bool CPrimalMosekSOSVM::train_machine(CFeatures* data) { SG_DEBUG("Entering CPrimalMosekSOSVM::train_machine.\n"); if (data) set_features(data); CFeatures* model_features = get_features(); // Initialize the model for training m_model->init_training(); // Check that the scenary is correct to start with training m_model->check_training_setup(); SG_DEBUG("The training setup is correct.\n"); // Dimensionality of the joint feature space int32_t M = m_model->get_dim(); // Number of auxiliary variables in the optimization vector int32_t num_aux = m_model->get_num_aux(); // Number of auxiliary constraints int32_t num_aux_con = m_model->get_num_aux_con(); // Number of training examples int32_t N = model_features->get_num_vectors(); SG_DEBUG("M=%d, N =%d, num_aux=%d, num_aux_con=%d.\n", M, N, num_aux, num_aux_con); // Interface with MOSEK CMosek* mosek = new CMosek(0, M+num_aux+N); SG_REF(mosek); REQUIRE(mosek->get_rescode() == MSK_RES_OK, "Mosek object could not be properly created in PrimalMosekSOSVM training.\n"); // Initialize the terms of the optimization problem SGMatrix< float64_t > A, B, C; SGVector< float64_t > a, b, lb, ub; m_model->init_primal_opt(m_regularization, A, a, B, b, lb, ub, C); SG_DEBUG("Regularization used in PrimalMosekSOSVM equal to %.2f.\n", m_regularization); // Input terms of the problem that do not change between iterations REQUIRE(mosek->init_sosvm(M, N, num_aux, num_aux_con, C, lb, ub, A, b) == MSK_RES_OK, "Mosek error in PrimalMosekSOSVM initializing SO-SVM.\n") // Initialize the weight vector m_w = SGVector< float64_t >(M); m_w.zero(); m_slacks = SGVector< float64_t >(N); m_slacks.zero(); // Initialize the list of constraints // Each element in results is a list of CResultSet with the constraints // associated to each training example CDynamicObjectArray* results = new CDynamicObjectArray(N); SG_REF(results); for ( int32_t i = 0 ; i < N ; ++i ) { CList* list = new CList(true); results->push_back(list); } // Initialize variables used in the loop int32_t num_con = num_aux_con; // number of constraints int32_t old_num_con = num_con; bool exception = false; index_t iteration = 0; SGVector< float64_t > sol(M+num_aux+N); sol.zero(); SGVector< float64_t > aux(num_aux); do { SG_DEBUG("Iteration #%d: Cutting plane training with num_con=%d and old_num_con=%d.\n", iteration, num_con, old_num_con); old_num_con = num_con; for ( int32_t i = 0 ; i < N ; ++i ) { // Predict the result of the ith training example (loss-aug) CResultSet* result = m_model->argmax(m_w, i); // Compute the loss associated with the prediction (surrogate loss, max(0, \tilde{H})) float64_t slack = CHingeLoss().loss( compute_loss_arg(result) ); CList* cur_list = (CList*) results->get_element(i); // Update the list of constraints if ( cur_list->get_num_elements() > 0 ) { // Find the maximum loss within the elements of // the list of constraints CResultSet* cur_res = (CResultSet*) cur_list->get_first_element(); float64_t max_slack = -CMath::INFTY; while ( cur_res != NULL ) { max_slack = CMath::max(max_slack, CHingeLoss().loss( compute_loss_arg(cur_res) )); SG_UNREF(cur_res); cur_res = (CResultSet*) cur_list->get_next_element(); } if ( slack > max_slack + m_epsilon ) { // The current training example is a // violated constraint if ( ! insert_result(cur_list, result) ) { exception = true; break; } add_constraint(mosek, result, num_con, i); ++num_con; } } else { // First iteration of do ... while, add constraint if ( ! insert_result(cur_list, result) ) { exception = true; break; } add_constraint(mosek, result, num_con, i); ++num_con; } SG_UNREF(cur_list); SG_UNREF(result); } // Solve the QP SG_DEBUG("Entering Mosek QP solver.\n"); mosek->optimize(sol); for ( int32_t i = 0 ; i < M+num_aux+N ; ++i ) { if ( i < M ) m_w[i] = sol[i]; else if ( i < M+num_aux ) aux[i-M] = sol[i]; else m_slacks[i-M-num_aux] = sol[i]; } SG_DEBUG("QP solved. The primal objective value is %.4f.\n", mosek->get_primal_objective_value()); ++iteration; } while ( old_num_con != num_con && ! exception ); po_value = mosek->get_primal_objective_value(); // Free resources SG_UNREF(results); SG_UNREF(mosek); SG_UNREF(model_features); return true; }
