int main() { setup_demo( buf, synth ); // generate 1000 clocks of square wave int length = 1000; int amplitude = 1; for ( int time = 0; time < length; time += 10 ) { synth.update( time, amplitude ); amplitude = -amplitude; } // find out how many samples of sine wave to generate int count = buf.count_samples( length ); blip_sample_t temp [4096]; for ( int i = 0; i < count; i++ ) { double y = sin( i * (3.14159 / 100) ); temp [i] = y * 0.30 * blip_sample_max; // convert to blip_sample_t's range } // mix sine wave's samples into Blip_Buffer buf.mix_samples( temp, count ); // end frame and show samples buf.end_frame( length ); show_buffer( buf ); wait_button(); return 0; }
int main() { long sample_rate = 44100; // Sample rate sets how many samples are generated per second if ( buf.set_sample_rate( sample_rate ) ) return 1; // out of memory buf.bass_freq( 0 ); // keep waveforms perfectly flat // Setup synth synth.output( &buf ); synth.volume( 0.50 ); while ( !button_pressed() ) { // Mouse sets clock rate, higher to the right. The higher the clock // rate, the more packed the waveform becomes. long rate = sample_rate * (mouse_x() * 10 + 1); // Clock rate sets how many time units there are per second buf.clock_rate( rate ); // Generate random waveform, with each transition spaced 50 clocks apart. srand( 1 ); buf.clear(); for ( int time = 0; time < 500; time += 50 ) synth.update( time, rand() % 20 - 10 ); buf.end_frame( 600 ); show_buffer_unscaled( buf ); } return 0; }
// Read samples as unsigned 8-bit long read_samples( Blip_Buffer& buf, unsigned char* out, long out_size ) { // Limit number of samples read to those available long count = buf.samples_avail(); if ( count > out_size ) count = out_size; // Begin reading samples from Blip_Buffer Blip_Reader reader; int bass = reader.begin( buf ); for ( long n = count; n--; ) { // Read 16-bit sample and convert to output format long s = reader.read(); reader.next( bass ); if ( (short) s != s ) // clamp to 16 bits s = 0x7fff - (s >> 24); *out++ = (s >> 8) + 0x80; } // End reading and remove the samples reader.end( buf ); buf.remove_samples( count ); return count; }
// Quick test of functions int main() { Blip_Buffer buf; Blip_Synth<blip_low_quality,20> synth; // Setup buffer buf.clock_rate( 44100 ); if ( buf.set_sample_rate( 44100 ) ) return 1; synth.output( &buf ); synth.volume( 0.5 ); // Add wave that goes from 0 to 50% to -50% synth.update( 4, 10 ); synth.update( 8, -10 ); buf.end_frame( 30 ); // Read samples as this type typedef float sample_t; // floating-point //typedef unsigned short sample_t; // unsigned 16-bit //typedef unsigned char sample_t; // unsigned 8-bit // Read and display samples const int max_samples = 30; sample_t samples [max_samples]; int count = read_samples( buf, samples, max_samples ); for ( int i = buf.output_latency() + 1; i < count; i++ ) printf( "%.2f,", (double) samples [i] ); printf( "\n" ); return 0; }
void Nes_Vrc6_Apu::run_square( Vrc6_Osc& osc, blip_time_t end_time ) { Blip_Buffer* output = osc.output; if ( !output ) return; int volume = osc.regs [0] & 15; if ( !(osc.regs [2] & 0x80) ) volume = 0; int gate = osc.regs [0] & 0x80; int duty = ((osc.regs [0] >> 4) & 7) + 1; int delta = ((gate || osc.phase < duty) ? volume : 0) - osc.last_amp; blip_time_t time = last_time; if ( delta ) { osc.last_amp += delta; output->set_modified(); square_synth.offset( time, delta, output ); } time += osc.delay; osc.delay = 0; int period = osc.period(); if ( volume && !gate && period > 4 ) { if ( time < end_time ) { int phase = osc.phase; output->set_modified(); do { phase++; if ( phase == 16 ) { phase = 0; osc.last_amp = volume; square_synth.offset( time, volume, output ); } if ( phase == duty ) { osc.last_amp = 0; square_synth.offset( time, -volume, output ); } time += period; } while ( time < end_time ); osc.phase = phase; } osc.delay = time - end_time; } }
void show_buffer_unscaled( Blip_Buffer& in ) { blip_sample_t buf [scope_width]; long count = in.read_samples( buf, scope_width ); while ( count < scope_width ) buf [count++] = 0; scope.draw( buf, scope_width ); // remove remaining samples while ( in.read_samples( buf, scope_width ) ) { } }
void Nes_Vrc7_Apu::end_frame( blip_time_t time ) { if ( time > next_time ) run_until( time ); next_time -= time; assert( next_time >= 0 ); for ( int i = osc_count; --i >= 0; ) { Blip_Buffer* output = oscs [i].output; if ( output ) output->set_modified(); } }
long Nes_Nonlinearizer::make_nonlinear( Blip_Buffer& buf, long count ) { require( apu ); long avail = buf.samples_avail(); if ( count > avail ) count = avail; if ( count && enabled ) { Blip_Buffer::buf_t_* p = buf.buffer_; long accum = this->accum; long prev = this->prev; for ( unsigned n = count; n; --n ) { long entry = ENTRY( accum ); check( (entry >= 0) == (accum >= 0) ); accum += *p; *p++ = (entry - prev) << (blip_sample_bits - 16); prev = entry; } this->prev = prev; this->accum = accum; } return count; }
