Exemple #1
0
// This sets up and draws the rectangle on the minimap
//  which represents the view of the camera in the world.
void CMiniMap::DrawViewRect(CMatrix3D transform)
{
	// Compute the camera frustum intersected with a fixed-height plane.
	// Use the water height as a fixed base height, which should be the lowest we can go
	float h = g_Renderer.GetWaterManager()->m_WaterHeight;
	const float width = m_CachedActualSize.GetWidth();
	const float height = m_CachedActualSize.GetHeight();
	const float invTileMapSize = 1.0f / float(TERRAIN_TILE_SIZE * m_MapSize);

	CVector3D hitPt[4];
	hitPt[0] = m_Camera->GetWorldCoordinates(0, g_Renderer.GetHeight(), h);
	hitPt[1] = m_Camera->GetWorldCoordinates(g_Renderer.GetWidth(), g_Renderer.GetHeight(), h);
	hitPt[2] = m_Camera->GetWorldCoordinates(g_Renderer.GetWidth(), 0, h);
	hitPt[3] = m_Camera->GetWorldCoordinates(0, 0, h);

	float ViewRect[4][2];
	for (int i = 0; i < 4; ++i)
	{
		// convert to minimap space
		ViewRect[i][0] = (width * hitPt[i].X * invTileMapSize);
		ViewRect[i][1] = (height * hitPt[i].Z * invTileMapSize);
	}

	float viewVerts[] = {
		ViewRect[0][0], -ViewRect[0][1],
		ViewRect[1][0], -ViewRect[1][1],
		ViewRect[2][0], -ViewRect[2][1],
		ViewRect[3][0], -ViewRect[3][1]
	};

	// Enable Scissoring to restrict the rectangle to only the minimap.
	glScissor(
		m_CachedActualSize.left / g_GuiScale,
		g_Renderer.GetHeight() - m_CachedActualSize.bottom / g_GuiScale,
		width / g_GuiScale,
		height / g_GuiScale);
	glEnable(GL_SCISSOR_TEST);
	glLineWidth(2.0f);

	CShaderDefines lineDefines;
	lineDefines.Add(str_MINIMAP_LINE, str_1);
	CShaderTechniquePtr tech = g_Renderer.GetShaderManager().LoadEffect(str_minimap, g_Renderer.GetSystemShaderDefines(), lineDefines);
	tech->BeginPass();
	CShaderProgramPtr shader = tech->GetShader();
	shader->Uniform(str_transform, transform);
	shader->Uniform(str_color, 1.0f, 0.3f, 0.3f, 1.0f);

	shader->VertexPointer(2, GL_FLOAT, 0, viewVerts);
	shader->AssertPointersBound();

	if (!g_Renderer.m_SkipSubmit)
		glDrawArrays(GL_LINE_LOOP, 0, 4);

	tech->EndPass();

	glLineWidth(1.0f);
	glDisable(GL_SCISSOR_TEST);
}
void CPostprocManager::ApplyBlurDownscale2x(GLuint inTex, GLuint outTex, int inWidth, int inHeight)
{
	// Bind inTex to framebuffer for rendering.
	pglBindFramebufferEXT(GL_FRAMEBUFFER_EXT, m_BloomFbo);
	pglFramebufferTexture2DEXT(GL_FRAMEBUFFER_EXT, GL_COLOR_ATTACHMENT0_EXT, GL_TEXTURE_2D, outTex, 0);
	
	// Get bloom shader with instructions to simply copy texels.
	CShaderDefines defines;
	defines.Add(str_BLOOM_NOP, str_1);
	CShaderTechniquePtr tech = g_Renderer.GetShaderManager().LoadEffect(str_bloom,
			g_Renderer.GetSystemShaderDefines(), defines);
	
	tech->BeginPass();
	CShaderProgramPtr shader = tech->GetShader();
	
	GLuint renderedTex = inTex;
	
	// Cheat by creating high quality mipmaps for inTex, so the copying operation actually
	// produces good scaling due to hardware filtering.
	glBindTexture(GL_TEXTURE_2D, renderedTex);
	pglGenerateMipmapEXT(GL_TEXTURE_2D);
	glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR);
	glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
	glBindTexture(GL_TEXTURE_2D, 0);
	
	shader->BindTexture(str_renderedTex, renderedTex);
	
	const SViewPort oldVp = g_Renderer.GetViewport();
	const SViewPort vp = { 0, 0, inWidth / 2, inHeight / 2 };
	g_Renderer.SetViewport(vp);
	
	float quadVerts[] = {
		1.0f, 1.0f,
		-1.0f, 1.0f,
		-1.0f, -1.0f,

		-1.0f, -1.0f,
		1.0f, -1.0f,
		1.0f, 1.0f
	};
	float quadTex[] = {
		1.0f, 1.0f,
		0.0f, 1.0f,
		0.0f, 0.0f,