bool CPrimalMosekSOSVM::train_machine(CFeatures* data) { if (data) set_features(data); CFeatures* model_features = get_features(); // Check that the scenary is correct to start with training m_model->check_training_setup(); // Dimensionality of the joint feature space int32_t M = m_model->get_dim(); // Number of auxiliary variables in the optimization vector int32_t num_aux = m_model->get_num_aux(); // Number of auxiliary constraints int32_t num_aux_con = m_model->get_num_aux_con(); // Number of training examples int32_t N = m_model->get_features()->get_num_vectors(); // Interface with MOSEK CMosek* mosek = new CMosek(0, M+num_aux+N); SG_REF(mosek); if ( mosek->get_rescode() != MSK_RES_OK ) { SG_PRINT("Mosek object could not be properly created..." "aborting training of PrimalMosekSOSVM\n"); return false; } // Initialize the terms of the optimization problem SGMatrix< float64_t > A, B, C; SGVector< float64_t > a, b, lb, ub; m_model->init_opt(A, a, B, b, lb, ub, C); // Input terms of the problem that do not change between iterations if ( mosek->init_sosvm(M, N, num_aux, num_aux_con, C, lb, ub, A, b) != MSK_RES_OK ) { // MOSEK error took place return false; } // Initialize the weight vector m_w = SGVector< float64_t >(M); m_w.zero(); m_slacks = SGVector< float64_t >(N); m_slacks.zero(); // Initialize the list of constraints // Each element in results is a list of CResultSet with the constraints // associated to each training example CDynamicObjectArray* results = new CDynamicObjectArray(N); SG_REF(results); for ( int32_t i = 0 ; i < N ; ++i ) { CList* list = new CList(true); results->push_back(list); } // Initialize variables used in the loop int32_t num_con = num_aux_con; // number of constraints int32_t old_num_con = num_con; float64_t slack = 0.0; float64_t max_slack = 0.0; CResultSet* result = NULL; CResultSet* cur_res = NULL; CList* cur_list = NULL; bool exception = false; SGVector< float64_t > sol(M+num_aux+N); sol.zero(); SGVector< float64_t > aux(num_aux); do { old_num_con = num_con; for ( int32_t i = 0 ; i < N ; ++i ) { // Predict the result of the ith training example result = m_model->argmax(m_w, i); //SG_PRINT("loss %f %f\n", compute_loss_arg(result), m_loss->loss( compute_loss_arg(result)) ); // Compute the loss associated with the prediction slack = m_loss->loss( compute_loss_arg(result) ); cur_list = (CList*) results->get_element(i); // Update the list of constraints if ( cur_list->get_num_elements() > 0 ) { // Find the maximum loss within the elements of // the list of constraints cur_res = (CResultSet*) cur_list->get_first_element(); max_slack = -CMath::INFTY; while ( cur_res != NULL ) { max_slack = CMath::max(max_slack, m_loss->loss( compute_loss_arg(cur_res) )); SG_UNREF(cur_res); cur_res = (CResultSet*) cur_list->get_next_element(); } if ( slack > max_slack ) { // The current training example is a // violated constraint if ( ! insert_result(cur_list, result) ) { exception = true; break; } add_constraint(mosek, result, num_con, i); ++num_con; } } else { // First iteration of do ... while, add constraint if ( ! insert_result(cur_list, result) ) { exception = true; break; } add_constraint(mosek, result, num_con, i); ++num_con; } SG_UNREF(cur_list); SG_UNREF(result); } // Solve the QP mosek->optimize(sol); for ( int32_t i = 0 ; i < M+num_aux+N ; ++i ) { if ( i < M ) m_w[i] = sol[i]; else if ( i < M+num_aux ) aux[i-M] = sol[i]; else m_slacks[i-M-num_aux] = sol[i]; } } while ( old_num_con != num_con && ! exception ); po_value = mosek->get_primal_objective_value(); // Free resources SG_UNREF(results); SG_UNREF(mosek); SG_UNREF(model_features); return true; }