void AudioSender::cleanup() { audioEncoder_.reset(); muxContext_.reset(); micData_.clear(); resampledData_.clear(); }
void JuceDemoPluginAudioProcessor::process (AudioBuffer<FloatType>& buffer, MidiBuffer& midiMessages, AudioBuffer<FloatType>& delayBuffer) { const int numSamples = buffer.getNumSamples(); // apply our gain-change to the incoming data.. applyGain (buffer, delayBuffer); // Now pass any incoming midi messages to our keyboard state object, and let it // add messages to the buffer if the user is clicking on the on-screen keys keyboardState.processNextMidiBuffer (midiMessages, 0, numSamples, true); // and now get our synth to process these midi events and generate its output. synth.renderNextBlock (buffer, midiMessages, 0, numSamples); // Apply our delay effect to the new output.. applyDelay (buffer, delayBuffer); // In case we have more outputs than inputs, we'll clear any output // channels that didn't contain input data, (because these aren't // guaranteed to be empty - they may contain garbage). for (int i = getNumInputChannels(); i < getNumOutputChannels(); ++i) buffer.clear (i, 0, numSamples); // Now ask the host for the current time so we can store it to be displayed later... updateCurrentTimeInfoFromHost(); }
void VAOscillator::fillBufferSquarePulse(AudioBuffer<float>& buffer, AudioBuffer<float>& phaseModBuffer, AudioBuffer<float>& volumeModBuffer, AudioBuffer<float>& pitchModBuffer) { if(isActive) { float* const data = buffer.getWritePointer(0); float const *phaseMod = phaseModBuffer.getReadPointer(0); float const *volMod = volumeModBuffer.getReadPointer(0); float const *pitchMod = pitchModBuffer.getReadPointer(0); //write momentary phase values into the buffer for(int sampleIndex = 0; sampleIndex < buffer.getNumSamples(); sampleIndex++) { double phase = currentPhase + phaseModAmp * phaseMod[sampleIndex]; while (phase < 0) { phase += 2 * double_Pi; } while (phase > 2 * double_Pi) { phase -= 2 * double_Pi; } currentPhase += 2 * double_Pi * ((currentFrequency * (pitchMod[sampleIndex] + 2.0))/currentSampleRate); if(currentPhase > 2 * double_Pi) { currentPhase -= 2 * double_Pi; } if(phase < double_Pi) { data[sampleIndex] = -1; } else { data[sampleIndex] = 1; } data[sampleIndex] += getBlep(phase, currentFrequency); if(phase < double_Pi) { data[sampleIndex] -= getBlep(phase + double_Pi, currentFrequency); } if(phase > double_Pi) { data[sampleIndex] -= getBlep(phase - double_Pi, currentFrequency); } data[sampleIndex] *= (float)std::abs(0.5 * (volMod[sampleIndex] + 1)); } } else { buffer.clear(); } }// end square pulse
void DaalDelAudioProcessor::processBlock (AudioBuffer<float>& buffer, MidiBuffer& midiMessages) { ScopedNoDenormals noDenormals; auto totalNumInputChannels = getTotalNumInputChannels(); auto totalNumOutputChannels = getTotalNumOutputChannels(); // In case we have more outputs than inputs, this code clears any output // channels that didn't contain input data, (because these aren't // guaranteed to be empty - they may contain garbage). // This is here to avoid people getting screaming feedback // when they first compile a plugin, but obviously you don't need to keep // this code if your algorithm always overwrites all the output channels. for (auto i = totalNumInputChannels; i < totalNumOutputChannels; ++i) buffer.clear (i, 0, buffer.getNumSamples()); // ==== // Lengths for circular buffer const int bufferLength = buffer.getNumSamples(); const int delayBufferLength = _delayBuffer.getNumSamples(); // This is the place where you'd normally do the guts of your plugin's // audio processing... // Make sure to reset the state if your inner loop is processing // the samples and the outer loop is handling the channels. // Alternatively, you can process the samples with the channels // interleaved by keeping the same state. for (int channel = 0; channel < totalNumInputChannels; ++channel) { //auto* channelData = buffer.getWritePointer (channel); // ..do something to the data... // Set up circular buffer const float* bufferData = buffer.getReadPointer(channel); const float* delayBufferData = _delayBuffer.getReadPointer(channel); float* dryBuffer = buffer.getWritePointer(channel); // Apply gains (now do this before getting from delay) applyDryWetToBuffer(buffer, channel, bufferLength, dryBuffer); // Copy data from main to delay buffer fillDelayBuffer(channel, bufferLength, delayBufferLength, bufferData, delayBufferData); // Copy data from delay buffer to output buffer getFromDelayBuffer(buffer, channel, bufferLength, delayBufferLength, bufferData, delayBufferData); // Feedback feedbackDelay(channel, bufferLength, delayBufferLength, dryBuffer); } _writePosition += bufferLength; // Increment _writePosition %= delayBufferLength; // Wrap around position index // Update values from tree updateTreeParams(); }
void VAOscillator::fillBufferTriangle(AudioBuffer<float>& buffer, AudioBuffer<float>& phaseModBuffer, AudioBuffer<float>& volumeModBuffer, AudioBuffer<float>& pitchModBuffer) { if(isActive) { float* const data = buffer.getWritePointer(0); float const *phaseMod = phaseModBuffer.getReadPointer(0); float const *volMod = volumeModBuffer.getReadPointer(0); float const *pitchMod = pitchModBuffer.getReadPointer(0); for(int sampleIndex = 0; sampleIndex < buffer.getNumSamples(); sampleIndex++) { double phase = currentPhase + phaseModAmp * phaseMod[sampleIndex]; while (phase < 0) { phase += 2 * double_Pi; } while (phase > 2 * double_Pi) { phase -= 2 * double_Pi; } currentPhase += 2 * double_Pi * ((currentFrequency * (pitchMod[sampleIndex] + 2.0))/currentSampleRate); if(currentPhase > 2 * double_Pi) { currentPhase -= 2 * double_Pi; } if(phase < double_Pi) { data[sampleIndex] = (float)((2 * phase)/double_Pi - 1); } else { data[sampleIndex] = (float)((3 - 2 * phase/double_Pi)); } //the 0.000026 is kind of a magic number i didnt calculate it just found it by trying out data[sampleIndex] += (float)(0.000026 * currentFrequency * getTriRes(phase, currentFrequency)); if(phase < double_Pi) { data[sampleIndex] -= (float)(0.000026 * currentFrequency * getTriRes(phase + double_Pi, currentFrequency)); } else if(phase >= double_Pi) { data[sampleIndex] -= (float)(0.000026 * currentFrequency * getTriRes(phase - double_Pi, currentFrequency)); } data[sampleIndex] *= (float)std::abs(0.5 * (volMod[sampleIndex] + 1)); } } else { buffer.clear(); } }// end triangle
void VAOscillator::fillBufferSine(AudioBuffer<float>& buffer, AudioBuffer<float>& phaseModBuffer, AudioBuffer<float>& volumeModBuffer, AudioBuffer<float>& pitchModBuffer, Array<int>& midiOns)// add midi buffer and know channel with control Voltage { if(isActive) { float* const data = buffer.getWritePointer(0); float const *phaseMod = phaseModBuffer.getReadPointer(0); float const *volMod = volumeModBuffer.getReadPointer(0); float const *pitchMod = pitchModBuffer.getReadPointer(0); for(int sampleIndex = 0; sampleIndex < buffer.getNumSamples(); sampleIndex++) { //check if this is the best i can do if(midiOns.size() != 0) { if(sampleIndex == midiOns[0]) { resetPhase(); midiOns.remove(0); } } double phase = currentPhase + phaseModAmp * phaseMod[sampleIndex] + currentPhaseOffset; while (phase < 0) { phase += 2 * double_Pi; } while (phase > 2 * double_Pi) { phase -= 2 * double_Pi; } data[sampleIndex] = static_cast<float>(sin(phase) * std::abs(0.5 * (volMod[sampleIndex] + 1))); currentPhase += 2 * double_Pi * ((currentFrequency * (pitchMod[sampleIndex] + 2.0))/currentSampleRate); if(currentPhase > 2 * double_Pi) { currentPhase -= 2 * double_Pi; } } } else { buffer.clear(); } }// end sine
void VAOscillator::fillBufferFallingSaw(AudioBuffer<float>& buffer, AudioBuffer<float>& phaseModBuffer, AudioBuffer<float>& volumeModBuffer, AudioBuffer<float>& pitchModBuffer) { if(isActive) { fillBufferRisingSaw(buffer, phaseModBuffer, volumeModBuffer, pitchModBuffer); float* const data = buffer.getWritePointer(0); for(int sampleIndex = 0; sampleIndex < buffer.getNumSamples(); sampleIndex++) { data[sampleIndex] *= -1; } } else { buffer.clear(); } }// end falling Saw
