void DeadCodeEliminationPass::runOnKernel(ir::IRKernel& k) { report("Running dead code elimination on kernel " << k.name); reportE(REPORT_PTX, k); Analysis* dfgAnalysis = getAnalysis(Analysis::DataflowGraphAnalysis); assert(dfgAnalysis != 0); analysis::DataflowGraph& dfg = *static_cast<analysis::DataflowGraph*>(dfgAnalysis); assert(dfg.ssa() != analysis::DataflowGraph::SsaType::None); BlockSet blocks; report(" Starting by scanning all basic blocks"); for(iterator block = dfg.begin(); block != dfg.end(); ++block) { report(" Queueing up BB_" << block->id()); blocks.insert(block); } while(!blocks.empty()) { iterator block = *blocks.begin(); blocks.erase(blocks.begin()); eliminateDeadInstructions(dfg, blocks, block); } report("Finished running dead code elimination on kernel " << k.name); reportE(REPORT_PTX, k); }
Shape *MakeLoop(BlockSet &Blocks, BlockSet& Entries, BlockSet &NextEntries) { // Find the inner blocks in this loop. Proceed backwards from the entries until // you reach a seen block, collecting as you go. BlockSet InnerBlocks; BlockSet Queue = Entries; while (Queue.size() > 0) { Block *Curr = *(Queue.begin()); Queue.erase(Queue.begin()); if (InnerBlocks.find(Curr) == InnerBlocks.end()) { // This element is new, mark it as inner and remove from outer InnerBlocks.insert(Curr); Blocks.erase(Curr); // Add the elements prior to it for (BlockBranchMap::iterator iter = Curr->BranchesIn.begin(); iter != Curr->BranchesIn.end(); iter++) { Queue.insert(iter->first); } } } assert(InnerBlocks.size() > 0); for (BlockSet::iterator iter = InnerBlocks.begin(); iter != InnerBlocks.end(); iter++) { Block *Curr = *iter; for (BlockBranchMap::iterator iter = Curr->BranchesOut.begin(); iter != Curr->BranchesOut.end(); iter++) { Block *Possible = iter->first; if (InnerBlocks.find(Possible) == InnerBlocks.end() && NextEntries.find(Possible) == NextEntries.find(Possible)) { NextEntries.insert(Possible); } } } PrintDebug("creating loop block:\n"); DebugDump(InnerBlocks, " inner blocks:"); DebugDump(Entries, " inner entries:"); DebugDump(Blocks, " outer blocks:"); DebugDump(NextEntries, " outer entries:"); // TODO: Optionally hoist additional blocks into the loop LoopShape *Loop = new LoopShape(); Notice(Loop); // Solipsize the loop, replacing with break/continue and marking branches as Processed (will not affect later calculations) // A. Branches to the loop entries become a continue to this shape for (BlockSet::iterator iter = Entries.begin(); iter != Entries.end(); iter++) { Solipsize(*iter, Branch::Continue, Loop, InnerBlocks); } // B. Branches to outside the loop (a next entry) become breaks on this shape for (BlockSet::iterator iter = NextEntries.begin(); iter != NextEntries.end(); iter++) { Solipsize(*iter, Branch::Break, Loop, InnerBlocks); } // Finish up Shape *Inner = Process(InnerBlocks, Entries, NULL); Loop->Inner = Inner; return Loop; }
// If a block has multiple entries but no exits, and it is small enough, it is useful to split it. // A common example is a C++ function where everything ends up at a final exit block and does some // RAII cleanup. Without splitting, we will be forced to introduce labelled loops to allow // reaching the final block void SplitDeadEnds() { unsigned TotalCodeSize = 0; for (BlockSet::iterator iter = Live.begin(); iter != Live.end(); iter++) { Block *Curr = *iter; TotalCodeSize += strlen(Curr->Code); } BlockSet Splits; BlockSet Removed; //DebugDump(Live, "before"); for (BlockSet::iterator iter = Live.begin(); iter != Live.end(); iter++) { Block *Original = *iter; if (Original->BranchesIn.size() <= 1 || Original->BranchesOut.size() > 0) continue; // only dead ends, for now if (contains(Original->BranchesOut, Original)) continue; // cannot split a looping node if (strlen(Original->Code)*(Original->BranchesIn.size()-1) > TotalCodeSize/5) continue; // if splitting increases raw code size by a significant amount, abort // Split the node (for simplicity, we replace all the blocks, even though we could have reused the original) PrintDebug("Splitting block %d\n", Original->Id); for (BlockSet::iterator iter = Original->BranchesIn.begin(); iter != Original->BranchesIn.end(); iter++) { Block *Prior = *iter; Block *Split = new Block(Original->Code, Original->BranchVar); Parent->AddBlock(Split); PrintDebug(" to %d\n", Split->Id); Split->BranchesIn.insert(Prior); Branch *Details = Prior->BranchesOut[Original]; Prior->BranchesOut[Split] = new