float64_t CLatentSOSVM::do_inner_loop(float64_t cooling_eps) { float64_t lambda = 1/m_C; CDualLibQPBMSOSVM* so = new CDualLibQPBMSOSVM(); so->train(); /* copy the resulting w */ SGVector<float64_t> cur_w = so->get_w(); memcpy(w.vector, cur_w.vector, cur_w.vlen*sizeof(float64_t)); /* get the primal objective value */ float64_t po = so->get_result().Fp; SG_UNREF(so); return po; }
int main(int argc, char * argv[]) { // initialization //------------------------------------------------------------------------- float64_t lambda=0.01, eps=0.01; bool icp=1; uint32_t cp_models=1; ESolver solver=BMRM; uint32_t feat_dim, num_feat; init_shogun_with_defaults(); if (argc > 1 && argc < 8) { SG_SERROR("Usage: so_multiclass_BMRM <data.in> <feat_dim> <num_feat> <lambda> <icp> <epsilon> <solver> [<cp_models>]\n"); return -1; } if (argc > 1) { // parse command line arguments for parameters setting SG_SPRINT("arg[1] = %s\n", argv[1]); feat_dim=::atoi(argv[2]); num_feat=::atoi(argv[3]); lambda=::atof(argv[4]); icp=::atoi(argv[5]); eps=::atof(argv[6]); if (strcmp("BMRM", argv[7])==0) solver=BMRM; if (strcmp("PPBMRM", argv[7])==0) solver=PPBMRM; if (strcmp("P3BMRM", argv[7])==0) solver=P3BMRM; if (argc > 8) { cp_models=::atoi(argv[8]); } } else { // default parameters feat_dim=DIMS; num_feat=NUM_SAMPLES*NUM_CLASSES; lambda=1e3; icp=1; eps=0.01; solver=BMRM; } SGVector<float64_t> labs(num_feat); SGMatrix<float64_t> feats(feat_dim, num_feat); if (argc==1) { gen_rand_data(labs, feats); } else { // read data read_data(argv[1], feat_dim, num_feat, labs, feats); } // Create train labels CMulticlassSOLabels* labels = new CMulticlassSOLabels(labs); // Create train features CDenseFeatures< float64_t >* features = new CDenseFeatures< float64_t >(feats); // Create structured model CMulticlassModel* model = new CMulticlassModel(features, labels); // Create SO-SVM CDualLibQPBMSOSVM* sosvm = new CDualLibQPBMSOSVM( model, labels, lambda); SG_REF(sosvm); sosvm->set_cleanAfter(10); sosvm->set_cleanICP(icp); sosvm->set_TolRel(eps); sosvm->set_cp_models(cp_models); sosvm->set_solver(solver); // Train //------------------------------------------------------------------------- SG_SPRINT("Train using lambda = %lf ICP removal = %d \n", sosvm->get_lambda(), sosvm->get_cleanICP()); sosvm->train(); BmrmStatistics res = sosvm->get_result(); SG_SPRINT("result = { Fp=%lf, Fd=%lf, nIter=%d, nCP=%d, nzA=%d, exitflag=%d }\n", res.Fp, res.Fd, res.nIter, res.nCP, res.nzA, res.exitflag); CStructuredLabels* out = CLabelsFactory::to_structured(sosvm->apply()); SG_REF(out); SG_SPRINT("\n"); // Compute error //------------------------------------------------------------------------- float64_t error=0.0; for (uint32_t i=0; i<num_feat; ++i) { CRealNumber* rn = CRealNumber::obtain_from_generic( out->get_label(i) ); error+=(rn->value==labs.get_element(i)) ? 0.0 : 1.0; SG_UNREF(rn); // because of out->get_label(i) above } SG_SPRINT("Error = %lf %% \n", error/num_feat*100); // Free memory SG_UNREF(sosvm); SG_UNREF(out); exit_shogun(); return 0; }