void CountPrimaries(TH1F *hMultCount) { if (hMultCount==0) hMultCount = new TH1F("mult","averaged multiplicity (charg. prim)",80,-4.,4.); AliRunLoader *rl = AliRunLoader::Open("galice.root"); rl->SetKineFileName("Kinematics.root"); rl->LoadHeader(); rl->LoadKinematics(); Int_t nEvents = rl->GetNumberOfEvents(); cout<< "N events "<<nEvents<<endl; for(Int_t iEv=0; iEv<nEvents; iEv++){ rl->GetEvent(iEv); AliStack *s = rl->Stack(); for(Int_t iP=0; iP<s->GetNtrack(); iP++ ){ TParticle *p = s->Particle(iP); if (!(s->IsPhysicalPrimary(iP))) continue; Float_t eta = p->Eta(); if (p->Pt()>0.06) { hMultCount->Fill(eta); } } } hMultCount->DrawCopy(); rl->UnloadHeader(); rl->UnloadKinematics(); delete rl; }
// analisi Bool_t CheckSingle(const char* esdFileName,Bool_t kGRID){ //inizializzo a zero ncluster (di tree T) //for (int ifc=0;ifc<10000;ifc++) ncluster[ifc]=0; // check the content of the ESD AliPIDResponse *pidr = new AliPIDResponse(); // open the ESD file TFile* esdFile = TFile::Open(esdFileName); if (!esdFile || !esdFile->IsOpen()){ Error("CheckESD", "opening ESD file %s failed", esdFileName); return kFALSE; } TString mctrkref(esdFileName); mctrkref.ReplaceAll("AliESDs.root","TrackRefs.root"); TString fgal(esdFileName); fgal.ReplaceAll("AliESDs.root","galice.root"); if(kGRID){ fgal.Insert(0,"alien://"); mctrkref.Insert(0,"alien://"); } TTree *trkref; printf("ESD = %s\n",esdFileName); TFile *ftrkref; if(isMC) ftrkref = TFile::Open(mctrkref.Data()); AliHeader *h = new AliHeader(); TFile *fgalice; if(isMC) fgalice = TFile::Open(fgal.Data()); TTree *tgalice; if(isMC){ tgalice = (TTree *) fgalice->Get("TE"); tgalice->SetBranchAddress("Header",&h); } AliRunLoader* runLoader = NULL; AliRun *gAlice; if(isMC) runLoader = AliRunLoader::Open(fgal.Data()); if(runLoader){ runLoader->LoadgAlice(); gAlice = runLoader->GetAliRun(); if (!gAlice) { Error("CheckESD", "no galice object found"); return kFALSE; } runLoader->LoadKinematics(); runLoader->LoadHeader(); } AliESDEvent * esd = new AliESDEvent; // printf("esd object = %x\n",esd); TTree* tree = (TTree*) esdFile->Get("esdTree"); if (!tree){ Error("CheckESD", "no ESD tree found"); return kFALSE; } esd->ReadFromTree(tree); // crea link tra esd e tree TClonesArray* tofcl; // array dinamico TClonesArray* tofhit; TClonesArray* tofmatch; Int_t nev = tree->GetEntries(); //ogni entries evento Float_t mag; printf("nev = %i\n",nev); //azzero il contatore delle tracce del TTree T //ntracks=0; AliStack* stack=NULL; Int_t trkassociation[1000000]; for(Int_t ie=0;ie < nev;ie++){ if(runLoader){ runLoader->GetEvent(ie); // select simulated primary particles, V0s and cascades stack = runLoader->Stack(); } if(isMC) trkref = (TTree *) ftrkref->Get(Form("Event%i/TreeTR",ie)); tree->GetEvent(ie); if(isMC) tgalice->GetEvent(ie); if(isMC) interactiontime = h->GenEventHeader()->InteractionTime()*1E+12; mag = esd->GetMagneticField(); AliTOFHeader *tofh = esd->GetTOFHeader(); ntofcl = tofh->GetNumberOfTOFclusters(); esd->ConnectTracks(); // Deve essere sempre chiamato dopo aver letto l'evento (non troverebbe l'ESDevent). Scrivo in tutte le tracce l origine dell evento così poi da arrivare ovunque(tipo al cluster e al tempo quindi). //Riempio variabile del tree "T" //nevento=ie; if(! esd->GetVertex()){ esd->ResetStdContent(); continue;// una volta fatto il connect manda un flag ; siccome qua c'era un continue(non si arriva in fondo al ciclo) bisogna resettarlo altrimenti lo trova già attivo. } tofcl = esd->GetESDTOFClusters(); // AliESDTOFCluster *cltof = tofcl->At(i); if(tofcl->GetEntries() == 0){ esd->ResetStdContent(); continue; } tofhit = esd->GetESDTOFHits(); // AliESDTOFHit *hittof = tofhit->At(i); tofmatch = esd->GetESDTOFMatches(); // AliESDTOFHit *mathctof = tofmatch->At(i); // loop over tracks pidr->SetTOFResponse(esd,AliPIDResponse::kTOF_T0); //per recuperare lo start time ("esd", "tipo start time"), tipo cioè o il TOF stesso o il T0 o il best, ovvero la combinazione dei 2 Int_t ntrk = esd->GetNumberOfTracks(); //printf("%i) TPC tracks = %i -- TOF cluster = %i - TOF hit = %i -- matchable info = %i\n",ie,ntrk,tofcl->GetEntries(),tofhit->GetEntries(),tofmatch->GetEntries()); Double_t time[AliPID::kSPECIESC]; if(isMC && stack){// create association trackref printf("nMC track = %i\n",stack->GetNtrack()); for(Int_t ist=0;ist < stack->GetNtrack();ist++){ trkassociation[ist]=-1; } for(Int_t iref=0;iref < trkref->GetEntries();iref++){ trkref->GetEvent(iref); Int_t trkreference = trkref->GetLeaf("TrackReferences.fTrack")->GetValue(); if(trkreference > -1 && trkreference < 1000000){ trkassociation[trkreference] = iref; } } } for (Int_t iTrack = 0; iTrack < ntrk; iTrack++){ AliESDtrack* track = esd->GetTrack(iTrack); // select tracks of selected particles if ((track->GetStatus() & AliESDtrack::kITSrefit) == 0) continue;//almeno un hit nell ITS if (track->GetConstrainedChi2() > 4) continue; //se brutto X^2 if ((track->GetStatus() & AliESDtrack::kTOFout) == 0) continue; //se traccia matchata con tof if(track->GetNumberOfTPCClusters() < 70) continue; Float_t p =track->P(); itrig = 0; timetrig = 0; if(p > 0.9 && p < 1.1){ track->GetIntegratedTimes(time); itrig = iTrack; timetrig = track->GetTOFsignal() - time[2]; iTrack = ntrk; } } printf("real loop, ntrk = %i\n",ntrk); for (Int_t iTrack = 0; iTrack < ntrk; iTrack++){ AliESDtrack* track = esd->GetTrack(iTrack); // select tracks of selected particles if ((track->GetStatus() & AliESDtrack::kITSrefit) == 0) continue;//almeno un hit nell ITS if (track->GetConstrainedChi2() > 4) continue; //se brutto X^2 //if ((track->GetStatus() & AliESDtrack::kTOFout) == 0) continue; //se traccia matchata con tof if(track->GetNumberOfTPCClusters() < 70) continue; TOFout = (track->GetStatus() & AliESDtrack::kTOFout) > 0; track->GetIntegratedTimes(time); Float_t dx = track->GetTOFsignalDx(); //leggo i residui tra traccia e canale tof acceso Float_t dz = track->GetTOFsignalDz(); mism = 0; dedx = track->GetTPCsignal(); Int_t label = TMath::Abs(track->GetLabel()); if(stack){ TParticle *part=stack->Particle(label); pdg = part->GetPdgCode(); } Int_t TOFlabel[3]; track->GetTOFLabel(TOFlabel); // printf("%i %i %i %i\n",label,TOFlabel[0],TOFlabel[1],TOFlabel[2]); ChannelTOF[0] = track->GetTOFCalChannel(); // printf("geant time = %f\n",gtime); //getchar(); // if(TMath::Abs(dx) > 1.25 || TMath::Abs(dz) > 1.75) continue; // is inside the pad //riempio il numro di cludter e impulso trasverso per traccia del TTree T ncluster=track->GetNTOFclusters(); impulso_trasv=track->Pt(); impulso=track->P(); StartTime = pidr->GetTOFResponse().GetStartTime(track->P()); StartTimeRes = pidr->GetTOFResponse().GetStartTimeRes(track->P()); if(track->Pt() > 0.9 && track->Pt() < 1.5){ //impulso non troppo alto per separazione tra particelle Float_t dt = track->GetTOFsignal() - time[2] - pidr->GetTOFResponse().GetStartTime(track->P());//tempo TOF(è lo stesso di Gettime, solo che lo prendo dale tracce)(già calibrato) -ip del PI (posizione 0 e, posizione 1 mu, pos 2 PI, pos 3 K,pos 4 p) -start time Float_t dtKa = track->GetTOFsignal() - time[3] - pidr->GetTOFResponse().GetStartTime(track->P()); Float_t dtPr = track->GetTOFsignal() - time[4] - pidr->GetTOFResponse().GetStartTime(track->P()); hdt->Fill(dt); hdtKa->Fill(dtKa); hdtPr->Fill(dtPr); } charge = track->Charge(); phi = track->Phi(); eta = track->Eta(); GetPositionAtTOF(track,mag,coord); phiExt = TMath::ATan2(coord[1],coord[0]); etaExt = -TMath::Log(TMath::Tan(0.5*TMath::ATan2(sqrt(coord[0]*coord[0]+coord[1]*coord[1]),coord[2]))); for (int i=0;i<(track->GetNTOFclusters());i++){ int idummy=track->GetTOFclusterArray()[i]; AliESDTOFCluster *cl = (AliESDTOFCluster *) tofcl->At(idummy); tempo[i]=cl->GetTime(); tot[i]=cl->GetTOT(); ChannelTOF[i]=cl->GetTOFchannel(); if(i==0){ GetResolutionAtTOF(track,mag,ChannelTOF[i],res); } for(int im=cl->GetNMatchableTracks();im--;){ //o così o da n-1 a 0 //for(int im=cl->GetNMatchableTracks();im>0;im--) non andava bene perchè non prendeva mai lo 0 // if(track->GetNTOFclusters()==2) printf("-- %i) %f %f\n",im,cl->GetLength(im),cl->GetIntegratedTime(2,im)); if(cl->GetTrackIndex(im) == track->GetID()){ exp_time_el[i] = cl->GetIntegratedTime(0,im); // pi = 2 exp_time_mu[i] = cl->GetIntegratedTime(1,im); // pi = 2 exp_time_pi[i] = cl->GetIntegratedTime(2,im); // pi = 2 exp_time_ka[i] = cl->GetIntegratedTime(3,im); // pi = 2 exp_time_pr[i] = cl->GetIntegratedTime(4,im); // pi = 2 L[i] = cl->GetLength(im); // if(track->GetNTOFclusters()==2)printf("%i) %f %f\n",i,L[i],exp_time_pi[i]); DeltaX[i]=cl->GetDx(im); // mettendolo dentro questo if dovrei prendere i residui di una stessa traccia DeltaZ[i]=cl->GetDz(im); } } } //ReMatch(); Int_t jref=0; if(isMC){ if(TOFlabel[0] > -1 && TOFlabel[0] < 1000000){ trkref->GetEvent(trkassociation[TOFlabel[0]]); if(TOFlabel[0] == trkref->GetLeaf("TrackReferences.fTrack")->GetValue()){ // printf("trk -> %i (%i)\n",trkref->GetLeaf("TrackReferences.fTrack")->GetValue(),trkref->GetLeaf("TrackReferences.fTrack")->GetValue(jref)); while(jref > -1 && trkref->GetLeaf("TrackReferences.fTrack")->GetValue(jref) != 0){ //printf("det = %i\n",trkref->GetLeaf("TrackReferences.fDetectorId")->GetValue(jref)); if(trkref->GetLeaf("TrackReferences.fDetectorId")->GetValue(jref) == 4){ gtime=trkref->GetLeaf("TrackReferences.fTime")->GetValue(jref)*1E+12; xgl = trkref->GetLeaf("TrackReferences.fX")->GetValue(jref); ygl = trkref->GetLeaf("TrackReferences.fY")->GetValue(jref); zgl = trkref->GetLeaf("TrackReferences.fZ")->GetValue(jref); MakeTrueRes(); jref = 100; } jref++; } } } } if(TMath::Abs(label) != TOFlabel[0] && stack){ mism=2; while(TOFlabel[0] != -1 && TOFlabel[0] != label){ TOFlabel[0] = stack->Particle(TOFlabel[0])->GetMother(0); } if(label == TOFlabel[0]) mism=1; } //AddDelay(); T->Fill(); //cout<<"riempio il tree "<<endl; //Riempio tree "T" //incremento il contatore delle tracce del TTree T matchate e che superano i tagli //ntracks++; }//end of for(tracks) esd->ResetStdContent(); } //end of for(events) if(runLoader){ runLoader->UnloadHeader(); runLoader->UnloadKinematics(); delete runLoader; } esdFile->Close(); if(isMC) ftrkref->Close(); if(isMC) fgalice->Close(); }
Bool_t CheckESD(const char* gAliceFileName = "galice.root", const char* esdFileName = "AliESDs.root") { // check the content of the ESD // check values Int_t checkNGenLow = 1; Double_t checkEffLow = 0.5; Double_t checkEffSigma = 3; Double_t checkFakeHigh = 0.5; Double_t checkFakeSigma = 3; Double_t checkResPtInvHigh = 5; Double_t checkResPtInvSigma = 3; Double_t checkResPhiHigh = 10; Double_t checkResPhiSigma = 3; Double_t checkResThetaHigh = 10; Double_t checkResThetaSigma = 3; Double_t checkPIDEffLow = 0.5; Double_t checkPIDEffSigma = 3; Double_t checkResTOFHigh = 500; Double_t checkResTOFSigma = 3; Double_t checkPHOSNLow = 5; Double_t checkPHOSEnergyLow = 0.3; Double_t checkPHOSEnergyHigh = 1.0; Double_t checkEMCALNLow = 50; Double_t checkEMCALEnergyLow = 0.05; Double_t checkEMCALEnergyHigh = 1.0; Double_t checkMUONNLow = 1; Double_t checkMUONPtLow = 0.5; Double_t checkMUONPtHigh = 10.; Double_t cutPtV0 = 0.3; Double_t checkV0EffLow = 0.02; Double_t checkV0EffSigma = 3; Double_t cutPtCascade = 0.5; Double_t checkCascadeEffLow = 0.01; Double_t checkCascadeEffSigma = 3; // open run loader and load gAlice, kinematics and header AliRunLoader* runLoader = AliRunLoader::Open(gAliceFileName); if (!runLoader) { Error("CheckESD", "getting run loader from file %s failed", gAliceFileName); return kFALSE; } runLoader->LoadgAlice(); gAlice = runLoader->GetAliRun(); if (!gAlice) { Error("CheckESD", "no galice object found"); return kFALSE; } runLoader->LoadKinematics(); runLoader->LoadHeader(); // open the ESD file TFile* esdFile = TFile::Open(esdFileName); if (!esdFile || !esdFile->IsOpen()) { Error("CheckESD", "opening ESD file %s failed", esdFileName); return kFALSE; } AliESDEvent * esd = new AliESDEvent; TTree* tree = (TTree*) esdFile->Get("esdTree"); if (!tree) { Error("CheckESD", "no ESD tree found"); return kFALSE; } esd->ReadFromTree(tree); // efficiency and resolution histograms Int_t nBinsPt = 15; Float_t minPt = 0.1; Float_t maxPt = 3.1; TH1F* hGen = CreateHisto("hGen", "generated tracks", nBinsPt, minPt, maxPt, "p_{t} [GeV/c]", "N"); TH1F* hRec = CreateHisto("hRec", "reconstructed tracks", nBinsPt, minPt, maxPt, "p_{t} [GeV/c]", "N"); Int_t nGen = 0; Int_t nRec = 0; Int_t nFake = 0; TH1F* hResPtInv = CreateHisto("hResPtInv", "", 100, -10, 10, "(p_{t,rec}^{-1}-p_{t,sim}^{-1}) / p_{t,sim}^{-1} [%]", "N"); TH1F* hResPhi = CreateHisto("hResPhi", "", 100, -20, 20, "#phi_{rec}-#phi_{sim} [mrad]", "N"); TH1F* hResTheta = CreateHisto("hResTheta", "", 100, -20, 20, "#theta_{rec}-#theta_{sim} [mrad]", "N"); // PID Int_t partCode[AliPID::kSPECIES] = {kElectron, kMuonMinus, kPiPlus, kKPlus, kProton}; const char* partName[AliPID::kSPECIES+1] = {"electron", "muon", "pion", "kaon", "proton", "other"}; Double_t partFrac[AliPID::kSPECIES] = {0.01, 0.01, 0.85, 0.10, 0.05}; Int_t identified[AliPID::kSPECIES+1][AliPID::kSPECIES]; for (Int_t iGen = 0; iGen < AliPID::kSPECIES+1; iGen++) { for (Int_t iRec = 0; iRec < AliPID::kSPECIES; iRec++) { identified[iGen][iRec] = 0; } } Int_t nIdentified = 0; // dE/dx and TOF TH2F* hDEdxRight = new TH2F("hDEdxRight", "", 300, 0, 3, 100, 0, 400); hDEdxRight->SetStats(kFALSE); hDEdxRight->GetXaxis()->SetTitle("p [GeV/c]"); hDEdxRight->GetYaxis()->SetTitle("dE/dx_{TPC}"); hDEdxRight->SetMarkerStyle(kFullCircle); hDEdxRight->SetMarkerSize(0.4); TH2F* hDEdxWrong = new TH2F("hDEdxWrong", "", 300, 0, 3, 100, 0, 400); hDEdxWrong->SetStats(kFALSE); hDEdxWrong->GetXaxis()->SetTitle("p [GeV/c]"); hDEdxWrong->GetYaxis()->SetTitle("dE/dx_{TPC}"); hDEdxWrong->SetMarkerStyle(kFullCircle); hDEdxWrong->SetMarkerSize(0.4); hDEdxWrong->SetMarkerColor(kRed); TH1F* hResTOFRight = CreateHisto("hResTOFRight", "", 100, -1000, 1000, "t_{TOF}-t_{track} [ps]", "N"); TH1F* hResTOFWrong = CreateHisto("hResTOFWrong", "", 100, -1000, 1000, "t_{TOF}-t_{track} [ps]", "N"); hResTOFWrong->SetLineColor(kRed); // calorimeters TH1F* hEPHOS = CreateHisto("hEPHOS", "PHOS", 100, 0, 50, "E [GeV]", "N"); TH1F* hEEMCAL = CreateHisto("hEEMCAL", "EMCAL", 100, 0, 50, "E [GeV]", "N"); // muons TH1F* hPtMUON = CreateHisto("hPtMUON", "MUON", 100, 0, 20, "p_{t} [GeV/c]", "N"); // V0s and cascades TH1F* hMassK0 = CreateHisto("hMassK0", "K^{0}", 100, 0.4, 0.6, "M(#pi^{+}#pi^{-}) [GeV/c^{2}]", "N"); TH1F* hMassLambda = CreateHisto("hMassLambda", "#Lambda", 100, 1.0, 1.2, "M(p#pi^{-}) [GeV/c^{2}]", "N"); TH1F* hMassLambdaBar = CreateHisto("hMassLambdaBar", "#bar{#Lambda}", 100, 1.0, 1.2, "M(#bar{p}#pi^{+}) [GeV/c^{2}]", "N"); Int_t nGenV0s = 0; Int_t nRecV0s = 0; TH1F* hMassXi = CreateHisto("hMassXi", "#Xi", 100, 1.2, 1.5, "M(#Lambda#pi) [GeV/c^{2}]", "N"); TH1F* hMassOmega = CreateHisto("hMassOmega", "#Omega", 100, 1.5, 1.8, "M(#LambdaK) [GeV/c^{2}]", "N"); Int_t nGenCascades = 0; Int_t nRecCascades = 0; // loop over events for (Int_t iEvent = 0; iEvent < runLoader->GetNumberOfEvents(); iEvent++) { runLoader->GetEvent(iEvent); // select simulated primary particles, V0s and cascades AliStack* stack = runLoader->Stack(); Int_t nParticles = stack->GetNtrack(); TArrayF vertex(3); runLoader->GetHeader()->GenEventHeader()->PrimaryVertex(vertex); TObjArray selParticles; TObjArray selV0s; TObjArray selCascades; for (Int_t iParticle = 0; iParticle < nParticles; iParticle++) { TParticle* particle = stack->Particle(iParticle); if (!particle) continue; if (particle->Pt() < 0.001) continue; if (TMath::Abs(particle->Eta()) > 0.9) continue; TVector3 dVertex(particle->Vx() - vertex[0], particle->Vy() - vertex[1], particle->Vz() - vertex[2]); if (dVertex.Mag() > 0.0001) continue; switch (TMath::Abs(particle->GetPdgCode())) { case kElectron: case kMuonMinus: case kPiPlus: case kKPlus: case kProton: { if (particle->Pt() > minPt) { selParticles.Add(particle); nGen++; hGen->Fill(particle->Pt()); } break; } case kK0Short: case kLambda0: { if (particle->Pt() > cutPtV0) { nGenV0s++; selV0s.Add(particle); } break; } case kXiMinus: case kOmegaMinus: { if (particle->Pt() > cutPtCascade) { nGenCascades++; selCascades.Add(particle); } break; } default: break; } } // get the event summary data tree->GetEvent(iEvent); if (!esd) { Error("CheckESD", "no ESD object found for event %d", iEvent); return kFALSE; } // loop over tracks for (Int_t iTrack = 0; iTrack < esd->GetNumberOfTracks(); iTrack++) { AliESDtrack* track = esd->GetTrack(iTrack); // select tracks of selected particles Int_t label = TMath::Abs(track->GetLabel()); if (label > stack->GetNtrack()) continue; // background TParticle* particle = stack->Particle(label); if (!selParticles.Contains(particle)) continue; if ((track->GetStatus() & AliESDtrack::kITSrefit) == 0) continue; if (track->GetConstrainedChi2() > 1e9) continue; selParticles.Remove(particle); // don't count multiple tracks nRec++; hRec->Fill(particle->Pt()); if (track->GetLabel() < 0) nFake++; // resolutions hResPtInv->Fill(100. * (TMath::Abs(track->GetSigned1Pt()) - 1./particle->Pt()) * particle->Pt()); hResPhi->Fill(1000. * (track->Phi() - particle->Phi())); hResTheta->Fill(1000. * (track->Theta() - particle->Theta())); // PID if ((track->GetStatus() & AliESDtrack::kESDpid) == 0) continue; Int_t iGen = 5; for (Int_t i = 0; i < AliPID::kSPECIES; i++) { if (TMath::Abs(particle->GetPdgCode()) == partCode[i]) iGen = i; } Double_t probability[AliPID::kSPECIES]; track->GetESDpid(probability); Double_t pMax = 0; Int_t iRec = 0; for (Int_t i = 0; i < AliPID::kSPECIES; i++) { probability[i] *= partFrac[i]; if (probability[i] > pMax) { pMax = probability[i]; iRec = i; } } identified[iGen][iRec]++; if (iGen == iRec) nIdentified++; // dE/dx and TOF Double_t time[AliPID::kSPECIES]; track->GetIntegratedTimes(time); if (iGen == iRec) { hDEdxRight->Fill(particle->P(), track->GetTPCsignal()); if ((track->GetStatus() & AliESDtrack::kTOFpid) != 0) { hResTOFRight->Fill(track->GetTOFsignal() - time[iRec]); } } else { hDEdxWrong->Fill(particle->P(), track->GetTPCsignal()); if ((track->GetStatus() & AliESDtrack::kTOFpid) != 0) { hResTOFWrong->Fill(track->GetTOFsignal() - time[iRec]); } } } // loop over muon tracks { for (Int_t iTrack = 0; iTrack < esd->GetNumberOfMuonTracks(); iTrack++) { AliESDMuonTrack* muonTrack = esd->GetMuonTrack(iTrack); Double_t ptInv = TMath::Abs(muonTrack->GetInverseBendingMomentum()); if (ptInv > 0.001) { hPtMUON->Fill(1./ptInv); } } } // loop over V0s for (Int_t iV0 = 0; iV0 < esd->GetNumberOfV0s(); iV0++) { AliESDv0* v0 = esd->GetV0(iV0); if (v0->GetOnFlyStatus()) continue; v0->ChangeMassHypothesis(kK0Short); hMassK0->Fill(v0->GetEffMass()); v0->ChangeMassHypothesis(kLambda0); hMassLambda->Fill(v0->GetEffMass()); v0->ChangeMassHypothesis(kLambda0Bar); hMassLambdaBar->Fill(v0->GetEffMass()); Int_t negLabel = TMath::Abs(esd->GetTrack(v0->GetNindex())->GetLabel()); if (negLabel > stack->GetNtrack()) continue; // background Int_t negMother = stack->Particle(negLabel)->GetMother(0); if (negMother < 0) continue; Int_t posLabel = TMath::Abs(esd->GetTrack(v0->GetPindex())->GetLabel()); if (posLabel > stack->GetNtrack()) continue; // background Int_t posMother = stack->Particle(posLabel)->GetMother(0); if (negMother != posMother) continue; TParticle* particle = stack->Particle(negMother); if (!selV0s.Contains(particle)) continue; selV0s.Remove(particle); nRecV0s++; } // loop over Cascades for (Int_t iCascade = 0; iCascade < esd->GetNumberOfCascades(); iCascade++) { AliESDcascade* cascade = esd->GetCascade(iCascade); Double_t v0q; cascade->ChangeMassHypothesis(v0q,kXiMinus); hMassXi->Fill(cascade->GetEffMassXi()); cascade->ChangeMassHypothesis(v0q,kOmegaMinus); hMassOmega->Fill(cascade->GetEffMassXi()); Int_t negLabel = TMath::Abs(esd->GetTrack(cascade->GetNindex()) ->GetLabel()); if (negLabel > stack->GetNtrack()) continue; // background Int_t negMother = stack->Particle(negLabel)->GetMother(0); if (negMother < 0) continue; Int_t posLabel = TMath::Abs(esd->GetTrack(cascade->GetPindex()) ->GetLabel()); if (posLabel > stack->GetNtrack()) continue; // background Int_t posMother = stack->Particle(posLabel)->GetMother(0); if (negMother != posMother) continue; Int_t v0Mother = stack->Particle(negMother)->GetMother(0); if (v0Mother < 0) continue; Int_t bacLabel = TMath::Abs(esd->GetTrack(cascade->GetBindex()) ->GetLabel()); if (bacLabel > stack->GetNtrack()) continue; // background Int_t bacMother = stack->Particle(bacLabel)->GetMother(0); if (v0Mother != bacMother) continue; TParticle* particle = stack->Particle(v0Mother); if (!selCascades.Contains(particle)) continue; selCascades.Remove(particle); nRecCascades++; } // loop over the clusters { for (Int_t iCluster=0; iCluster<esd->GetNumberOfCaloClusters(); iCluster++) { AliESDCaloCluster * clust = esd->GetCaloCluster(iCluster); if (clust->IsPHOS()) hEPHOS->Fill(clust->E()); if (clust->IsEMCAL()) hEEMCAL->Fill(clust->E()); } } } // perform checks if (nGen < checkNGenLow) { Warning("CheckESD", "low number of generated particles: %d", Int_t(nGen)); } TH1F* hEff = CreateEffHisto(hGen, hRec); Info("CheckESD", "%d out of %d tracks reconstructed including %d " "fake tracks", nRec, nGen, nFake); if (nGen > 0) { // efficiency Double_t eff = nRec*1./nGen; Double_t effError = TMath::Sqrt(eff*(1.-eff) / nGen); Double_t fake = nFake*1./nGen; Double_t fakeError = TMath::Sqrt(fake*(1.-fake) / nGen); Info("CheckESD", "eff = (%.1f +- %.1f) %% fake = (%.1f +- %.1f) %%", 100.*eff, 100.*effError, 100.*fake, 100.*fakeError); if (eff < checkEffLow - checkEffSigma*effError) { Warning("CheckESD", "low efficiency: (%.1f +- %.1f) %%", 100.*eff, 100.*effError); } if (fake > checkFakeHigh + checkFakeSigma*fakeError) { Warning("CheckESD", "high fake: (%.1f +- %.1f) %%", 100.*fake, 100.*fakeError); } // resolutions Double_t res, resError; if (FitHisto(hResPtInv, res, resError)) { Info("CheckESD", "relative inverse pt resolution = (%.1f +- %.1f) %%", res, resError); if (res > checkResPtInvHigh + checkResPtInvSigma*resError) { Warning("CheckESD", "bad pt resolution: (%.1f +- %.1f) %%", res, resError); } } if (FitHisto(hResPhi, res, resError)) { Info("CheckESD", "phi resolution = (%.1f +- %.1f) mrad", res, resError); if (res > checkResPhiHigh + checkResPhiSigma*resError) { Warning("CheckESD", "bad phi resolution: (%.1f +- %.1f) mrad", res, resError); } } if (FitHisto(hResTheta, res, resError)) { Info("CheckESD", "theta resolution = (%.1f +- %.1f) mrad", res, resError); if (res > checkResThetaHigh + checkResThetaSigma*resError) { Warning("CheckESD", "bad theta resolution: (%.1f +- %.1f) mrad", res, resError); } } // PID if (nRec > 0) { Double_t eff = nIdentified*1./nRec; Double_t effError = TMath::Sqrt(eff*(1.-eff) / nRec); Info("CheckESD", "PID eff = (%.1f +- %.1f) %%", 100.*eff, 100.*effError); if (eff < checkPIDEffLow - checkPIDEffSigma*effError) { Warning("CheckESD", "low PID efficiency: (%.1f +- %.1f) %%", 100.*eff, 100.*effError); } } printf("%9s:", "gen\\rec"); for (Int_t iRec = 0; iRec < AliPID::kSPECIES; iRec++) { printf("%9s", partName[iRec]); } printf("\n"); for (Int_t iGen = 0; iGen < AliPID::kSPECIES+1; iGen++) { printf("%9s:", partName[iGen]); for (Int_t iRec = 0; iRec < AliPID::kSPECIES; iRec++) { printf("%9d", identified[iGen][iRec]); } printf("\n"); } if (FitHisto(hResTOFRight, res, resError)) { Info("CheckESD", "TOF resolution = (%.1f +- %.1f) ps", res, resError); if (res > checkResTOFHigh + checkResTOFSigma*resError) { Warning("CheckESD", "bad TOF resolution: (%.1f +- %.1f) ps", res, resError); } } // calorimeters if (hEPHOS->Integral() < checkPHOSNLow) { Warning("CheckESD", "low number of PHOS particles: %d", Int_t(hEPHOS->Integral())); } else { Double_t mean = hEPHOS->GetMean(); if (mean < checkPHOSEnergyLow) { Warning("CheckESD", "low mean PHOS energy: %.1f GeV", mean); } else if (mean > checkPHOSEnergyHigh) { Warning("CheckESD", "high mean PHOS energy: %.1f GeV", mean); } } if (hEEMCAL->Integral() < checkEMCALNLow) { Warning("CheckESD", "low number of EMCAL particles: %d", Int_t(hEEMCAL->Integral())); } else { Double_t mean = hEEMCAL->GetMean(); if (mean < checkEMCALEnergyLow) { Warning("CheckESD", "low mean EMCAL energy: %.1f GeV", mean); } else if (mean > checkEMCALEnergyHigh) { Warning("CheckESD", "high mean EMCAL energy: %.1f GeV", mean); } } // muons if (hPtMUON->Integral() < checkMUONNLow) { Warning("CheckESD", "low number of MUON particles: %d", Int_t(hPtMUON->Integral())); } else { Double_t mean = hPtMUON->GetMean(); if (mean < checkMUONPtLow) { Warning("CheckESD", "low mean MUON pt: %.1f GeV/c", mean); } else if (mean > checkMUONPtHigh) { Warning("CheckESD", "high mean MUON pt: %.1f GeV/c", mean); } } // V0s if (nGenV0s > 0) { Double_t eff = nRecV0s*1./nGenV0s; Double_t effError = TMath::Sqrt(eff*(1.