		0.0f, 0.0f,
		1.0f, 0.0f,
		1.0f, 1.0f
	};
	shader->TexCoordPointer(GL_TEXTURE0, 2, GL_FLOAT, 0, quadTex);
	shader->VertexPointer(2, GL_FLOAT, 0, quadVerts);
	shader->AssertPointersBound();
	glDrawArrays(GL_TRIANGLES, 0, 6);

	g_Renderer.SetViewport(oldVp);
	
	tech->EndPass();
}
Exemple #3
0
// Set up m_CombinedShaderDefines so that index i contains m_ShaderDefines, plus
// the extra defines from m_ConditionalDefines[j] for all j where bit j is set in i.
// This lets GetShaderDefines() cheaply return the defines for any combination of conditions.
//
// (This might scale badly if we had a large number of conditional defines per material,
// but currently we don't expect to have many.)
void CMaterial::RecomputeCombinedShaderDefines()
{
	m_CombinedShaderDefines.clear();
	int size = m_ConditionalDefines.GetSize();

	// Loop over all 2^n combinations of flags
	for (int i = 0; i < (1 << size); i++)
	{
		CShaderDefines defs = m_ShaderDefines;
		for (int j = 0; j < size; j++)
		{
			if (i & (1 << j))
			{
				const CShaderConditionalDefines::CondDefine& def = m_ConditionalDefines.GetItem(j);
				defs.Add(def.m_DefName, def.m_DefValue);
			}
		}
		m_CombinedShaderDefines.push_back(defs);
	}
}
Exemple #4
0
void CPostprocManager::ApplyBlurDownscale2x(GLuint inTex, GLuint outTex, int inWidth, int inHeight)
{
	// Bind inTex to framebuffer for rendering.
	pglBindFramebufferEXT(GL_FRAMEBUFFER_EXT, m_BloomFbo);
	pglFramebufferTexture2DEXT(GL_FRAMEBUFFER_EXT, GL_COLOR_ATTACHMENT0_EXT, GL_TEXTURE_2D, outTex, 0);
	
	// Get bloom shader with instructions to simply copy texels.
	CShaderDefines defines;
	defines.Add(str_BLOOM_NOP, str_1);
	CShaderTechniquePtr tech = g_Renderer.GetShaderManager().LoadEffect(str_bloom,
			g_Renderer.GetSystemShaderDefines(), defines);
	
	tech->BeginPass();
	CShaderProgramPtr shader = tech->GetShader();
	
	GLuint renderedTex = inTex;
	
	// Cheat by creating high quality mipmaps for inTex, so the copying operation actually
	// produces good scaling due to hardware filtering.
	glBindTexture(GL_TEXTURE_2D, renderedTex);
	pglGenerateMipmapEXT(GL_TEXTURE_2D);
	glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR);
	glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
	glBindTexture(GL_TEXTURE_2D, 0);
	
	shader->BindTexture(str_renderedTex, renderedTex);
	
	glPushAttrib(GL_VIEWPORT_BIT); 
	glViewport(0, 0, inWidth / 2, inHeight / 2);
	
	glBegin(GL_QUADS);
	    glColor4f(1.f, 1.f, 1.f, 1.f);
	    glTexCoord2f(1.0, 1.0);	glVertex2f(1,1);
	    glTexCoord2f(0.0, 1.0);	glVertex2f(-1,1);	    
	    glTexCoord2f(0.0, 0.0);	glVertex2f(-1,-1);
	    glTexCoord2f(1.0, 0.0);	glVertex2f(1,-1);
	glEnd();
	
	glPopAttrib(); 
	tech->EndPass();
}
Exemple #5
0
bool CShaderManager::NewProgram(const char* name, const CShaderDefines& baseDefines, CShaderProgramPtr& program)
{
    PROFILE2("loading shader");
    PROFILE2_ATTR("name: %s", name);

    if (strncmp(name, "fixed:", 6) == 0)
    {
        program = CShaderProgramPtr(CShaderProgram::ConstructFFP(name+6, baseDefines));
        if (!program)
            return false;
        program->Reload();
        return true;
    }

    VfsPath xmlFilename = L"shaders/" + wstring_from_utf8(name) + L".xml";

    CXeromyces XeroFile;
    PSRETURN ret = XeroFile.Load(g_VFS, xmlFilename);
    if (ret != PSRETURN_OK)
        return false;

