Exemple #1
0
/*
Vertexs should have been sorted in topological order.
And we access them by reverse-topological order.
'vlst': compute dominator for vertices in vlst if it 
	is not empty or else compute all graph.
'uni': universe.	
*/
bool DGRAPH::compute_dom(IN LIST<VERTEX*> * vlst, BITSET const* uni)
{
	LIST<VERTEX*> tmpvlst;
	LIST<VERTEX*> * pvlst = &tmpvlst;
	if (vlst != NULL) {
		pvlst = vlst;
	} else {
		INT c;
		for (VERTEX * u = get_first_vertex(c); 
			 u != NULL; u = get_next_vertex(c)) {
			pvlst->append_tail(u);
		}
	}

	BITSET const* luni = NULL;
	if (uni != NULL) {
		luni = uni;
	} else {
		BITSET * x = new BITSET();	
		for (VERTEX * u = pvlst->get_head(); 
			 u != NULL; u = pvlst->get_next()) {
			x->bunion(VERTEX_id(u));		
		}
		luni = x;
	}

	//Initialize dom-set for each BB.	
	for (VERTEX * v = pvlst->get_head();
		 v != NULL; v = pvlst->get_next()) {
		if (is_graph_entry(v)) {
			BITSET * dom = get_dom_set(v);
			dom->clean();
			dom->bunion(VERTEX_id(v));
		} else {
			get_dom_set(v)->copy(*luni);
		}
	}
	
	/*
	DOM[entry] = {entry}
	DOM[n] = {n} ¡È { ¡É(DOM[pred] of predecessor of 'n') }	
	*/
	bool change = true;
	BITSET tmp;
	UINT count = 0;
	while (change && count < 10) {
		count++;
		change = false;
		for (VERTEX * v = pvlst->get_head(); 
			 v != NULL; v = pvlst->get_next()) {
			UINT vid = VERTEX_id(v);
			if (is_graph_entry(v)) {
				continue;
			} else {
				//Access each preds
				EDGE_C * ec = VERTEX_in_list(v);
				while (ec != NULL) {
					VERTEX * pred = EDGE_from(EC_edge(ec));
					if (ec == VERTEX_in_list(v)) {
						tmp.copy(*m_dom_set.get(VERTEX_id(pred)));		
					} else {
						tmp.intersect(*m_dom_set.get(VERTEX_id(pred)));
					}
					ec = EC_next(ec);
				}
				tmp.bunion(vid);

				BITSET * dom = m_dom_set.get(VERTEX_id(v));
				if (!dom->is_equal(tmp)) {
					dom->copy(tmp);
					change = true;
				}				
			} //end else
		} //end for
	}//end while
	IS_TRUE0(!change);
	if (uni == NULL && luni != NULL) {
		delete luni;
	}
	return true;
}
Exemple #2
0
//Vertexs should have been sorted in topological order.
//And we access them by reverse-topological order.
bool DGRAPH::compute_pdom(IN LIST<VERTEX*> * vlst, BITSET const* uni)
{
	LIST<VERTEX*> tmpvlst;
	LIST<VERTEX*> * pvlst = &tmpvlst;
	if (vlst != NULL) {
		pvlst = vlst;
	} else {
		INT c;
		for (VERTEX * v = get_first_vertex(c); 
			 v != NULL; v = get_next_vertex(c)) {
			pvlst->append_tail(v);
		}
	}
	
	BITSET const* luni = NULL;
	if (uni != NULL) {
		luni = uni;
	} else {
		BITSET * x = new BITSET();	
		for (VERTEX * u = pvlst->get_head();
			 u != NULL; u = pvlst->get_next()) {
			x->bunion(VERTEX_id(u));		
		}
		luni = x;
	}

	//Initialize pdom for each bb
	for (VERTEX * v = pvlst->get_head(); 
		 v != NULL; v = pvlst->get_next()) {
		if (is_graph_exit(v)) {
			BITSET * pdom = get_pdom_set(v);
			pdom->clean();
			pdom->bunion(VERTEX_id(v));
		} else {
			get_pdom_set(v)->copy(*luni);
		}
	}

	/*
	PDOM[exit] = {exit} 
	PDOM[n] = {n} U {¡É(PDOM[succ] of each succ of n)}	
	*/
	bool change = true;
	BITSET tmp;
	UINT count = 0;
	while (change && count < 10) {
		count++;
		change = false;
		for (VERTEX * v = pvlst->get_head(); 
			 v != NULL; v = pvlst->get_next()) {
			UINT vid = VERTEX_id(v);			
			if (is_graph_exit(v)) {
				continue;
			} else {
				tmp.clean();	
				//Access each succs
				EDGE_C * ec = VERTEX_out_list(v);
				while (ec != NULL) {
					VERTEX * succ = EDGE_to(EC_edge(ec));
					if (ec == VERTEX_out_list(v)) {
						tmp.copy(*m_pdom_set.get(VERTEX_id(succ)));	
					} else {
						tmp.intersect(*m_pdom_set.get(VERTEX_id(succ)));
					}
					ec = EC_next(ec);
				}
				tmp.bunion(vid);
				
				BITSET * pdom = m_pdom_set.get(VERTEX_id(v));
				if (!pdom->is_equal(tmp)) {
					pdom->copy(tmp);
					change = true;
				}
			}			
		} //end for
	}// end while
	IS_TRUE0(!change);
	if (uni == NULL && luni != NULL) {
		delete luni;
	}
	return true;
}