-eff) / nGenV0s); if (effError == 0) effError = checkV0EffLow / TMath::Sqrt(1.*nGenV0s); Info("CheckESD", "V0 eff = (%.1f +- %.1f) %%", 100.*eff, 100.*effError); if (eff < checkV0EffLow - checkV0EffSigma*effError) { Warning("CheckESD", "low V0 efficiency: (%.1f +- %.1f) %%", 100.*eff, 100.*effError); } } // Cascades if (nGenCascades > 0) { Double_t eff = nRecCascades*1./nGenCascades; Double_t effError = TMath::Sqrt(eff*(1.-eff) / nGenCascades); if (effError == 0) effError = checkV0EffLow / TMath::Sqrt(1.*nGenCascades); Info("CheckESD", "Cascade eff = (%.1f +- %.1f) %%", 100.*eff, 100.*effError); if (eff < checkCascadeEffLow - checkCascadeEffSigma*effError) { Warning("CheckESD", "low Cascade efficiency: (%.1f +- %.1f) %%", 100.*eff, 100.*effError); } } } // draw the histograms if not in batch mode if (!gROOT->IsBatch()) { new TCanvas; hEff->DrawCopy(); new TCanvas; hResPtInv->DrawCopy("E"); new TCanvas; hResPhi->DrawCopy("E"); new TCanvas; hResTheta->DrawCopy("E"); new TCanvas; hDEdxRight->DrawCopy(); hDEdxWrong->DrawCopy("SAME"); new TCanvas; hResTOFRight->DrawCopy("E"); hResTOFWrong->DrawCopy("SAME"); new TCanvas; hEPHOS->DrawCopy("E"); new TCanvas; hEEMCAL->DrawCopy("E"); new TCanvas; hPtMUON->DrawCopy("E"); new TCanvas; hMassK0->DrawCopy("E"); new TCanvas; hMassLambda->DrawCopy("E"); new TCanvas; hMassLambdaBar->DrawCopy("E"); new TCanvas; hMassXi->DrawCopy("E"); new TCanvas; hMassOmega->DrawCopy("E"); } // write the output histograms to a file TFile* outputFile = TFile::Open("check.root", "recreate"); if (!outputFile || !outputFile->IsOpen()) { Error("CheckESD", "opening output file check.root failed"); return kFALSE; } hEff->Write(); hResPtInv->Write(); hResPhi->Write(); hResTheta->Write(); hDEdxRight->Write(); hDEdxWrong->Write(); hResTOFRight->Write(); hResTOFWrong->Write(); hEPHOS->Write(); hEEMCAL->Write(); hPtMUON->Write(); hMassK0->Write(); hMassLambda->Write(); hMassLambdaBar->Write(); hMassXi->Write(); hMassOmega->Write(); outputFile->Close(); delete outputFile; // clean up delete hGen; delete hRec; delete hEff; delete hResPtInv; delete hResPhi; delete hResTheta; delete hDEdxRight; delete hDEdxWrong; delete hResTOFRight; delete hResTOFWrong; delete hEPHOS; delete hEEMCAL; delete hPtMUON; delete hMassK0; delete hMassLambda; delete hMassLambdaBar; delete hMassXi; delete hMassOmega; delete esd; esdFile->Close(); delete esdFile; runLoader->UnloadHeader(); runLoader->UnloadKinematics(); delete runLoader; // result of check Info("CheckESD", "check of ESD was successfull"); return kTRUE; }
Bool_t CheckESD(const char* gAliceFileName = "galice.root", const char* esdFileName = "AliESDs.root") { // open run loader and load gAlice, kinematics and header AliRunLoader* runLoader = AliRunLoader::Open(gAliceFileName); if (!runLoader) { Error("CheckESD", "getting run loader from file %s failed", gAliceFileName); return kFALSE; } runLoader->LoadgAlice(); gAlice = runLoader->GetAliRun(); if (!gAlice) { Error("CheckESD", "no galice object found"); return kFALSE; } runLoader->LoadKinematics(); runLoader->LoadHeader(); // open the ESD file TFile* esdFile = TFile::Open(esdFileName); if (!esdFile || !esdFile->IsOpen()) { Error("CheckESD", "opening ESD file %s failed", esdFileName); return kFALSE; } AliESDEvent * esd = new AliESDEvent; TTree* tree = (TTree*) esdFile->Get("esdTree"); if (!tree) { Error("CheckESD", "no ESD tree found"); return kFALSE; } esd->ReadFromTree(tree); // loop over events for (Int_t iEvent = 0; iEvent < runLoader->GetNumberOfEvents(); iEvent++) { runLoader->GetEvent(iEvent); // get the event summary data tree->GetEvent(iEvent); if (!esd) { Error("CheckESD", "no ESD object found for event %d", iEvent); return kFALSE; } } // write the output histograms to a file TFile* outputFile = TFile::Open("check.root", "recreate"); if (!outputFile || !outputFile->IsOpen()) { Error("CheckESD", "opening output file check.root failed"); return kFALSE; } outputFile->Close(); delete outputFile; delete esd; esdFile->Close(); delete esdFile; runLoader->UnloadHeader(); runLoader->UnloadKinematics(); delete runLoader; // result of check Info("CheckESD", "check of ESD was successfull"); return kTRUE; }
void ExtractOutputHistos(Bool_t onlyPrims=0,Bool_t onlyPion=0,Int_t plotFlag=0) { // gROOT->SetStyle("Plain"); gStyle->SetPalette(1); const Int_t nbins=20; Double_t ptmin=0.06;//04; Double_t ptmax=2.0;//GeV Double_t logxmin = TMath::Log10(ptmin); Double_t logxmax = TMath::Log10(ptmax); Double_t binwidth = (logxmax-logxmin)/(nbins+1); enum {nb=nbins+1}; Double_t xbins[nb]; xbins[0] = ptmin; for (Int_t i=1;i<=nbins;i++) { xbins[i] = ptmin + TMath::Power(10,logxmin+(i)*binwidth); // cout<<xbins[i]<<endl; } // TH1F *h = new TH1F("h","hist with log x axis",nbins,xbins); TH1F *hMultCount = new TH1F("mult","averaged multiplicity (charg. prim)",80,-4.,4.); hMultCount->GetXaxis()->SetTitle("eta"); hMultCount->GetYaxis()->SetTitle("N/d#eta"); TH1F *hAllMC = new TH1F("allMC","All Tracks MC primaries",nbins,xbins); TH1F *hAllFound = new TH1F("allFound","All Tracks found",nbins,xbins); TH1F *hImperfect = new TH1F("imperfect","Imperfect tracks",nbins,xbins); TH1F *hPerfect = new TH1F("perfect","Perfect tracks",nbins,xbins); TH1F *hEff = new TH1F("efficiency","Efficiency (Perfect tracks in \"ALL MC\")",nbins,xbins); TH1F *hFake = new TH1F("fake","Fake tracks (Inperfect tracks in \"ALL MC\")",nbins,xbins); TH1F *hPurity = new TH1F("purity","Purity (Perfect tracks in \"All Found\")",nbins,xbins); TH1F *hAnna = new TH1F("annaEff","AnnalisaEff ",nbins,xbins); TH1F *hNoMCTrack = new TH1F("noMCtrack","noMCtrack ",nbins,xbins); TH1F *hEta = new TH1F("","",50,-2,2); // TH1F *hEtaMC = new TH1F("","",50,-2,2); TH2D *h2Ddca = new TH2D("dca2D","DCAvsPt2D",nbins,xbins,50,-0.05,0.05); TH2D *h2Dpt = new TH2D("dPt2D","dPtdvsPt2D",nbins,xbins,50,-25,25); // open run loader and load gAlice, kinematics and header AliRunLoader* runLoader = AliRunLoader::Open("galice.root"); if (!runLoader) { Error("Check kine", "getting run loader from file %s failed", "galice.root"); return; } runLoader->LoadgAlice(); gAlice = runLoader->GetAliRun(); if (!gAlice) { Error("Check kine", "no galice object found"); return; } runLoader->LoadHeader(); runLoader->LoadKinematics(); TFile* esdFile = TFile::Open("AliESDs.root"); if (!esdFile || !esdFile->IsOpen()) { Error("CheckESD", "opening ESD file %s failed", "AliESDs.root"); return; } AliESDEvent *esd = new AliESDEvent(); TTree* tree = (TTree*) esdFile->Get("esdTree"); if (!tree) { Error("CheckESD", "no ESD tree found"); return; } esd->ReadFromTree(tree); Int_t nTrackTotalMC = 0; Int_t nTrackFound = 0; Int_t nTrackImperfect = 0; Int_t nTrackPerfect = 0; Int_t nNoMCTrack = 0; for(Int_t iEv =0; iEv<tree->GetEntries(); iEv++){ tree->GetEvent(iEv); runLoader->GetEvent(iEv); printf("+++ event %i (of %lld) +++++++++++++++++++++++ # ESDtracks: %d \n",iEv,tree->GetEntries()-1,esd->GetNumberOfTracks()); Int_t nESDtracks = esd->GetNumberOfTracks(); for (Int_t iTrack = 0; iTrack < nESDtracks; iTrack++) { AliESDtrack* track = esd->GetTrack(iTrack); if (!