
      }
    } else {
      // XXX: 64-bit Immediates not supported yet
      assert(N->getValueType(0) != MVT::i64);

      ConstantSDNode *C = dyn_cast<ConstantSDNode>(N);
      if (C->getZExtValue() == 0) {
        ImmReg = AMDGPU::ZERO;
      } else if (C->getZExtValue() == 1) {
        ImmReg = AMDGPU::ONE_INT;
      } else {
        ImmValue = C->getZExtValue();
      }
    }

    for (SDNode::use_iterator Use = N->use_begin(), Next = llvm::next(Use);
                              Use != SDNode::use_end(); Use = Next) {
      Next = llvm::next(Use);
      std::vector<SDValue> Ops;
      for (unsigned i = 0; i < Use->getNumOperands(); ++i) {
        Ops.push_back(Use->getOperand(i));
      }

      if (!Use->isMachineOpcode()) {
          if (ImmReg == AMDGPU::ALU_LITERAL_X) {
            // We can only use literal constants (e.g. AMDGPU::ZERO,
            // AMDGPU::ONE, etc) in machine opcodes.
            continue;
          }
      } else {
        if (!TII->isALUInstr(Use->getMachineOpcode()) ||
            (TII->get(Use->getMachineOpcode()).TSFlags &
            R600_InstFlag::VECTOR)) {
          continue;
        }

        int ImmIdx = TII->getOperandIdx(Use->getMachineOpcode(),
                                        AMDGPU::OpName::literal);
        if (ImmIdx == -1) {
          continue;
        }

        if (TII->getOperandIdx(Use->getMachineOpcode(),
                               AMDGPU::OpName::dst) != -1) {
          // subtract one from ImmIdx, because the DST operand is usually index
          // 0 for MachineInstrs, but we have no DST in the Ops vector.
          ImmIdx--;
        }

        // Check that we aren't already using an immediate.
        // XXX: It's possible for an instruction to have more than one
        // immediate operand, but this is not supported yet.
        if (ImmReg == AMDGPU::ALU_LITERAL_X) {
          ConstantSDNode *C = dyn_cast<ConstantSDNode>(Use->getOperand(ImmIdx));
          assert(C);

          if (C->getZExtValue() != 0) {
            // This instruction is already using an immediate.
            continue;
          }

          // Set the immediate value
          Ops[ImmIdx] = CurDAG->getTargetConstant(ImmValue, MVT::i32);
        }
      }
      // Set the immediate register
      Ops[Use.getOperandNo()] = CurDAG->getRegister(ImmReg, MVT::i32);

      CurDAG->UpdateNodeOperands(*Use, Ops.data(), Use->getNumOperands());
    }
    break;
  }
  }
  SDNode *Result = SelectCode(N);

  // Fold operands of selected node

  const AMDGPUSubtarget &ST = TM.getSubtarget<AMDGPUSubtarget>();
  if (ST.getGeneration() <= AMDGPUSubtarget::NORTHERN_ISLANDS) {
    const R600InstrInfo *TII =
        static_cast<const R600InstrInfo*>(TM.getInstrInfo());
    if (Result && Result->isMachineOpcode() && Result->getMachineOpcode() == AMDGPU::DOT_4) {
      bool IsModified = false;
      do {
        std::vector<SDValue> Ops;
        for(SDNode::op_iterator I = Result->op_begin(), E = Result->op_end();
            I != E; ++I)
          Ops.push_back(*I);
        IsModified = FoldDotOperands(Result->getMachineOpcode(), TII, Ops);
        if (IsModified) {
          Result = CurDAG->UpdateNodeOperands(Result, Ops.data(), Ops.size());
        }
      } while (IsModified);

    }
    if (Result && Result->isMachineOpcode() &&
        !(TII->get(Result->getMachineOpcode()).TSFlags & R600_InstFlag::VECTOR)
        && TII->hasInstrModifiers(Result->getMachineOpcode())) {
      // Fold FNEG/FABS
      // TODO: Isel can generate multiple MachineInst, we need to recursively
      // parse Result
      bool IsModified = false;
      do {
        std::vector<SDValue> Ops;
        for(SDNode::op_iterator I = Result->op_begin(), E = Result->op_end();
            I != E; ++I)
          Ops.push_back(*I);
        IsModified = FoldOperands(Result->getMachineOpcode(), TII, Ops);
        if (IsModified) {
          Result = CurDAG->UpdateNodeOperands(Result, Ops.data(), Ops.size());
        }
      } while (IsModified);