#if USE_SHADER_XML_VALIDATION
    {
        TIMER_ACCRUE(tc_ShaderValidation);

        // Serialize the XMB data and pass it to the validator
        XML_Start();
        XML_SetPrettyPrint(false);
        XML_WriteXMB(XeroFile);
        bool ok = m_Validator.ValidateEncoded(wstring_from_utf8(name), XML_GetOutput());
        if (!ok)
            return false;
    }
#endif

    // Define all the elements and attributes used in the XML file
#define EL(x) int el_##x = XeroFile.GetElementID(#x)
#define AT(x) int at_##x = XeroFile.GetAttributeID(#x)
    EL(attrib);
    EL(define);
    EL(fragment);
    EL(stream);
    EL(uniform);
    EL(vertex);
    AT(file);
    AT(if);
    AT(loc);
    AT(name);
    AT(semantics);
    AT(type);
    AT(value);
#undef AT
#undef EL

    CPreprocessorWrapper preprocessor;
    preprocessor.AddDefines(baseDefines);

    XMBElement Root = XeroFile.GetRoot();

    bool isGLSL = (Root.GetAttributes().GetNamedItem(at_type) == "glsl");
    VfsPath vertexFile;
    VfsPath fragmentFile;
    CShaderDefines defines = baseDefines;
    std::map<CStrIntern, int> vertexUniforms;
    std::map<CStrIntern, CShaderProgram::frag_index_pair_t> fragmentUniforms;
    std::map<CStrIntern, int> vertexAttribs;
    int streamFlags = 0;

    XERO_ITER_EL(Root, Child)
    {
        if (Child.GetNodeName() == el_define)
        {
            defines.Add(CStrIntern(Child.GetAttributes().GetNamedItem(at_name)), CStrIntern(Child.GetAttributes().GetNamedItem(at_value)));
        }
        else if (Child.GetNodeName() == el_vertex)
        {
            vertexFile = L"shaders/" + Child.GetAttributes().GetNamedItem(at_file).FromUTF8();

            XERO_ITER_EL(Child, Param)
            {
                XMBAttributeList Attrs = Param.GetAttributes();

                CStr cond = Attrs.GetNamedItem(at_if);
                if (!cond.empty() && !preprocessor.TestConditional(cond))
                    continue;

                if (Param.GetNodeName() == el_uniform)
                {
                    vertexUniforms[CStrIntern(Attrs.GetNamedItem(at_name))] = Attrs.GetNamedItem(at_loc).ToInt();
                }
                else if (Param.GetNodeName() == el_stream)
                {
                    CStr StreamName = Attrs.GetNamedItem(at_name);
                    if (StreamName == "pos")
                        streamFlags |= STREAM_POS;
                    else if (StreamName == "normal")
                        streamFlags |= STREAM_NORMAL;
                    else if (StreamName == "color")
                        streamFlags |= STREAM_COLOR;
                    else if (StreamName == "uv0")
                        streamFlags |= STREAM_UV0;
                    else if (StreamName == "uv1")
                        streamFlags |= STREAM_UV1;
                    else if (StreamName == "uv2")
                        streamFlags |= STREAM_UV2;
                    else if (StreamName == "uv3")
                        streamFlags |= STREAM_UV3;
                }
                else if (Param.GetNodeName() == el_attrib)
                {
                    int attribLoc = ParseAttribSemantics(Attrs.GetNamedItem(at_semantics));
                    vertexAttribs[CStrIntern(Attrs.GetNamedItem(at_name))] = attribLoc;
                }
            }
        }
Exemple #6
0
// TODO: render the minimap in a framebuffer and just draw the frambuffer texture
//	most of the time, updating the framebuffer twice a frame.
// Here it updates as ping-pong either texture or vertex array each sec to lower gpu stalling
// (those operations cause a gpu sync, which slows down the way gpu works)
void CMiniMap::Draw()
{
	PROFILE3("render minimap");

	// The terrain isn't actually initialized until the map is loaded, which
	// happens when the game is started, so abort until then.
	if(!(GetGUI() && g_Game && g_Game->IsGameStarted()))
		return;

	CSimulation2* sim = g_Game->GetSimulation2();
	CmpPtr<ICmpRangeManager> cmpRangeManager(*sim, SYSTEM_ENTITY);
	ENSURE(cmpRangeManager);