(iTrack%1000)) printf("event %i: ESD track count %d (of %d)\n",iEv,iTrack,nESDtracks); Int_t label = track->GetLabel(); Int_t idx[12]; // Int_t ncl = track->GetITSclusters(idx); if(label<0) { // cout<< " ESD track label " << label; // cout<<" ---> imperfect track (label "<<label<<"<0) !! -> track Pt: "<< track->Pt() << endl; } AliStack* stack = runLoader->Stack(); // nTrackTotalMC += stack->GetNprimary(); TParticle* particle = stack->Particle(TMath::Abs(label)); Double_t pt = track->Pt(); if(particle) { if (TMath::Abs(particle->Eta())>etaCut) continue; Double_t ptMC = particle->Pt(); // Efficiencies if (onlyPion && TMath::Abs(particle->GetPdgCode())!=211) continue; if ( (!onlyPrims) || stack->IsPhysicalPrimary(TMath::Abs(label))) { // cout<<" # clusters "<<ncl<<endl; nTrackFound++; hAllFound->Fill(ptMC); hEta->Fill(track->Eta()); if (label<0) { nTrackImperfect++; hImperfect->Fill(ptMC); } else { nTrackPerfect++; hPerfect->Fill(ptMC); } } // following only for "true tracks, pions if(particle->Pt() < 0.001)continue; if (TMath::Abs(particle->GetPdgCode())!=211) continue; if (label>0) { // Impact parameters for Pions only Double_t dca = track->GetD(0,0,0.5); h2Ddca->Fill(ptMC,dca); // Pt resolution for Pions only Double_t dPt = (pt-ptMC)/ptMC*100; h2Dpt->Fill(ptMC,dPt); } } else { nNoMCTrackFound++; hNoMCTrack->Fill(pt); cout<<" according MC particle not found"<<endl; } } //entries track esd }//entries tree runLoader->UnloadHeader(); runLoader->UnloadKinematics(); delete runLoader; // Count trackable MC tracks CountTrackableMCs(hAllMC, onlyPrims, onlyPion); // Count trackable MC tracks CountPrimaries(hMultCount); // Get Errors right hMultCount->Sumw2(); hAllMC->Sumw2(); hAllFound->Sumw2(); hPerfect->Sumw2(); hImperfect->Sumw2(); h2Dpt->Sumw2(); h2Ddca->Sumw2(); // -- Global efficienies nTrackTotalMC = hAllMC->GetEntries(); Double_t eff = ((Double_t)nTrackPerfect)/nTrackTotalMC; printf("-> Total number of events: %lld -> MCtracks %d -> nPerfect %d -> Eff: %3.2lf \n", tree->GetEntries(),nTrackTotalMC,nTrackPerfect,eff); Double_t purity = ((Double_t)nTrackPerfect)/nTrackFound; printf("-> Total number of events: %lld -> FoundTracks %d -> nPerfect %d -> Purity: %3.2lf \n", tree->GetEntries(),nTrackFound,nTrackPerfect,purity); // Efficiencies - and normalize to 100% TF1 f1("f1","100+x*0",0.,1.e3); hPurity->Divide(hPerfect,hAllFound,1,1,"b"); hPurity->Multiply(&f1); hPurity->SetMarkerColor(kGreen); hPurity->SetMarkerStyle(21); hPurity->GetXaxis()->SetTitle("transverse momentum p_{t} (GeV)"); hPurity->SetStats(0); hPurity->GetYaxis()->SetRangeUser(0,100); hPurity->SetTitle("Efficiency & Purity"); hEff->Divide(hPerfect,hAllMC,1,1,"b"); hEff->Multiply(&f1); hEff->GetXaxis()->SetTitle("transverse momentum p_{t} (GeV)"); hEff->SetMarkerColor(kBlue); hEff->SetMarkerStyle(21); hEff->SetStats(0); hFake->Divide(hImperfect,hAllMC,1,1,"b"); hFake->Multiply(&f1); hFake->GetXaxis()->SetTitle("transverse momentum p_{t} (GeV)"); hFake->SetMarkerColor(kRed); hFake->SetMarkerStyle(21); hFake->SetStats(0); hAnna->Divide(hAllFound,hAllMC,1,1,"b"); hAnna->Multiply(&f1); hAnna->GetXaxis()->SetTitle("transverse momentum p_{t} (GeV)"); hAnna->SetMarkerColor(kBlack); hAnna->SetMarkerStyle(21); hAnna->SetStats(0); TCanvas *c1 = new TCanvas("c1","NoMCTrackFound");//,200,10,900,900); TVirtualPad *pad = c1->cd(); pad->SetGridx(); pad->SetGridy(); hNoMCTrack->Draw(); TCanvas *c2 = new TCanvas("c2","Eff&Purity");//,200,10,900,900); TVirtualPad *pad = c2->cd(); pad->SetGridx(); pad->SetGridy(); // pad->SetLogx(); hPurity->Draw("E"); hEff->Draw("Same E"); hFake->Draw("Same E"); hAnna->Draw("Same E"); TLegend *leg = new TLegend(0.1,0.8,0.6,0.9);leg->SetFillColor(0); leg->AddEntry(hPurity,"Purity (\"Perfect tracks\" within \"Found Tracks\")","PE"); leg->AddEntry(hEff,"Efficiency (\"Perfect tracks\" within \"MC findable Tracks\")","PE"); leg->AddEntry(hFake,"Fake (\"Inperfect tracks\" within \"MC findable Tracks\")","PE"); leg->AddEntry(hAnna,"AnnaLisa - Efficiency (\"Found tracks\" within \"MC findable Tracks\")","PE"); leg->Draw(); if (plotFlag==1){ hAllMC->GetXaxis()->SetTitle("transverse momentum p_{t} (GeV)"); hAllMC->Draw(); // MC pt distribution hAllFound->SetLineColor(2); hAllFound->Draw("same"); // MC pt distribution } /* .L ~/ITSupgrade/BuildDetector/DetectorK.cxx+ // All NEW DetectorK its("ALICE","ITS"); its.MakeAliceAllNew(0); its.SetMaxRadiusOfSlowDetectors(0.01); its.SolveViaBilloir(0); TGraph *c = its.GetGraphRecoEfficiency(0,3,2); c->Draw("C"); // Current DetectorK its("ALICE","ITS"); its.MakeAliceCurrent(0,0); its.SetMaxRadiusOfSlowDetectors(0.01); its.SolveViaBilloir(0); TGraph *c = its.GetGraphRecoEfficiency(0,4,2); c->Draw("C"); */ TCanvas *c3 = new TCanvas("c3","impact");//,200,10,900,900); c3->Divide(2,1); c3->cd(1); // Impact parameter // Impact parameter resolution --------------- h2Ddca->Draw("colz"); h2Ddca->FitSlicesY() ; TH2D *dcaM = (TH2D*)gDirectory->Get("dca2D_1"); dcaM->Draw("same"); TH2D *dcaRMS = (TH2D*)gDirectory->Get("dca2D_2"); //dcaRMS->Draw(); TGraphErrors *d0 = new TGraphErrors(); for (Int_t ibin =1; ibin<=dcaRMS->GetXaxis()->GetNbins(); ibin++) { d0->SetPoint( ibin-1,dcaRMS->GetBinCenter(ibin),dcaRMS->GetBinContent(ibin)*1e4); // microns d0->SetPointError(ibin-1,0,dcaRMS->GetBinError(ibin)*1e4); // microns } d0->SetMarkerStyle(21); d0->SetMaximum(200); d0->SetMinimum(0); d0->GetXaxis()->SetTitle("transverse momentum p_{t} (GeV)"); d0->GetYaxis()->SetTitle("R-#phi Pointing Resolution (#mum)"); d0->SetName("dca"); d0->SetTitle("DCAvsPt"); c3->cd(1); h2Ddca->Draw("surf2"); c3->cd(2); d0->Draw("APE"); // PT RESOLUTION ------------ TCanvas *c4 = new TCanvas("c4","pt resolution");//,200,10,900,900); c4->Divide(2,1); c4->cd(1); // Impact parameter h2Dpt->Draw("colz"); h2Dpt->FitSlicesY() ; TH2D *dPtM = (TH2D*)gDirectory->Get("dPt2D_1"); dPtM->Draw("same"); TH2D *dPtRMS = (TH2D*)gDirectory->Get("dPt2D_2"); // dPtRMS->Draw(""); TGraphErrors *gPt = new TGraphErrors(); for (Int_t ibin =1; ibin<=dPtRMS->GetXaxis()->GetNbins(); ibin++) { gPt->SetPoint( ibin-1,dPtRMS->GetBinCenter(ibin),dPtRMS->GetBinContent(ibin)); gPt->SetPointError(ibin-1,0,dPtRMS->GetBinError(ibin)); } gPt->SetMarkerStyle(21); gPt->SetMaximum(20); gPt->SetMinimum(0); gPt->GetXaxis()->SetTitle("transverse momentum p_{t} (GeV)"); gPt->GetYaxis()->SetTitle("relative momentum resolution (%)"); gPt->SetName("dPt"); gPt->SetTitle("DPTvsPt"); c4->cd(1); h2Dpt->Draw("surf2"); c4->cd(2); gPt->Draw("APE"); // EXPORT -------- TFile f("histos.root","RECREATE"); hMultCount->Write(); hAllMC->Write(); hAllFound->Write(); hImperfect->Write(); hPerfect->Write(); hNoMCTrack->Write(); hPurity->Write(); hEff->Write(); hFake->Write(); hAnna->Write(); h2Ddca->Write(); d0->Write(); h2Dpt->Write(); gPt->Write(); f.Close(); return; }
void CountTrackableMCs(TH1F *hAllMC, Bool_t onlyPrims,Bool_t onlyPion) { gSystem->Load("libITSUpgradeBase"); gSystem->Load("libITSUpgradeSim"); // open run loader and load gAlice, kinematics and header AliRunLoader* runLoader = AliRunLoader::Open("galice.root"); if (!runLoader) { Error("Check kine", "getting run loader from file %s failed", "galice.root"); return; } runLoader->LoadHeader(); runLoader->LoadKinematics(); runLoader->LoadTrackRefs(); AliLoader *dl = runLoader->GetDetectorLoader("ITS"); //Trackf TTree *trackRefTree = 0x0; TClonesArray *trackRef = new TClonesArray("AliTrackReference",1000); // TH1F *hRef = new TH1F("","",100,0,100); TH1F *hR = new TH1F("","",100,0,100); if (hAllMC==0) hAllMC = new TH1F("","",100,0.1,2); Float_t ptmin = hAllMC->GetBinCenter(1)-hAllMC->GetBinWidth(1)/2; Float_t ptmax = hAllMC->GetBinCenter(hAllMC->GetNbinsX())+hAllMC->GetBinWidth(hAllMC->GetNbinsX())/2; // Int_t nAllMC = 0; // Detector geometry TArrayD rmin(0); TArrayD rmax(0); GetDetectorRadii(&rmin,&rmax); TArrayI nLaySigs(rmin.GetSize()); printf("Counting trackable MC tracks ...\n"); for(Int_t iEv =0; iEv<runLoader->GetNumberOfEvents(); iEv++){ Int_t nTrackableTracks = 0; runLoader->GetEvent(iEv); AliStack* stack = runLoader->Stack(); printf("+++ event %i (of %d) +++++++++++++++++++++++ # total MCtracks: %d \n",iEv,runLoader->GetNumberOfEvents()-1,stack->GetNtrack()); trackRefTree=runLoader->TreeTR(); TBranch *br = trackRefTree->GetBranch("TrackReferences"); if(!br) { printf("no TR branch available , exiting \n"); return; } br->SetAddress(&trackRef); // init the trackRef tree trackRefTree=runLoader->TreeTR(); trackRefTree->SetBranchAddress("TrackReferences",&trackRef); // Count trackable MC tracks for (Int_t iMC=0; iMC<stack->GetNtrack(); iMC++) { TParticle* particle = stack->Particle(iMC); if (TMath::Abs(particle->Eta())>etaCut) continue; if (onlyPrims && !stack->IsPhysicalPrimary(iMC)) continue; if (onlyPion && TMath::Abs(particle->GetPdgCode())!=211) continue; Bool_t isTrackable = 0; nLaySigs.Reset(0); trackRefTree->GetEntry(stack->TreeKEntry(iMC)); Int_t nref=trackRef->GetEntriesFast(); for(Int_t iref =0; iref<nref; iref++){ AliTrackReference *trR = (AliTrackReference*)trackRef->At(iref); if(!trR) continue; if(trR->DetectorId()!=AliTrackReference::kITS) continue; Float_t radPos = trR->R(); hR->Fill(radPos); for (Int_t il=0; il<rmin.GetSize();il++) { if (radPos>=rmin.At(il)-0.1 && radPos<=rmax.At(il)+0.1) { // cout<<" in Layer "<<il<<" "<<radPos; nLaySigs.AddAt(1.,il); // cout<<" "<<nLaySigs.At(il)<<endl; } } } if (nLaySigs.GetSum()>=3) { isTrackable =1; // cout<<nLaySigs.GetSum()<<endl; } if (isTrackable) { Double_t ptMC = particle->Pt(); // Double_t etaMC = particle->Eta(); // if (ptMC>ptmin&&ptMC<ptmax) {nTrackableTracks++;hAllMC->Fill(ptMC);} if (ptMC>ptmin) {nTrackableTracks++;hAllMC->Fill(ptMC);} } } // entries tracks MC printf(" -> trackable MC tracks: %d (%d)\n",nTrackableTracks,hAllMC->GetEntries()); }//entries Events hR->DrawCopy(); hAllMC->DrawCopy(); runLoader->UnloadHeader(); runLoader->UnloadKinematics(); delete runLoader; }
int main(int argc, char* argv[]) { TApplication theApp(srcName.Data(), &argc, argv); //============================================================================= for (int i=0; i<argc; i++) cout << i << ", " << argv[i] << endl; //============================================================================= if (argc<5) return -1; TString sPath = argv[1]; if (sPath.IsNull()) return -1; TString sFile = argv[2]; if (sFile.IsNull()) return -1; TString sJetR = argv[3]; if (sJetR.IsNull()) return -1; TString sSjeR = argv[4]; if (sSjeR.IsNull()) return -1; //============================================================================= sPath.ReplaceAll("#", "/"); //============================================================================= double dJetR = -1.; if (sJetR=="JetR02") dJetR = 0.2; if (sJetR=="JetR03") dJetR = 0.3; if (sJetR=="JetR04") dJetR = 0.4; if (sJetR=="JetR05") dJetR = 0.5; if (dJetR<0.) return -1; cout << "Jet R = " << dJetR << endl; //============================================================================= double dSjeR = -1.; if (sSjeR=="SjeR01") dSjeR = 0.1; if (sSjeR=="SjeR02") dSjeR = 0.2; if (sSjeR=="SjeR03") dSjeR = 0.3; if (sSjeR=="SjeR04") dSjeR = 0.4; if (dSjeR<0.) return -1; cout << "Sub-jet R = " << dSjeR << endl; //============================================================================= const double dJetsPtMin = 0.001; const double dCutEtaMax = 1.6; const double dJetEtaMax = 1.; const double dJetAreaRef = TMath::Pi() * dJetR * dJetR; fastjet::GhostedAreaSpec areaSpc(dCutEtaMax); fastjet::JetDefinition jetsDef(fastjet::antikt_algorithm, dJetR, fastjet::BIpt_scheme, fastjet::Best); //fastjet::AreaDefinition areaDef(fastjet::active_area,areaSpc); fastjet::AreaDefinition areaDef(fastjet::active_area_explicit_ghosts,areaSpc); //fastjet::JetDefinition bkgsDef(fastjet::kt_algorithm, 0.2, fastjet::BIpt_scheme, fastjet::Best); //fastjet::AreaDefinition aBkgDef(fastjet::active_area_explicit_ghosts, areaSpc); fastjet::Selector selectJet = fastjet::SelectorAbsEtaMax(dJetEtaMax); //fastjet::Selector selectRho = fastjet::SelectorAbsEtaMax(dCutEtaMax-0.2); //fastjet::Selector selecHard = fastjet::SelectorNHardest(2); //fastjet::Selector selectBkg = selectRho * (!