      // If node has a single use which is CLAMP_R600, folds it
      if (Result->hasOneUse() && Result->isMachineOpcode()) {
        SDNode *PotentialClamp = *Result->use_begin();
        if (PotentialClamp->isMachineOpcode() &&
            PotentialClamp->getMachineOpcode() == AMDGPU::CLAMP_R600) {
          unsigned ClampIdx =
            TII->getOperandIdx(Result->getMachineOpcode(), AMDGPU::OpName::clamp);
          std::vector<SDValue> Ops;
          unsigned NumOp = Result->getNumOperands();
          for (unsigned i = 0; i < NumOp; ++i) {
            Ops.push_back(Result->getOperand(i));
          }
          Ops[ClampIdx - 1] = CurDAG->getTargetConstant(1, MVT::i32);
          Result = CurDAG->SelectNodeTo(PotentialClamp,
              Result->getMachineOpcode(), PotentialClamp->getVTList(),
              Ops.data(), NumOp);
        }
      }
    }
  }

  return Result;
}
Exemple #10
0
SDNode *AMDGPUDAGToDAGISel::Select(SDNode *N) {
  unsigned int Opc = N->getOpcode();
  if (N->isMachineOpcode()) {
    return NULL;   // Already selected.
  }
  switch (Opc) {
  default: break;
  case ISD::BUILD_VECTOR: {
    const AMDGPUSubtarget &ST = TM.getSubtarget<AMDGPUSubtarget>();
    if (ST.device()->getGeneration() > AMDGPUDeviceInfo::HD6XXX) {
      break;
    }
    // BUILD_VECTOR is usually lowered into an IMPLICIT_DEF + 4 INSERT_SUBREG
    // that adds a 128 bits reg copy when going through TwoAddressInstructions
    // pass. We want to avoid 128 bits copies as much as possible because they
    // can't be bundled by our scheduler.
    SDValue RegSeqArgs[9] = {
      CurDAG->getTargetConstant(AMDGPU::R600_Reg128RegClassID, MVT::i32),
      SDValue(), CurDAG->getTargetConstant(AMDGPU::sub0, MVT::i32),
      SDValue(), CurDAG->getTargetConstant(AMDGPU::sub1, MVT::i32),
      SDValue(), CurDAG->getTargetConstant(AMDGPU::sub2, MVT::i32),
      SDValue(), CurDAG->getTargetConstant(AMDGPU::sub3, MVT::i32)
    };
    bool IsRegSeq = true;
    for (unsigned i = 0; i < N->getNumOperands(); i++) {
      if (dyn_cast<RegisterSDNode>(N->getOperand(i))) {
        IsRegSeq = false;
        break;
      }
      RegSeqArgs[2 * i + 1] = N->getOperand(i);
    }
    if (!IsRegSeq)
      break;
    return CurDAG->SelectNodeTo(N, AMDGPU::REG_SEQUENCE, N->getVTList(),
        RegSeqArgs, 2 * N->getNumOperands() + 1);
  }
  case ISD::ConstantFP:
  case ISD::Constant: {
    const AMDGPUSubtarget &ST = TM.getSubtarget<AMDGPUSubtarget>();
    // XXX: Custom immediate lowering not implemented yet.  Instead we use
    // pseudo instructions defined in SIInstructions.td
    if (ST.device()->getGeneration() > AMDGPUDeviceInfo::HD6XXX) {
      break;
    }
    const R600InstrInfo *TII = static_cast<const R600InstrInfo*>(TM.getInstrInfo());

    uint64_t ImmValue = 0;
    unsigned ImmReg = AMDGPU::ALU_LITERAL_X;

    if (N->getOpcode() == ISD::ConstantFP) {
      // XXX: 64-bit Immediates not supported yet
      assert(N->getValueType(0) != MVT::f64);

      ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N);
      APFloat Value = C->getValueAPF();
      float FloatValue = Value.convertToFloat();
      if (FloatValue == 0.0) {
        ImmReg = AMDGPU::ZERO;
      } else if (FloatValue == 0.5) {
        ImmReg = AMDGPU::HALF;
      } else if (FloatValue == 1.0) {
        ImmReg = AMDGPU::ONE;
      } else {
        ImmValue = Value.bitcastToAPInt().getZExtValue();
      }
    } else {
      // XXX: 64-bit Immediates not supported yet
      assert(N->getValueType(0) != MVT::i64);

      ConstantSDNode *C = dyn_cast<ConstantSDNode>(N);
      if (C->getZExtValue() == 0) {
        ImmReg = AMDGPU::ZERO;
      } else if (C->getZExtValue() == 1) {
        ImmReg = AMDGPU::ONE_INT;
      } else {
        ImmValue = C->getZExtValue();
      }
    }

    for (SDNode::use_iterator Use = N->use_begin(), Next = llvm::next(Use);
                              Use != SDNode::use_end(); Use = Next) {
      Next = llvm::next(Use);
      std::vector<SDValue> Ops;
      for (unsigned i = 0; i < Use->getNumOperands(); ++i) {
        Ops.push_back(Use->getOperand(i));
      }

      if (!Use->isMachineOpcode()) {
          if (ImmReg == AMDGPU::ALU_LITERAL_X) {
            // We can only use literal constants (e.g. AMDGPU::ZERO,
            // AMDGPU::ONE, etc) in machine opcodes.
            continue;
          }
      } else {
        if (!TII->isALUInstr(Use->getMachineOpcode()) ||
            (TII->get(Use->getMachineOpcode()).TSFlags &
            R600_InstFlag::VECTOR)) {
          continue;
        }

        int ImmIdx = TII->getOperandIdx(Use->getMachineOpcode(), R600Operands::IMM);
        assert(ImmIdx != -1);

        // subtract one from ImmIdx, because the DST operand is usually index
        // 0 for MachineInstrs, but we have no DST in the Ops vector.
        ImmIdx--;

        // Check that we aren't already using an immediate.
        // XXX: It's possible for an instruction to have more than one
        // immediate operand, but this is not supported yet.
        if (ImmReg == AMDGPU::ALU_LITERAL_X) {
          ConstantSDNode *C = dyn_cast<ConstantSDNode>(Use->getOperand(ImmIdx));
          assert(C);

          if (C->getZExtValue() != 0) {
            // This instruction is already using an immediate.
            continue;
          }

          // Set the immediate value
          Ops[ImmIdx] = CurDAG->getTargetConstant(ImmValue, MVT::i32);
        }
      }
      // Set the immediate register
      Ops[Use.getOperandNo()] = CurDAG->getRegister(ImmReg, MVT::i32);

      CurDAG->UpdateNodeOperands(*Use, Ops.data(), Use->getNumOperands());
    }
    break;
  }
  }
  SDNode *Result = SelectCode(N);

  // Fold operands of selected node

  const AMDGPUSubtarget &ST = TM.getSubtarget<AMDGPUSubtarget>();
  if (ST.device()->getGeneration() <= AMDGPUDeviceInfo::HD6XXX) {
    const R600InstrInfo *TII =
        static_cast<const R600InstrInfo*>(TM.getInstrInfo());
    if (Result && Result->isMachineOpcode() &&
        !(TII->get(Result->getMachineOpcode()).TSFlags & R600_InstFlag::VECTOR)
        && TII->isALUInstr(Result->getMachineOpcode())) {
      // Fold FNEG/FABS/CONST_ADDRESS
      // TODO: Isel can generate multiple MachineInst, we need to recursively
      // parse Result
      bool IsModified = false;
      do {
        std::vector<SDValue> Ops;
        for(SDNode::op_iterator I = Result->op_begin(), E = Result->op_end();
            I != E; ++I)
          Ops.push_back(*I);
        IsModified = FoldOperands(Result->getMachineOpcode(), TII, Ops);
        if (IsModified) {
          Result = CurDAG->UpdateNodeOperands(Result, Ops.data(), Ops.size());
        }
      } while (IsModified);

