CImg* CDimageView::Dwtstep(CImg* pImg, int Inv) { // 初始化目标图像 CImg* mImg = new CImg(*pImg); mImg->InitPixels(0); int width=pImg->GetWidthPixel(); int height=pImg->GetHeight(); int nMaxWLevel = Log2(width); int nMaxHLevel = Log2(height); int nMaxLevel; if (width == 1<<nMaxWLevel && height == 1<<nMaxHLevel) nMaxLevel = min(nMaxWLevel, nMaxHLevel); // 如果小波变换的存储内存还没有分配,则分配此内存,用double保存graylevel if(!Dwttemp){ Dwttemp = new double[width*height]; // 将图象数据放入m_pDbImage中 for (int i=0; i<height; i++) { for (int j=0; j<width; j++) Dwttemp[i * width + j] = double(pImg->GetGray(j,i)); } } if (!DWTStep_2D(Dwttemp, nMaxWLevel-Curdpth, nMaxHLevel-Curdpth,nMaxWLevel, nMaxHLevel, Inv)) return FALSE; if (Inv) Curdpth --; // 否则加1 else Curdpth ++; BYTE gray; //将double里gray数据转入24位bmp(gray,gray,gray) int lfw = width>>Curdpth, lfh = height>>Curdpth; //尺度区域 for (int i=0; i<height; i++) { for (int j=0; j<width; j++){ if(i<lfh && j<lfw){ //低频X低频,>0直接转 gray = BYTE(Dwttemp[i * width + j]); mImg->SetPixel(j,i,RGB(gray,gray,gray)); } else{ //小于零部分 +128显示 gray = BYTE(Dwttemp[i * width + j]+128); mImg->SetPixel(j,i,RGB(gray,gray,gray)); } } } return mImg; }
CImg CImg::operator ! () { CImg grayRet = *this; grayRet.InitPixels(255); //结果图像置白 int nHeight = GetHeight(); int nWidth = GetWidthPixel(); int i,j; for(i=0; i<nHeight; i++) { for(j=0; j<nWidth; j++) { int pixel = 255 - GetGray(j, i); grayRet.SetPixel(j, i, RGB(pixel, pixel, pixel)); } } return grayRet; }
CImg* CDimageView::Canny(CImg* pImg) { // 各方向梯度值 // 使用Prewitt模板计算各个方向上的梯度值 CImg* imgGH=PrewittEdge(pImg,1); CImg* imgGV=PrewittEdge(pImg,2); CImg* imgGCW=PrewittEdge(pImg,3); CImg* imgGCCW=PrewittEdge(pImg,4); CImg* imgGratitude = new CImg(*pImg); imgGratitude->InitPixels(0); int width=pImg->GetWidthPixel(); int height=pImg->GetHeight(); // 最大梯度方向 BYTE * pbDirection = new BYTE [height * width]; memset(pbDirection, 0,height * width * sizeof(BYTE)); // 寻找每点的最大梯度方向并写入对应的最大梯度值 for (int i=0; i<height; i++) { for (int j=0; j<width; j++) { BYTE gray = 0; if (imgGH->GetGray(j, i) > gray) { gray = imgGH->GetGray(j, i); pbDirection[i * width + j] = 1; imgGratitude->SetPixel(j, i, RGB(gray, gray, gray)); } if (imgGV->GetGray(j, i) > gray) { gray = imgGV->GetGray(j, i); pbDirection[i * width + j] = 2; imgGratitude->SetPixel(j, i, RGB(gray, gray, gray)); } if (imgGCW->GetGray(j, i) > gray) { gray = imgGCW->GetGray(j, i); pbDirection[i * width + j] = 3; imgGratitude->SetPixel(j, i, RGB(gray, gray, gray)); } if (imgGCCW->GetGray(j, i) > gray) { gray = imgGCCW->GetGray(j, i); pbDirection[i * width + j] = 4; imgGratitude->SetPixel(j, i, RGB(gray, gray, gray)); } } } // 阈值化时重用前面的对象 CImg *pImgThreL = imgGH, *pImgThreH = imgGV; // 检查阈值参数,如未给出阈值则计算以取得最佳阈值 int bThreH; int bThreL; bThreH = 1.2 * imgGratitude->DetectThreshold(100); bThreL = 0.4 * bThreH; // 将最大梯度图像按高低值分别进行阈值化 imgGratitude->Threshold(pImgThreL, bThreL); imgGratitude->Threshold(pImgThreH, bThreH); // 初始化目标图像 CImg* mImg = new CImg(*pImg); mImg->InitPixels(0); // 根据低阈值图像在高阈值图像上进行边界修补 for (int i=1; i<height-1; i++) { for (int j=1; j<width-1; j++) { if (pImgThreH->GetGray(j, i)) { // 高阈值图像上发现点直接确定 mImg->SetPixel(j, i, RGB(255, 255, 255)); // 搜索梯度最大方向上的邻域 switch ( pbDirection[i * width + j] ) { case 1: // 水平方向 if (pImgThreL->GetGray(j+1, i)) { pImgThreH->SetPixel(j+1, i, RGB(255, 255, 255)); } if (pImgThreL->GetGray(j-1, i)) { pImgThreH->SetPixel(j-1, i, RGB(255, 255, 255)); } break; case 2: // 垂直方向 if (pImgThreL->GetGray(j, i+1)) { pImgThreH->SetPixel(j, i+1, RGB(255, 255, 255)); } if (pImgThreL->GetGray(j, i-1)) { pImgThreH->SetPixel(j, i-1, RGB(255, 255, 255)); } break; case 3: // 45度方向 if (pImgThreL->GetGray(j+1, i-1)) { pImgThreH->SetPixel(j+1, i-1, RGB(255, 255, 255)); } if (pImgThreL->GetGray(j-1, i+1)) { pImgThreH->SetPixel(j-1, i+1, RGB(255, 255, 255)); } break; case 4: // 135度方向 if (pImgThreL->GetGray(j+1, i+1)) { pImgThreH->SetPixel(j+1, i+1, RGB(255, 255, 255)); } if (pImgThreL->GetGray(j-1, i-1)) { pImgThreH->SetPixel(j-1, i-1, RGB(255, 255, 255)); } break; } }//if }//for j }//for i delete pbDirection; return mImg; }