//! start from a CFG node 'n', collect all other CFG nodes which can be reached from 'n'
void getReachableNodes(CFGNode n, set<CFGNode>& s) {
  if (s.find(n) != s.end()) return; // n is already in s
  s.insert(n);
  vector<CFGEdge> oe = n.outEdges();
  for (vector<CFGEdge>::const_iterator i = oe.begin(); i != oe.end(); ++i) {
    getReachableNodes(i->target(), s);
  }
}
Exemple #2
0
// advances this CFGIterator in the given direction. Forwards if fwDir=true and backwards if fwDir=false.
// if pushAllChildren=true, all of the current node's unvisited children (predecessors or successors, 
//    depending on fwDir) are pushed onto remainingNodes
// It is assumed that for a given CFGIterator pushAllChildren either always = true or always = false.
void CFGIterator::advance(bool fwDir, bool pushAllChildren)
{
  assert(initialized);
  /*scope s(txt()<<"CFGIterator::advance(fwDir="<<fwDir<<", pushAllChildren="<<pushAllChildren<<") #remainingNodes="<<remainingNodes.size());
  dbg<<"  visited=\n";
  for(set<CFGNode>::iterator it=visited.begin(); it!=visited.end(); it++)
    dbg << "      "<<CFGNode2Str(*it)<<"\n";*/
  if(remainingNodes.size()>0)
  {
    // pop the next CFG node from the front of the list
    CFGNode cur = remainingNodes.front();
    remainingNodes.pop_front();
    //dbg << "cur="<<CFGNode2Str(cur)<<endl;
    
    if(pushAllChildren)
    {
      // find its followers (either successors or predecessors, depending on value of fwDir), push back 
      // those that have not yet been visited
      vector<CFGEdge> nextE;
      if(fwDir) {
        /* // Do not proceed forward if we've reached the end of a function
        if(!(isSgFunctionDefinition(cur.getNode()) && cur.getIndex()==3))*/
        nextE = cur.outEdges();
      } else      {
        /* // Do not proceed backward if we've reached the end of a function
        if(!(isSgFunctionParameterList(cur.getNode()) && cur.getIndex()==0)) */
        nextE = cur.inEdges();
      }
      //dbg << "    #nextE="<<nextE.size()<<endl;
      for(vector<CFGEdge>::iterator it=nextE.begin(); it!=nextE.end(); it++)
      {
        CFGNode nextN = (fwDir ? it->target() : nextN = it->source());
        /*dbg << "    nextN="<<CFGNode2Str(nextN)<<endl;
        dbg << "      CFGIterator::advance "<<(fwDir?"descendant":"predecessor")<<": "<<
               "visited="<<(visited.find(nextN) != visited.end())<<
               " remaining="<<isRemaining(nextN)<<"\n";*/
        
        // if we haven't yet visited this node and don't yet have it on the remainingNodes list
        if(visited.find(nextN) == visited.end() &&
           !isRemaining(nextN))
        {
          //printf("       pushing back node <%s: 0x%x: %s> visited=%d\n", nextN.getNode()->class_name().c_str(), nextN.getNode(), nextN.getNode()->unparseToString().c_str(), visited.find(nextN)!=visited.end());
          remainingNodes.push_back(nextN);
        }
      }
    
      // if we still have any nodes left remaining
      if(remainingNodes.size()>0)
      {
        // take the next node from the front of the list and mark it as visited
        visited.insert(remainingNodes.front());
      
        //cout << "        remainingNodes.front()=["<<remainingNodes.front().getNode()->unparseToString()<<" | "<<remainingNodes.front().getNode()->class_name()<<"]"<<endl;
      }
      // Since pushAllChildren always = true or = false, we only need to worry about managing visited in the true case
    }
  }
}
Exemple #3
0
std::map<SgNode*,std::string> PathCollector::getAssociationsForPath(std::vector<SgGraphNode*> path) {
	std::map<SgNode*,std::string> conditionValueForPath;

	for (int i = 0; i < path.size(); i++) {
		//std::vector<SgGraphNode*> successors;
		//pathCollector->getGraph()->getSuccessors(path[i],successors);
		
		CFGNode node = cfg->toCFGNode(path[i]);
		std::vector<CFGEdge> edges = node.outEdges();
		if (edges.size() > 1) {
			//std::cout << "associated node: " << path[i]->get_SgNode()->class_name() << std::endl;
                	CFGNode eck_result = cfg->toCFGNode(path[i+1]);
			CFGEdge conditionEdge;
			int k = 0;
			int found = -1;
			while (k < edges.size()) {
				if (edges[k].target() == eck_result) {
					conditionEdge = edges[k];
					found = k;
					break;
				}
			k++;
			}
				
			EdgeConditionKind edgeKind = conditionEdge.condition();
			if (edgeKind == eckTrue) {
				conditionValueForPath[path[i]->get_SgNode()] = "true";
			}
			else if (edgeKind == eckFalse) {
				conditionValueForPath[path[i]->get_SgNode()] = "false";
			}
			else {
				std::cout << "edge kind not handled! exiting..." << std::endl;
				ROSE_ASSERT(false);
					
			
			}
		//	std::cout << "edge value: " << conditionValueForPath[path[i]->get_SgNode()] << std::endl;
		}
	}
	return conditionValueForPath;
	}		
Exemple #4
0
void CFG::buildCFG(CFGNode n)
{
    ROSE_ASSERT(n.getNode());

    if (explored_.count(n) > 0)
        return;
    explored_.insert(n);

    SgGraphNode* from = NULL;
    if (all_nodes_.count(n) > 0)
    {
        from = all_nodes_[n];
    }
    else
    {
        from = new SgGraphNode;
        from->set_SgNode(n.getNode());
        from->addNewAttribute("info", new CFGNodeAttribute(n.getIndex(), graph_));
        all_nodes_[n] = from;
        graph_->addNode(from);
    }

    std::vector<VirtualCFG::CFGEdge> outEdges = n.outEdges();
    foreach (const VirtualCFG::CFGEdge& edge, outEdges)
    {
        CFGNode tar = edge.target();

        SgGraphNode* to = NULL;
        if (all_nodes_.count(tar) > 0)
            to = all_nodes_[tar];
        else
        {
            to = new SgGraphNode;
            to->set_SgNode(tar.getNode());
            to->addNewAttribute("info", new CFGNodeAttribute(tar.getIndex(), graph_));
            all_nodes_[tar] = to;
            graph_->addNode(to);
        }

        graph_->addDirectedEdge(new SgDirectedGraphEdge(from, to));
    }