Branch(Details->Condition, Details->Code); Prior->BranchesOut.erase(Original); for (BlockBranchMap::iterator iter = Original->BranchesOut.begin(); iter != Original->BranchesOut.end(); iter++) { Block *Post = iter->first; Branch *Details = iter->second; Split->BranchesOut[Post] = new Branch(Details->Condition, Details->Code); Post->BranchesIn.insert(Split); } Splits.insert(Split); Removed.insert(Original); } for (BlockBranchMap::iterator iter = Original->BranchesOut.begin(); iter != Original->BranchesOut.end(); iter++) { Block *Post = iter->first; Post->BranchesIn.erase(Original); } //DebugDump(Live, "mid"); } for (BlockSet::iterator iter = Splits.begin(); iter != Splits.end(); iter++) { Live.insert(*iter); } for (BlockSet::iterator iter = Removed.begin(); iter != Removed.end(); iter++) { Live.erase(*iter); } //DebugDump(Live, "after"); }
Shape *MakeMultiple(BlockSet &Blocks, BlockSet& Entries, BlockBlockSetMap& IndependentGroups, Shape *Prev, BlockSet &NextEntries) { PrintDebug("creating multiple block with %d inner groups\n", IndependentGroups.size()); bool Fused = !!(Shape::IsSimple(Prev)); MultipleShape *Multiple = new MultipleShape(); Notice(Multiple); BlockSet CurrEntries; for (BlockBlockSetMap::iterator iter = IndependentGroups.begin(); iter != IndependentGroups.end(); iter++) { Block *CurrEntry = iter->first; BlockSet &CurrBlocks = iter->second; PrintDebug(" multiple group with entry %d:\n", CurrEntry->Id); DebugDump(CurrBlocks, " "); // Create inner block CurrEntries.clear(); CurrEntries.insert(CurrEntry); for (BlockSet::iterator iter = CurrBlocks.begin(); iter != CurrBlocks.end(); iter++) { Block *CurrInner = *iter; // Remove the block from the remaining blocks Blocks.erase(CurrInner); // Find new next entries and fix branches to them for (BlockBranchMap::iterator iter = CurrInner->BranchesOut.begin(); iter != CurrInner->BranchesOut.end();) { Block *CurrTarget = iter->first; BlockBranchMap::iterator Next = iter; Next++; if (CurrBlocks.find(CurrTarget) == CurrBlocks.end()) { NextEntries.insert(CurrTarget); Solipsize(CurrTarget, Branch::Break, Multiple, CurrBlocks); } iter = Next; // increment carefully because Solipsize can remove us } } Multiple->InnerMap[CurrEntry] = Process(CurrBlocks, CurrEntries, NULL); // If we are not fused, then our entries will actually be checked if (!Fused) { CurrEntry->IsCheckedMultipleEntry = true; } } DebugDump(Blocks, " remaining blocks after multiple:"); // Add entries not handled as next entries, they are deferred for (BlockSet::iterator iter = Entries.begin(); iter != Entries.end(); iter++) { Block *Entry = *iter; if (IndependentGroups.find(Entry) == IndependentGroups.end()) { NextEntries.insert(Entry); } } return Multiple; }
void ConstantPropagationPass::runOnKernel(ir::IRKernel& k) { report("Running constant propagation on kernel " << k.name); Analysis* dfgAnalysis = getAnalysis("DataflowGraphAnalysis"); assert(dfgAnalysis != 0); analysis::DataflowGraph& dfg = *static_cast<analysis::DataflowGraph*>(dfgAnalysis); dfg.convertToSSAType(analysis::DataflowGraph::Minimal); assert(dfg.ssa() == analysis::DataflowGraph::Minimal); BlockSet blocks; report(" Starting by scanning all basic blocks"); for(iterator block = dfg.begin(); block != dfg.end(); ++block) { report(" Queueing up BB_" << block->id()); blocks.insert(block); } while(!blocks.empty()) { iterator block = *blocks.begin(); blocks.erase(blocks.begin()); eliminateRedundantInstructions(dfg, blocks, block); } report("Finished running constant propagation on kernel " << k.name); reportE(REPORT_PTX, k); }
ControlFlowGraph::ConstBlockPointerVector ControlFlowGraph::executable_sequence() const { typedef std::unordered_set<const_iterator> BlockSet; ConstBlockPointerVector sequence; BlockSet unscheduled; for(const_iterator i = begin(); i != end(); ++i) { unscheduled.insert(i); } report("Getting executable sequence."); sequence.push_back(get_entry_block()); unscheduled.erase(get_entry_block()); report(" added " << get_entry_block()->label()); while (!unscheduled.empty()) { if (sequence.back()->has_fallthrough_edge()) { const_edge_iterator fallthroughEdge = sequence.back()->get_fallthrough_edge(); sequence.push_back(fallthroughEdge->tail); unscheduled.erase(fallthroughEdge->tail); } else { // find a new block, favor branch targets over random blocks const_iterator next = *unscheduled.begin(); for(const_edge_pointer_iterator edge = sequence.back()->out_edges.begin(); edge != sequence.back()->out_edges.end(); ++edge) { if(unscheduled.count((*edge)->tail) != 