	// Set our globals in case they hadn't been set before
	m_Camera      = g_Game->GetView()->GetCamera();
	m_Terrain     = g_Game->GetWorld()->GetTerrain();
	m_Width  = (u32)(m_CachedActualSize.right - m_CachedActualSize.left);
	m_Height = (u32)(m_CachedActualSize.bottom - m_CachedActualSize.top);
	m_MapSize = m_Terrain->GetVerticesPerSide();
	m_TextureSize = (GLsizei)round_up_to_pow2((size_t)m_MapSize);
	m_MapScale = (cmpRangeManager->GetLosCircular() ? 1.f : 1.414f);

	if(!m_TerrainTexture || g_GameRestarted)
		CreateTextures();


	// only update 2x / second
	// (note: since units only move a few pixels per second on the minimap,
	// we can get away with infrequent updates; this is slow)
	// TODO: store frequency in a config file?
	static double last_time;
	const double cur_time = timer_Time();
	const bool doUpdate = cur_time - last_time > 0.5;
	if(doUpdate)
	{	
		last_time = cur_time;
		if(m_TerrainDirty)
			RebuildTerrainTexture();
	}

	glMatrixMode(GL_PROJECTION);
	glPushMatrix();
	glLoadIdentity();
	glMatrixMode(GL_MODELVIEW);
	glPushMatrix();
	CMatrix3D matrix = GetDefaultGuiMatrix();
	glLoadMatrixf(&matrix._11);

	// Disable depth updates to prevent apparent z-fighting-related issues
	// with some drivers causing units to get drawn behind the texture
	glDepthMask(0);
	
	CShaderProgramPtr shader;
	CShaderTechniquePtr tech;
	
	if (g_Renderer.GetRenderPath() == CRenderer::RP_SHADER)
	{
		CShaderDefines defines;
		defines.Add(str_MINIMAP_BASE, str_1);
		tech = g_Renderer.GetShaderManager().LoadEffect(str_minimap, g_Renderer.GetSystemShaderDefines(), defines);
		tech->BeginPass();
		shader = tech->GetShader();
	}

	const float x = m_CachedActualSize.left, y = m_CachedActualSize.bottom;
	const float x2 = m_CachedActualSize.right, y2 = m_CachedActualSize.top;
	const float z = GetBufferedZ();
	const float texCoordMax = (float)(m_MapSize - 1) / (float)m_TextureSize;
	const float angle = GetAngle();

	// Draw the main textured quad
	if (g_Renderer.GetRenderPath() == CRenderer::RP_SHADER)
		shader->BindTexture(str_baseTex, m_TerrainTexture);
	else
		g_Renderer.BindTexture(0, m_TerrainTexture);
	
	glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_REPLACE);
	glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
	glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
	DrawTexture(shader, texCoordMax, angle, x, y, x2, y2, z);


	// Draw territory boundaries
	CTerritoryTexture& territoryTexture = g_Game->GetView()->GetTerritoryTexture();
	
	if (g_Renderer.GetRenderPath() == CRenderer::RP_SHADER)
		shader->BindTexture(str_baseTex, territoryTexture.GetTexture());
	else
		territoryTexture.BindTexture(0);
	
	glEnable(GL_BLEND);
	glMatrixMode(GL_TEXTURE);
	glLoadMatrixf(territoryTexture.GetMinimapTextureMatrix());
	glMatrixMode(GL_MODELVIEW);

	DrawTexture(shader, 1.0f, angle, x, y, x2, y2, z);

	glMatrixMode(GL_TEXTURE);
	glLoadIdentity();
	glMatrixMode(GL_MODELVIEW);
	glDisable(GL_BLEND);


	// Draw the LOS quad in black, using alpha values from the LOS texture
	CLOSTexture& losTexture = g_Game->GetView()->GetLOSTexture();
	
	if (g_Renderer.GetRenderPath() == CRenderer::RP_SHADER)
	{
		tech->EndPass();

		CShaderDefines defines;
		defines.Add(str_MINIMAP_LOS, str_1);
		tech = g_Renderer.GetShaderManager().LoadEffect(str_minimap, g_Renderer.GetSystemShaderDefines(), defines);
		tech->BeginPass();
		shader = tech->GetShader();
		shader->BindTexture(str_baseTex, losTexture.GetTexture());
	}
	else
	{
		losTexture.BindTexture(0);
	}
	
	glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_COMBINE);
	glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_RGB_ARB, GL_REPLACE);
	glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_RGB_ARB, GL_PRIMARY_COLOR_ARB);
	glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND0_RGB_ARB, GL_SRC_COLOR);
	glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_ALPHA_ARB, GL_REPLACE);
	glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_ALPHA_ARB, GL_TEXTURE);
	glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND0_ALPHA_ARB, GL_ONE_MINUS_SRC_ALPHA);
	glEnable(GL_BLEND);
	glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
	glColor3f(0.0f, 0.0f, 0.0f);

	glMatrixMode(GL_TEXTURE);
	glLoadMatrixf(losTexture.GetMinimapTextureMatrix());
	glMatrixMode(GL_MODELVIEW);