      // If node has a single use which is CLAMP_R600, folds it
      if (Result->hasOneUse() && Result->isMachineOpcode()) {
        SDNode *PotentialClamp = *Result->use_begin();
        if (PotentialClamp->isMachineOpcode() &&
            PotentialClamp->getMachineOpcode() == AMDGPU::CLAMP_R600) {
          unsigned ClampIdx =
            TII->getOperandIdx(Result->getMachineOpcode(), R600Operands::CLAMP);
          std::vector<SDValue> Ops;
          unsigned NumOp = Result->getNumOperands();
          for (unsigned i = 0; i < NumOp; ++i) {
            Ops.push_back(Result->getOperand(i));
          }
          Ops[ClampIdx - 1] = CurDAG->getTargetConstant(1, MVT::i32);
          Result = CurDAG->SelectNodeTo(PotentialClamp,
              Result->getMachineOpcode(), PotentialClamp->getVTList(),
              Ops.data(), NumOp);
        }
      }
    }
  }

  return Result;
}
// Create an MCInst from a MachineInstr
void llvm::HexagonLowerToMC(MachineInstr const* MI, MCInst& MCB,
                            HexagonAsmPrinter& AP) {
  if(MI->getOpcode() == Hexagon::ENDLOOP0){
    HexagonMCInstrInfo::setInnerLoop(MCB);
    return;
  }
  if(MI->getOpcode() == Hexagon::ENDLOOP1){
    HexagonMCInstrInfo::setOuterLoop(MCB);
    return;
  }
  MCInst* MCI = new (AP.OutContext) MCInst;
  MCI->setOpcode(MI->getOpcode());
  assert(MCI->getOpcode() == static_cast<unsigned>(MI->getOpcode()) &&
         "MCI opcode should have been set on construction");

  for (unsigned i = 0, e = MI->getNumOperands(); i < e; i++) {
    const MachineOperand &MO = MI->getOperand(i);
    MCOperand MCO;

    switch (MO.getType()) {
    default:
      MI->dump();
      llvm_unreachable("unknown operand type");
    case MachineOperand::MO_Register:
      // Ignore all implicit register operands.
      if (MO.isImplicit()) continue;
      MCO = MCOperand::createReg(MO.getReg());
      break;
    case MachineOperand::MO_FPImmediate: {
      APFloat Val = MO.getFPImm()->getValueAPF();
      // FP immediates are used only when setting GPRs, so they may be dealt
      // with like regular immediates from this point on.
      MCO = MCOperand::createImm(*Val.bitcastToAPInt().getRawData());
      break;
    }
    case MachineOperand::MO_Immediate:
      MCO = MCOperand::createImm(MO.getImm());
      break;
    case MachineOperand::MO_MachineBasicBlock:
      MCO = MCOperand::createExpr
              (MCSymbolRefExpr::create(MO.getMBB()->getSymbol(),
               AP.OutContext));
      break;
    case MachineOperand::MO_GlobalAddress:
      MCO = GetSymbolRef(MO, AP.getSymbol(MO.getGlobal()), AP);
      break;
    case MachineOperand::MO_ExternalSymbol:
      MCO = GetSymbolRef(MO, AP.GetExternalSymbolSymbol(MO.getSymbolName()),
                         AP);
      break;
    case MachineOperand::MO_JumpTableIndex:
      MCO = GetSymbolRef(MO, AP.GetJTISymbol(MO.getIndex()), AP);
      break;
    case MachineOperand::MO_ConstantPoolIndex:
      MCO = GetSymbolRef(MO, AP.GetCPISymbol(MO.getIndex()), AP);
      break;
    case MachineOperand::MO_BlockAddress:
      MCO = GetSymbolRef(MO, AP.GetBlockAddressSymbol(MO.getBlockAddress()),AP);
      break;
    }

    MCI->addOperand(MCO);
  }
  MCB.addOperand(MCOperand::createInst(MCI));
}