(selecHard)); //fastjet::JetMedianBackgroundEstimator bkgsEstimator(selectBkg, bkgsDef, aBkgDef); //fastjet::Subtractor bkgSubtractor(&bkgsEstimator); fastjet::JetDefinition subjDef(fastjet::antikt_algorithm, dSjeR, fastjet::BIpt_scheme, fastjet::Best); //============================================================================= std::vector<fastjet::PseudoJet> fjInput; //============================================================================= TList *list = new TList(); TH1D *hPtHat = new TH1D("hPtHat", "", 1000, 0., 1000.); TH1D *hJet = new TH1D("hJet", "", 1000, 0., 1000.); hJet->Sumw2(); list->Add(hJet); TH2D *hJetNsj = new TH2D("hJetNsj", "", 1000, 0., 1000., 101, -0.5, 100.5); hJetNsj->Sumw2(); list->Add(hJetNsj); TH2D *hJetIsj = new TH2D("hJetIsj", "", 1000, 0., 1000., 1000, 0., 1000.); hJetIsj->Sumw2(); list->Add(hJetIsj); TH2D *hJet1sj = new TH2D("hJet1sj", "", 1000, 0., 1000., 1000, 0., 1000.); hJet1sj->Sumw2(); list->Add(hJet1sj); TH2D *hJet2sj = new TH2D("hJet2sj", "", 1000, 0., 1000., 1000, 0., 1000.); hJet2sj->Sumw2(); list->Add(hJet2sj); TH2D *hJetDsj = new TH2D("hJetDsj", "", 1000, 0., 1000., 1000, 0., 1000.); hJetDsj->Sumw2(); list->Add(hJetDsj); TH2D *hJetIsz = new TH2D("hJetIsz", "", 1000, 0., 1000., 120, 0., 1.2); hJetIsz->Sumw2(); list->Add(hJetIsz); TH2D *hJet1sz = new TH2D("hJet1sz", "", 1000, 0., 1000., 120, 0., 1.2); hJet1sz->Sumw2(); list->Add(hJet1sz); TH2D *hJet2sz = new TH2D("hJet2sz", "", 1000, 0., 1000., 120, 0., 1.2); hJet2sz->Sumw2(); list->Add(hJet2sz); TH2D *hJetDsz = new TH2D("hJetDsz", "", 1000, 0., 1000., 120, 0., 1.2); hJetDsz->Sumw2(); list->Add(hJetDsz); //============================================================================= AliRunLoader *rl = AliRunLoader::Open(Form("%s/galice.root",sPath.Data())); if (!rl) return -1; if (rl->LoadHeader()) return -1; if (rl->LoadKinematics("READ")) return -1; //============================================================================= for (Int_t iEvent=0; iEvent<rl->GetNumberOfEvents(); iEvent++) { fjInput.resize(0); if (rl->GetEvent(iEvent)) continue; //============================================================================= AliStack *pStack = rl->Stack(); if (!pStack) continue; AliHeader *pHeader = rl->GetHeader(); if (!pHeader) continue; //============================================================================= AliGenPythiaEventHeader *pHeadPy = (AliGenPythiaEventHeader*)pHeader->GenEventHeader(); if (!pHeadPy) continue; hPtHat->Fill(pHeadPy->GetPtHard()); //============================================================================= for (Int_t i=0; i<pStack->GetNtrack(); i++) if (pStack->IsPhysicalPrimary(i)) { TParticle *pTrk = pStack->Particle(i); if (!pTrk) continue; if (TMath::Abs(pTrk->Eta())>dCutEtaMax) { pTrk = 0; continue; } // TParticlePDG *pPDG = pTrk->GetPDG(); if (!pPDG) { pTrk = 0; continue; } fjInput.push_back(fastjet::PseudoJet(pTrk->Px(), pTrk->Py(), pTrk->Pz(), pTrk->P())); // pPDG = 0; pTrk = 0; } //============================================================================= fastjet::ClusterSequenceArea clustSeq(fjInput, jetsDef, areaDef); std::vector<fastjet::PseudoJet> includJets = clustSeq.inclusive_jets(dJetsPtMin); // std::vector<fastjet::PseudoJet> subtedJets = bkgSubtractor(includJets); std::vector<fastjet::PseudoJet> selectJets = selectJet(includJets); // std::vector<fastjet::PseudoJet> sortedJets = fastjet::sorted_by_pt(selectJets); for (int j=0; j<selectJets.size(); j++) { double dJet = selectJets[j].pt(); hJet->Fill(dJet); //============================================================================= fastjet::Filter trimmer(subjDef, fastjet::SelectorPtFractionMin(0.)); fastjet::PseudoJet trimmdJet = trimmer(selectJets[j]); std::vector<fastjet::PseudoJet> trimmdSj = trimmdJet.pieces(); double nIsj = 0.; double d1sj = -1.; int k1sj = -1; double d2sj = -1.; int k2sj = -1; for (int i=0; i<trimmdSj.size(); i++) { double dIsj = trimmdSj[i].pt(); if (dIsj<0.001) continue; hJetIsj->Fill(dJet, dIsj); hJetIsz->Fill(dJet, dIsj/dJet); if (dIsj>d1sj) { d2sj = d1sj; k2sj = k1sj; d1sj = dIsj; k1sj = i; } else if (dIsj>d2sj) { d2sj = dIsj; k2sj = i; } nIsj += 1.; } hJetNsj->Fill(dJet, nIsj); if (d1sj>0.) { hJet1sj->Fill(dJet, d1sj); hJet1sz->Fill(dJet, d1sj/dJet); } if (d2sj>0.) { hJet2sj->Fill(dJet, d2sj); hJet2sz->Fill(dJet, d2sj/dJet); } if ((d1sj>0.) && (d2sj>0.)) { double dsj = d1sj - d2sj; double dsz = dsj / dJet; hJetDsj->Fill(dJet, dsj); hJetDsz->Fill(dJet, dsz); } } //============================================================================= pStack = 0; pHeadPy = 0; pHeader = 0; } //============================================================================= rl->UnloadgAlice(); rl->UnloadHeader(); rl->UnloadKinematics(); rl->RemoveEventFolder(); //============================================================================= TFile *file = TFile::Open(Form("%s/pyxsec_hists.root",sPath.Data()), "READ"); TList *lXsc = (TList*)file->Get("cFilterList"); file->Close(); TH1D *hWeightSum = (TH1D*)lXsc->FindObject("h1Trials"); hWeightSum->SetName("hWeightSum"); TProfile *hSigmaGen = (TProfile*)lXsc->FindObject("h1Xsec"); hSigmaGen->SetName("hSigmaGen"); //============================================================================= file = TFile::Open(Form("%s.root",sFile.Data()), "NEW"); hPtHat->Write(); hWeightSum->Write(); hSigmaGen->Write(); list->Write(); file->Close(); //============================================================================= cout << "DONE" << endl; //============================================================================= return 0; }