	DrawTexture(shader, 1.0f, angle, x, y, x2, y2, z);

	glMatrixMode(GL_TEXTURE);
	glLoadIdentity();
	glMatrixMode(GL_MODELVIEW);

	glDisable(GL_BLEND);
	
	if (g_Renderer.GetRenderPath() == CRenderer::RP_SHADER)
	{
		tech->EndPass();

		CShaderDefines defines;
		defines.Add(str_MINIMAP_POINT, str_1);
		tech = g_Renderer.GetShaderManager().LoadEffect(str_minimap, g_Renderer.GetSystemShaderDefines(), defines);
		tech->BeginPass();
		shader = tech->GetShader();
	}
	
	// Set up the matrix for drawing points and lines
	glPushMatrix();
	glTranslatef(x, y, z);
	// Rotate around the center of the map
	glTranslatef((x2-x)/2.f, (y2-y)/2.f, 0.f);
	// Scale square maps to fit in circular minimap area
	float unitScale = (cmpRangeManager->GetLosCircular() ? 1.f : m_MapScale/2.f);
	glScalef(unitScale, unitScale, 1.f);
	glRotatef(angle * 180.f/M_PI, 0.f, 0.f, 1.f);
	glTranslatef(-(x2-x)/2.f, -(y2-y)/2.f, 0.f);

	PROFILE_START("minimap units");


	const float sx = (float)m_Width / ((m_MapSize - 1) * TERRAIN_TILE_SIZE);
	const float sy = (float)m_Height / ((m_MapSize - 1) * TERRAIN_TILE_SIZE);

	CSimulation2::InterfaceList ents = sim->GetEntitiesWithInterface(IID_Minimap);

	if (doUpdate)
	{

		VertexArrayIterator<float[2]> attrPos = m_AttributePos.GetIterator<float[2]>();
		VertexArrayIterator<u8[4]> attrColor = m_AttributeColor.GetIterator<u8[4]>();

		m_EntitiesDrawn = 0;
		MinimapUnitVertex v;
		std::vector<MinimapUnitVertex> pingingVertices;
		pingingVertices.reserve(MAX_ENTITIES_DRAWN/2);

		const double time = timer_Time();

		if (time > m_NextBlinkTime)
		{
			m_BlinkState = !m_BlinkState;
			m_NextBlinkTime = time + m_HalfBlinkDuration;
		}

		entity_pos_t posX, posZ;
		for (CSimulation2::InterfaceList::const_iterator it = ents.begin(); it != ents.end(); ++it)
		{
			ICmpMinimap* cmpMinimap = static_cast<ICmpMinimap*>(it->second);
			if (cmpMinimap->GetRenderData(v.r, v.g, v.b, posX, posZ))
			{
				ICmpRangeManager::ELosVisibility vis = cmpRangeManager->GetLosVisibility(it->first, g_Game->GetPlayerID());
				if (vis != ICmpRangeManager::VIS_HIDDEN)
				{
					v.a = 255;
					v.x = posX.ToFloat()*sx;
					v.y = -posZ.ToFloat()*sy;
					
					// Check minimap pinging to indicate something
					if (m_BlinkState && cmpMinimap->CheckPing(time, m_PingDuration))
					{
						v.r = 255; // ping color is white
						v.g = 255;
						v.b = 255;

						pingingVertices.push_back(v);
					}
					else
					{
						addVertex(v, attrColor, attrPos);
						++m_EntitiesDrawn;
					}
				}
			}
		}

		// Add the pinged vertices at the end, so they are drawn on top
		for (size_t v = 0; v < pingingVertices.size(); ++v)
		{
			addVertex(pingingVertices[v], attrColor, attrPos);
			++m_EntitiesDrawn;
		}