int main() { while ( !button_pressed() ) { setup_demo( buf, synth ); // base frequency and amplitude on mouse position int period = mouse_x() * 100 + 10; int amplitude = mouse_y() * 9 + 1; // generate alternating signs of square wave, spaced by period int time = 0; while ( time < 1000 ) { amplitude = -amplitude; synth.update( time, amplitude ); time += period; } buf.end_frame( 1000 ); show_buffer( buf ); } return 0; }
// Callback called when Alure needs more data to ffed a buffer ALuint StreamCB (void* userdata, ALubyte *data, ALuint bytes) { double period = SR / (2* freq); // How many samples need to do a half cycle. size_t lenght = bytes / 2; // Lenght in "samples" unsigned const amplitude = 9; while (offset < lenght) { sign = -sign; synth.update(offset, amplitude * sign); offset += period; } blipbuf.end_frame(lenght); offset -= lenght; // adjust time to new frame return 2* blipbuf.read_samples ((blip_sample_t*) data, lenght ); // return bytes! }
void Nes_Vrc6_Apu::run_saw( blip_time_t end_time ) { Vrc6_Osc& osc = oscs [2]; Blip_Buffer* output = osc.output; if ( !output ) return; output->set_modified(); int amp = osc.amp; int amp_step = osc.regs [0] & 0x3F; blip_time_t time = last_time; int last_amp = osc.last_amp; if ( !(osc.regs [2] & 0x80) || !(amp_step | amp) ) { osc.delay = 0; int delta = (amp >> 3) - last_amp; last_amp = amp >> 3; saw_synth.offset( time, delta, output ); }
int main() { // Setup left buffer and wave int left_time = 0; int left_amp = 0; setup_demo( left, left_synth ); left.clock_rate( left.sample_rate() * 100 ); // Setup right buffer and wave int right_time = 0; int right_amp = 0; setup_demo( right, right_synth ); right.clock_rate( right.sample_rate() * 100 ); while ( !button_pressed() ) { blip_time_t length = 100000; // mouse sets frequency of left wave int period = 1000 + 6 * mouse_x(); // Add saw wave to left buffer do { left_synth.update( left_time, left_amp = (left_amp + 1) % 10 ); } while ( (left_time += period) < length ); left.end_frame( length ); left_time -= length; // Add saw wave of slightly lower pitch to right buffer do { right_synth.update( right_time, right_amp = (right_amp + 1) % 10 ); } while ( (right_time += 1000) < length ); right.end_frame( length ); right_time -= length; // buffer to read samples into int const buf_size = 2048; static blip_sample_t samples [buf_size]; // Read left channel into even samples, right channel into odd samples: // LRLRLRLRLR... long count = left.read_samples( samples, buf_size / 2, 1 ); right.read_samples( samples + 1, count, 1 ); play_stereo_samples( samples, count * 2 ); } return 0; }
// Read samples as floating-point, with values staying // between 'low' and 'high' (defaults to -1.0 to 1.0). long read_samples( Blip_Buffer& buf, float* out, long out_size, float low = -1.0f, float high = 1.0f ) { // Limit number of samples read to those available long count = buf.samples_avail(); if ( count > out_size ) count = out_size; // Begin reading samples from Blip_Buffer Blip_Reader reader; int bass = reader.begin( buf ); float factor = (high - low) * 0.5f; float offset = low + 1.0f * factor; unsigned long const sample_range = 1UL << blip_sample_bits; factor *= 1.0f / (sample_range / 2); for ( long n = count; n--; ) { // Read sample at full resolution and convert to output format long s = reader.read_raw(); reader.next( bass ); *out++ = s * factor + offset; if ( (unsigned long) (s + sample_range / 2) >= sample_range ) { // clamp out [-1] = high; if ( s < 0 ) out [-1] = low; } } // End reading and remove the samples reader.end( buf ); buf.remove_samples( count ); return count; }
int main () { if (!alureInitDevice(NULL, NULL)) { std::fprintf(stderr, "Failed to open OpenAL device: %s\n", alureGetErrorString()); return 1; } alGenSources(1, &src); if (alGetError() != AL_NO_ERROR) { std::fprintf(stderr, "Failed to create OpenAL source!\n"); alureShutdownDevice(); return 1; } // Seeting Blip Buffer synth.treble_eq( -18.0f ); synth.volume (0.80); synth.output (&blipbuf); // Init Blip Buffer with a buffer of 250ms (second paramter is time in ms) if ( blipbuf.set_sample_rate( SR, 1000 / 4 ) ) { std::fprintf(stderr, "Failed to create Blip Buffer! Our of Memory\n"); alureShutdownDevice(); return 1; } blipbuf.clock_rate( blipbuf.sample_rate() ); blipbuf.bass_freq(300); // Equalization like a TV speaker stream = alureCreateStreamFromCallback (StreamCB, nullptr, AL_FORMAT_MONO16, SR, SR/2, 0, nullptr); if(!stream) { std::fprintf(stderr, "Error creating stream! %s\n", alureGetErrorString()); alDeleteSources(1, &src); alureShutdownDevice(); return 1; } if (!alurePlaySourceStream(src, stream, 4, 0, eos_callback, NULL)) { std::fprintf(stderr, "Failed to play stream: %s\n", alureGetErrorString()); isdone = 1; } alureUpdateInterval(0.005f); // Should be a independint thread playing the stream while(!isdone) { freq -= 1; if (freq < 1) { freq = 600; } alureSleep(0.02f); } alureStopSource(src, AL_FALSE); alDeleteSources(1, &src); alureDestroyStream(stream, 0, NULL); alureShutdownDevice(); return 0; }
void show_buffer( Blip_Buffer& in ) { long count = in.read_samples( sample_buf, buf_size ); scope.draw( sample_buf, scope_width, (double) count / scope_width ); }