0) { next = (*edge)->tail; } } // rewind through fallthrough edges to find the beginning of the // next chain of fall throughs report(" restarting at " << next->label()); bool rewinding = true; while (rewinding) { rewinding = false; for (const_edge_pointer_iterator edge = next->in_edges.begin(); edge != next->in_edges.end(); ++edge) { if ((*edge)->type == Edge::FallThrough) { assertM(unscheduled.count((*edge)->head) != 0, (*edge)->head->label() << " has multiple fallthrough branches."); next = (*edge)->head; report(" rewinding to " << next->label()); rewinding = true; break; } } } sequence.push_back(next); unscheduled.erase(next); } report(" added " << sequence.back()->label()); } return sequence; }
Shape *MakeLoop(BlockSet &Blocks, BlockSet& Entries, BlockSet &NextEntries) { // Find the inner blocks in this loop. Proceed backwards from the entries until // you reach a seen block, collecting as you go. BlockSet InnerBlocks; BlockSet Queue = Entries; while (Queue.size() > 0) { Block *Curr = *(Queue.begin()); Queue.erase(Queue.begin()); if (!contains(InnerBlocks, Curr)) { // This element is new, mark it as inner and remove from outer InnerBlocks.insert(Curr); Blocks.erase(Curr); // Add the elements prior to it for (BlockSet::iterator iter = Curr->BranchesIn.begin(); iter != Curr->BranchesIn.end(); iter++) { Queue.insert(*iter); } #if 0 // Add elements it leads to, if they are dead ends. There is no reason not to hoist dead ends // into loops, as it can avoid multiple entries after the loop for (BlockBranchMap::iterator iter = Curr->BranchesOut.begin(); iter != Curr->BranchesOut.end(); iter++) { Block *Target = iter->first; if (Target->BranchesIn.size() <= 1 && Target->BranchesOut.size() == 0) { Queue.insert(Target); } } #endif } } assert(InnerBlocks.size() > 0); for (BlockSet::iterator iter = InnerBlocks.begin(); iter != InnerBlocks.end(); iter++) { Block *Curr = *iter; for (BlockBranchMap::iterator iter = Curr->BranchesOut.begin(); iter != Curr->BranchesOut.end(); iter++) { Block *Possible = iter->first; if (!contains(InnerBlocks, Possible)) { NextEntries.insert(Possible); } } } #if 0 // We can avoid multiple next entries by hoisting them into the loop. if (NextEntries.size() > 1) { BlockBlockSetMap IndependentGroups; FindIndependentGroups(NextEntries, IndependentGroups, &InnerBlocks); while (IndependentGroups.size() > 0 && NextEntries.size() > 1) { Block *Min = NULL; int MinSize = 0; for (BlockBlockSetMap::iterator iter = IndependentGroups.begin(); iter != IndependentGroups.end(); iter++) { Block *Entry = iter->first; BlockSet &Blocks = iter->second; if (!Min || Blocks.size() < MinSize) { // TODO: code size, not # of blocks Min = Entry; MinSize = Blocks.size(); } } // check how many new entries this would cause BlockSet &Hoisted = IndependentGroups[Min]; bool abort = false; for (BlockSet::iterator iter = Hoisted.begin(); iter != Hoisted.end() && !abort; iter++) { Block *Curr = *iter; for (BlockBranchMap::iterator iter = Curr->BranchesOut.begin(); iter != Curr->BranchesOut.end(); iter++) { Block *Target = iter->first; if (Hoisted.find(Target) == Hoisted.end() && NextEntries.find(Target) == NextEntries.end()) { // abort this hoisting abort = true; break; } } } if (abort) { IndependentGroups.erase(Min); continue; } // hoist this entry PrintDebug("hoisting %d into loop\n", Min->Id); NextEntries.erase(Min); for (BlockSet::iterator iter = Hoisted.begin(); iter != Hoisted.end(); iter++) { Block *Curr = *iter; InnerBlocks.insert(Curr); Blocks.erase(Curr); } IndependentGroups.erase(Min); } } #endif PrintDebug("creating loop block:\n"); DebugDump(InnerBlocks, " inner blocks:"); DebugDump(Entries, " inner entries:"); DebugDump(Blocks, " outer blocks:"); DebugDump(NextEntries, " outer entries:"); LoopShape *Loop = new LoopShape(); Notice(Loop); // Solipsize the loop, replacing with break/continue and marking branches as Processed (will not affect later calculations) // A. Branches to the loop entries become a continue to this shape for (BlockSet::iterator iter = Entries.begin(); iter != Entries.end(); iter++) { Solipsize(*iter, Branch::Continue, Loop, InnerBlocks); } // B. Branches to outside the loop (a next entry) become breaks on this shape for (BlockSet::iterator iter = NextEntries.begin(); iter != NextEntries.end(); iter++) { Solipsize(*iter, Branch::Break, Loop, InnerBlocks); } // Finish up Shape *Inner = Process(InnerBlocks, Entries, NULL); Loop->Inner = Inner; return Loop; }