		ENSURE(m_EntitiesDrawn < MAX_ENTITIES_DRAWN);
		m_VertexArray.Upload();
	}

	if (m_EntitiesDrawn > 0)
	{		
		// Don't enable GL_POINT_SMOOTH because it's far too slow
		// (~70msec/frame on a GF4 rendering a thousand points)
		glPointSize(3.f);

		u8* indexBase = m_IndexArray.Bind();
		u8* base = m_VertexArray.Bind();
		const GLsizei stride = (GLsizei)m_VertexArray.GetStride();

		if (g_Renderer.GetRenderPath() == CRenderer::RP_SHADER)
		{
			shader->VertexPointer(2, GL_FLOAT, stride, base + m_AttributePos.offset);
			shader->ColorPointer(4, GL_UNSIGNED_BYTE, stride, base + m_AttributeColor.offset);
			shader->AssertPointersBound();
		}
		else
		{	
			glEnableClientState(GL_VERTEX_ARRAY);
			glEnableClientState(GL_COLOR_ARRAY);

			glDisable(GL_TEXTURE_2D);
			glVertexPointer(2, GL_FLOAT, stride, base + m_AttributePos.offset);
			glColorPointer(4, GL_UNSIGNED_BYTE, stride, base + m_AttributeColor.offset);
		}
		
		if (!g_Renderer.m_SkipSubmit)
		{
			glDrawElements(GL_POINTS, (GLsizei)(m_EntitiesDrawn), GL_UNSIGNED_SHORT, indexBase);
		}

		
		g_Renderer.GetStats().m_DrawCalls++;
		CVertexBuffer::Unbind();
	}

	PROFILE_END("minimap units");

	if (g_Renderer.GetRenderPath() == CRenderer::RP_SHADER)
	{
		tech->EndPass();

		CShaderDefines defines;
		defines.Add(str_MINIMAP_LINE, str_1);
		tech = g_Renderer.GetShaderManager().LoadEffect(str_minimap, g_Renderer.GetSystemShaderDefines(), defines);
		tech->BeginPass();
		shader = tech->GetShader();
	}
	else
	{
		glEnable(GL_TEXTURE_2D);
		glDisableClientState(GL_VERTEX_ARRAY);
		glDisableClientState(GL_COLOR_ARRAY);
	}

	DrawViewRect();

	glPopMatrix();
	
	glMatrixMode(GL_PROJECTION);
	glPopMatrix();
	glMatrixMode(GL_MODELVIEW);
	glPopMatrix();
	
	if (g_Renderer.GetRenderPath() == CRenderer::RP_SHADER)
	{
		tech->EndPass();
	}

	// Reset everything back to normal
	glPointSize(1.0f);
	glEnable(GL_TEXTURE_2D);
	glDepthMask(1);
}
Exemple #7
0
void CDecalRData::RenderDecals(std::vector<CDecalRData*>& decals, const CShaderDefines& context, 
			       ShadowMap* shadow, bool isDummyShader, const CShaderProgramPtr& dummy)
{
	CShaderDefines contextDecal = context;
	contextDecal.Add("DECAL", "1");

	for (size_t i = 0; i < decals.size(); ++i)
	{
		CDecalRData *decal = decals[i];
		
		CMaterial &material = decal->m_Decal->m_Decal.m_Material;
		
		if (material.GetShaderEffect().length() == 0)
		{
			LOGERROR(L"Terrain renderer failed to load shader effect.\n");
			continue;
		}
		
		int numPasses = 1;
		CShaderTechniquePtr techBase; 
		
		if (!isDummyShader)
		{
			techBase = g_Renderer.GetShaderManager().LoadEffect(
				material.GetShaderEffect(), contextDecal, material.GetShaderDefines());
			
			if (!techBase)
			{
				LOGERROR(L"Terrain renderer failed to load shader effect (%hs)\n", 			
						material.GetShaderEffect().string().c_str());
				continue;
			}
			
			numPasses = techBase->GetNumPasses();
		}
		
		for (int pass = 0; pass < numPasses; ++pass)
		{
			if (!isDummyShader)
			{
				techBase->BeginPass(pass);
				TerrainRenderer::PrepareShader(techBase->GetShader(), shadow);
				
				glEnable(GL_BLEND);
				glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
			}
			
			const CShaderProgramPtr& shader = isDummyShader ? dummy : techBase->GetShader(pass);
				
			if (material.GetSamplers().size() != 0)
			{
				CMaterial::SamplersVector samplers = material.GetSamplers();
				size_t samplersNum = samplers.size();
				
				for (size_t s = 0; s < samplersNum; ++s)
				{
					CMaterial::TextureSampler &samp = samplers[s];
					shader->BindTexture(samp.Name.c_str(), samp.Sampler);
				}
				
				material.GetStaticUniforms().BindUniforms(shader);

				// TODO: Need to handle floating decals correctly. In particular, we need
				// to render non-floating before water and floating after water (to get
				// the blending right), and we also need to apply the correct lighting in
				// each case, which doesn't really seem possible with the current
				// TerrainRenderer.
				// Also, need to mark the decals as dirty when water height changes.