void VAOscillator::fillBufferRisingSaw(AudioBuffer<float>& buffer, AudioBuffer<float>& phaseModBuffer, AudioBuffer<float>& volumeModBuffer, AudioBuffer<float>& pitchModBuffer) { if(isActive) { float* const data = buffer.getWritePointer(0); float const *phaseMod = phaseModBuffer.getReadPointer(0); float const *volMod = volumeModBuffer.getReadPointer(0); float const *pitchMod = pitchModBuffer.getReadPointer(0); //write momentary phase values into the buffer for(int sampleIndex = 0; sampleIndex < buffer.getNumSamples(); sampleIndex++) { double phase = currentPhase + phaseModAmp * phaseMod[sampleIndex]; while (phase < 0) { phase += 2 * double_Pi; } while (phase > 2 * double_Pi) { phase -= 2 * double_Pi; } currentPhase += 2 * double_Pi * ((currentFrequency * (pitchMod[sampleIndex] + 2.0))/currentSampleRate); if(currentPhase > 2 * double_Pi) { currentPhase -= 2 * double_Pi; } data[sampleIndex] = (float)((2 * phase)/(2 * double_Pi) - 1); data[sampleIndex] += getBlep(phase , currentFrequency);// i have to watch out here because actually currentFrequency is not valid for this calculation data[sampleIndex] *= std::abs(0.5f * (volMod[sampleIndex] + 1)); } } else { buffer.clear(); } }// end rising Saw
Result Upsampler::upsample(AudioBuffer<float> const &inputBuffer, int const inputChannel, AudioBuffer<float> &outputBuffer_, int const outputChannel, int &outputSampleCount_) { int outputSamplesNeeded = roundDoubleToInt( (outputSampleRate * inputBuffer.getNumSamples())/ inputSampleRate); if (outputBuffer_.getNumSamples() < outputSamplesNeeded) return Result::fail("Output buffer too small"); //DBG("upsample inputSampleCount:" << inputSampleCount); if (nullptr == resampler) return Result::fail("No resampler object"); // // Clear the resample and pump some initial zeros into it // resampler->clear(); #if 0 int preloadSamples = resampler->getInLenBeforeOutStart(MAX_RESAMPLER_INPUT_SAMPLES); inputBlockBuffer.clear(MAX_RESAMPLER_INPUT_SAMPLES); while (preloadSamples > 0) { int count = jmin((int)MAX_RESAMPLER_INPUT_SAMPLES, preloadSamples); double* outputBlock = nullptr; resampler->process(inputBlockBuffer, count, outputBlock); preloadSamples -= count; } #endif // // Flush the output buffer // outputBuffer_.clear(); // // Do the actual upsample // outputSampleCount_ = 0; int inputSampleCount = inputBuffer.getNumSamples(); const float * source = inputBuffer.getReadPointer(inputChannel); while (inputSampleCount > 0) { // // Convert float to double // int inputConvertCount = jmin(inputSampleCount, (int)MAX_RESAMPLER_INPUT_SAMPLES); for (int i = 0; i < inputConvertCount; ++i) { inputBlockBuffer[i] = *source; source++; } inputSampleCount -= inputConvertCount; // // Run the SRC // double* outputBlock = nullptr; int outputBlockSampleCount = resampler->process(inputBlockBuffer, inputConvertCount, outputBlock); int outputSpaceRemaining = outputBuffer_.getNumSamples() - outputSampleCount_; int outputCopyCount = jmin( outputSpaceRemaining, outputBlockSampleCount); float *destination = outputBuffer_.getWritePointer(outputChannel, outputSampleCount_); for (int i = 0; i < outputCopyCount; ++i) { *destination = (float)outputBlock[i]; destination++; } outputSampleCount_ += outputCopyCount; } // // Keep filling the output buffer // inputBlockBuffer.clear(MAX_RESAMPLER_INPUT_SAMPLES); while (outputSampleCount_ < outputBuffer_.getNumSamples()) { // // Run the SRC // double* outputBlock = nullptr; int outputBlockSampleCount = resampler->process(inputBlockBuffer, MAX_RESAMPLER_INPUT_SAMPLES, outputBlock); int outputSpaceRemaining = outputBuffer_.getNumSamples() - outputSampleCount_; int outputCopyCount = jmin( outputSpaceRemaining, outputBlockSampleCount); float *destination = outputBuffer_.getWritePointer(outputChannel, outputSampleCount_); for (int i = 0; i < outputCopyCount; ++i) { *destination = (float)outputBlock[i]; destination++; } outputSampleCount_ += outputCopyCount; } //DBG(" outputSampleCount:" << outputSampleCount); return Result::ok(); }
void AudioProcessor::processBypassed (AudioBuffer<floatType>& buffer, MidiBuffer&) { for (int ch = getMainBusNumInputChannels(); ch < getTotalNumOutputChannels(); ++ch) buffer.clear (ch, 0, buffer.getNumSamples()); }