static String handle_static_binary_expression(CPrintStyleModule *state, const SuifObject *obj) { BinaryExpression *expr = to<BinaryExpression>(obj); LString opc = expr->get_opcode(); String src_string1 = state->print_to_string(expr->get_source1()); String src_string2 = state->print_to_string(expr->get_source2()); // Should we special case: add, mod, etc? for (size_t i = 0; i < NUM_BINARY_OPER; i++ ) { if (*(binary_oper_table[i]._oper) == opc) { const char *op_char = binary_oper_table[i]._op_char; return(String("(") + src_string1 + op_char + src_string2 + ")"); } } return(String(opc) + "(" + src_string1 + "," + src_string2 + ")"); }
bool CombineSummationPass::IsSummation(Expression* e, VariableSymbol* v) { assert(e != NULL) ; assert(v != NULL) ; BinaryExpression* binExp = dynamic_cast<BinaryExpression*>(e) ; if (binExp == NULL) { return false ; } if (binExp->get_opcode() != LString("add")) { return false ; } Expression* leftSide = binExp->get_source1() ; Expression* rightSide = binExp->get_source2() ; LoadVariableExpression* leftLoadVar = dynamic_cast<LoadVariableExpression*>(leftSide) ; LoadVariableExpression* rightLoadVar = dynamic_cast<LoadVariableExpression*>(rightSide) ; if (leftLoadVar != NULL && leftLoadVar->get_source() == v) { return true ; } if (rightLoadVar != NULL && rightLoadVar->get_source() == v) { return true ; } return IsSummation(leftSide, v) || IsSummation(rightSide, v) ; }
/* Another helper function for print_var_def(). This function * expects that it will need to add a return before printing * anything, and it expects that you will add a return after * it is done. * It returns the number of bits of initialization data that it * generates. */ int PrinterX86::process_value_block(ValueBlock *vblk) { int bits_filled = 0; if (is_a<ExpressionValueBlock>(vblk)) { // An ExpressionValueBlock either holds a constant value or a // simple expression representing either an address relative to // a symbol or a pointer generated by conversion from an integer // constant (presumably zero). ExpressionValueBlock *evb = (ExpressionValueBlock*)vblk; Expression *exp = evb->get_expression(); if (is_a<IntConstant>(exp)) { IntConstant *ic = (IntConstant*)exp; bits_filled = print_size_directive(ic->get_result_type()); fprint(out, ic->get_value()); cur_opnd_cnt++; } else if (is_a<FloatConstant>(exp)) { FloatConstant *fc = (FloatConstant*)exp; bits_filled = print_size_directive(fc->get_result_type()); fputs(fc->get_value().c_str(), out); cur_opnd_cnt++; } else { // We use non-constant ExpressionValueBlocks to hold a symbolic // address, optionally with an offset, or a pointer initializer // consisting of a `convert' expression. // A SymbolAddressExpression represents a plain symbolic // address. // An address obtained by conversion from another type is a // unary expression with opcode "convert". // A symbol+delta is represented by an add whose first operand // is the load-address and whose second is an IntConstant // expression. // No other kind of "expression" is recognized. if (is_a<UnaryExpression>(exp)) { UnaryExpression *ux = (UnaryExpression*)exp; claim(ux->get_opcode() == k_convert, "unexpected unary expression in expression block"); DataType *tt = ux->get_result_type(); // target type claim(is_kind_of<PointerType>(tt), "unexpected target type when converting initializer"); exp = ux->get_source(); if (is_a<IntConstant>(exp)) { IntConstant *ic = (IntConstant*)exp; bits_filled = print_size_directive(tt); fprint(out, ic->get_value()); cur_opnd_cnt++; return bits_filled; } // Fall through to handle symbol-relative address, on the // assumption that the front end validated the conversion. } SymbolAddressExpression *sax; long delta; if (is_a<BinaryExpression>(exp)) { BinaryExpression *bx = (BinaryExpression*)exp; claim(bx->get_opcode() == k_add, "unexpected binary expression in expression block"); Expression *s1 = bx->get_source1(); Expression *s2 = bx->get_source2(); sax = to<SymbolAddressExpression>(s1); delta = to<IntConstant>(s2)->get_value().c_long(); } else if (is_a<SymbolAddressExpression>(exp)) { sax = (SymbolAddressExpression*)exp; delta = 0; } else { claim(false, "unexpected kind of expression block"); } Sym *sym = sax->get_addressed_symbol(); // symbol initialization bits_filled = print_size_directive(type_ptr); print_sym(sym); if (delta != 0) { fprintf(out, "%+ld", delta); } // always force the start of a new data directive cur_opcode = opcode_null; cur_opnd_cnt = 0; } } else if (is_a<MultiValueBlock>(vblk)) { MultiValueBlock *mvb = (MultiValueBlock*)vblk; for (int i = 0; i < mvb->get_sub_block_count(); i++ ) { int offset = mvb->get_sub_block(i).first.c_int(); claim(offset >= bits_filled); if (bits_filled < offset) // pad to offset bits_filled += print_bit_filler(offset - bits_filled); bits_filled += process_value_block(mvb->get_sub_block(i).second); } int all_bits = get_bit_size(mvb->get_type()); if (all_bits > bits_filled) bits_filled += print_bit_filler(all_bits - bits_filled); } else if (is_a<RepeatValueBlock>(vblk)) { // Simplifying assumption: We now expect the front-end // to remove initialization code of large arrays of zeros. RepeatValueBlock *rvb = (RepeatValueBlock*)vblk; int repeat_cnt = rvb->get_num_repetitions(); if (repeat_cnt > 1) { // insert .repeat pseudo-op fprintf(out, "\n\t%s\t%d", x86_opcode_names[REPEAT], repeat_cnt); cur_opcode = opcode_null; // force new data directive } // actual data directive bits_filled = repeat_cnt * process_value_block(rvb->get_sub_block()); if (repeat_cnt > 1) { // insert .endr pseudo-op fprintf(out, "\n\t%s", x86_opcode_names[ENDR]); cur_opcode = opcode_null; // force new data directive } } else if (is_a<UndefinedValueBlock>(vblk)) { bits_filled += print_bit_filler(get_bit_size(vblk->get_type())); } else { claim(false, "unexpected kind of ValueBlock"); } return bits_filled; }