				//	glDisable(GL_TEXTURE_2D);
				//	m_Decal->GetBounds().Render();
				//	glEnable(GL_TEXTURE_2D);

				u8* base = decal->m_Array.Bind();
				GLsizei stride = (GLsizei)decal->m_Array.GetStride();

				u8* indexBase = decal->m_IndexArray.Bind();

#if !CONFIG2_GLES
				if (isDummyShader)
				{
					glColor3fv(decal->m_Decal->GetShadingColor().FloatArray());
				}
				else
#endif
				{
					
					shader->Uniform("shadingColor", decal->m_Decal->GetShadingColor());
				}

				shader->VertexPointer(3, GL_FLOAT, stride, base + decal->m_Position.offset);
				shader->ColorPointer(4, GL_UNSIGNED_BYTE, stride, base + decal->m_DiffuseColor.offset);
				shader->TexCoordPointer(GL_TEXTURE0, 2, GL_FLOAT, stride, base + decal->m_UV.offset);

				shader->AssertPointersBound();

				if (!g_Renderer.m_SkipSubmit)
				{
					glDrawElements(GL_TRIANGLES, (GLsizei)decal->m_IndexArray.GetNumVertices(), GL_UNSIGNED_SHORT, indexBase);
				}

				// bump stats
				g_Renderer.m_Stats.m_DrawCalls++;
				g_Renderer.m_Stats.m_TerrainTris += decal->m_IndexArray.GetNumVertices() / 3;

				CVertexBuffer::Unbind();
			}
			
			if (!isDummyShader)
			{
				glDisable(GL_BLEND);
				techBase->EndPass();
			}
		}
	}
}
Exemple #8
0
void CMiniMap::Draw()
{
	PROFILE3("render minimap");

	// The terrain isn't actually initialized until the map is loaded, which
	// happens when the game is started, so abort until then.
	if(!(GetGUI() && g_Game && g_Game->IsGameStarted()))
		return;

	CSimulation2* sim = g_Game->GetSimulation2();
	CmpPtr<ICmpRangeManager> cmpRangeManager(*sim, SYSTEM_ENTITY);
	ENSURE(cmpRangeManager);

	// Set our globals in case they hadn't been set before
	m_Camera      = g_Game->GetView()->GetCamera();
	m_Terrain     = g_Game->GetWorld()->GetTerrain();
	m_Width  = (u32)(m_CachedActualSize.right - m_CachedActualSize.left);
	m_Height = (u32)(m_CachedActualSize.bottom - m_CachedActualSize.top);
	m_MapSize = m_Terrain->GetVerticesPerSide();
	m_TextureSize = (GLsizei)round_up_to_pow2((size_t)m_MapSize);
	m_MapScale = (cmpRangeManager->GetLosCircular() ? 1.f : 1.414f);

	if(!m_TerrainTexture || g_GameRestarted)
		CreateTextures();


	// only update 2x / second
	// (note: since units only move a few pixels per second on the minimap,
	// we can get away with infrequent updates; this is slow)
	static double last_time;
	const double cur_time = timer_Time();
	if(cur_time - last_time > 0.5)
	{
		last_time = cur_time;

		if(m_TerrainDirty)
			RebuildTerrainTexture();
	}

	glMatrixMode(GL_PROJECTION);
	glPushMatrix();
	glLoadIdentity();
	glMatrixMode(GL_MODELVIEW);
	glPushMatrix();
	CMatrix3D matrix = GetDefaultGuiMatrix();
	glLoadMatrixf(&matrix._11);

	// Disable depth updates to prevent apparent z-fighting-related issues
	// with some drivers causing units to get drawn behind the texture
	glDepthMask(0);
	
	CShaderProgramPtr shader;
	CShaderTechniquePtr tech;
	
	if (g_Renderer.GetRenderPath() == CRenderer::RP_SHADER)
	{
		CShaderDefines defines;
		defines.Add("MINIMAP_BASE", "1");
		tech = g_Renderer.GetShaderManager().LoadEffect(CStrIntern("minimap"), g_Renderer.GetSystemShaderDefines(), defines);
		tech->BeginPass();
		shader = tech->GetShader();
	}
	else
	{
		shader = g_Renderer.GetShaderManager().LoadProgram("fixed:dummy", CShaderDefines());
		shader->Bind();
	}

	const float x = m_CachedActualSize.left, y = m_CachedActualSize.bottom;
	const float x2 = m_CachedActualSize.right, y2 = m_CachedActualSize.top;
	const float z = GetBufferedZ();
	const float texCoordMax = (float)(m_MapSize - 1) / (float)m_TextureSize;
	const float angle = GetAngle();

	// Draw the main textured quad
	//g_Renderer.BindTexture(0, m_TerrainTexture);
	
	shader->BindTexture("baseTex", m_TerrainTexture);
	
	glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_REPLACE);
	glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
	glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
	DrawTexture(texCoordMax, angle, x, y, x2, y2, z);


	// Draw territory boundaries
	CTerritoryTexture& territoryTexture = g_Game->GetView()->GetTerritoryTexture();
	
	shader->BindTexture("baseTex", territoryTexture.GetTexture());
	
	//territoryTexture.BindTexture(0);
	glEnable(GL_BLEND);
	glMatrixMode(GL_TEXTURE);
	glLoadMatrixf(territoryTexture.GetMinimapTextureMatrix());
	glMatrixMode(GL_MODELVIEW);

	DrawTexture(1.0f, angle, x, y, x2, y2, z);

	glMatrixMode(GL_TEXTURE);
	glLoadIdentity();
	glMatrixMode(GL_MODELVIEW);
	glDisable(GL_BLEND);


	// Draw the LOS quad in black, using alpha values from the LOS texture
	CLOSTexture& losTexture = g_Game->GetView()->GetLOSTexture();
	
	if (g_Renderer.GetRenderPath() == CRenderer::RP_SHADER)
	{
		tech->EndPass();

		CShaderDefines defines;
		defines.Add("MINIMAP_LOS", "1");
		tech = g_Renderer.GetShaderManager().LoadEffect(CStrIntern("minimap"), g_Renderer.GetSystemShaderDefines(), defines);
		tech->BeginPass();
		shader = tech->GetShader();
	}
	
	shader->BindTexture("baseTex", losTexture.GetTexture());
	
	//losTexture.BindTexture(0);
	glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_COMBINE);
	glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_RGB_ARB, GL_REPLACE);
	glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_RGB_ARB, GL_PRIMARY_COLOR_ARB);
	glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND0_RGB_ARB, GL_SRC_COLOR);
	glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_ALPHA_ARB, GL_REPLACE);
	glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_ALPHA_ARB, GL_TEXTURE);
	glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND0_ALPHA_ARB, GL_ONE_MINUS_SRC_ALPHA);
	glEnable(GL_BLEND);
	glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
	glColor3f(0.0f, 0.0f, 0.0f);

	glMatrixMode(GL_TEXTURE);
	glLoadMatrixf(losTexture.GetMinimapTextureMatrix());
	glMatrixMode(GL_MODELVIEW);

	DrawTexture(1.0f, angle, x, y, x2, y2, z);

	glMatrixMode(GL_TEXTURE);
	glLoadIdentity();
	glMatrixMode(GL_MODELVIEW);

	glDisable(GL_BLEND);
	
	if (g_Renderer.GetRenderPath() == CRenderer::RP_SHADER)
	{
		tech->EndPass();

		CShaderDefines defines;
		defines.Add("MINIMAP_POINT", "1");
		tech = g_Renderer.GetShaderManager().LoadEffect(CStrIntern("minimap"), g_Renderer.GetSystemShaderDefines(), defines);
		tech->BeginPass();
		shader = tech->GetShader();
	}
	
	// Set up the matrix for drawing points and lines
	glPushMatrix();
	glTranslatef(x, y, z);
	// Rotate around the center of the map
	glTranslatef((x2-x)/2.f, (y2-y)/2.f, 0.f);
	// Scale square maps to fit in circular minimap area
	float unitScale = (cmpRangeManager->GetLosCircular() ? 1.f : m_MapScale/2.f);
	glScalef(unitScale, unitScale, 1.f);
	glRotatef(angle * 180.f/M_PI, 0.f, 0.f, 1.f);
	glTranslatef(-(x2-x)/2.f, -(y2-y)/2.f, 0.f);

	PROFILE_START("minimap units");

	// Don't enable GL_POINT_SMOOTH because it's far too slow
	// (~70msec/frame on a GF4 rendering a thousand points)
	glPointSize(3.f);

	float sx = (float)m_Width / ((m_MapSize - 1) * TERRAIN_TILE_SIZE);
	float sy = (float)m_Height / ((m_MapSize - 1) * TERRAIN_TILE_SIZE);

	CSimulation2::InterfaceList ents = sim->GetEntitiesWithInterface(IID_Minimap);

	std::vector<MinimapUnitVertex> vertexArray;
	vertexArray.reserve(ents.size());

	for (CSimulation2::InterfaceList::const_iterator it = ents.begin(); it != ents.end(); ++it)
	{
		MinimapUnitVertex v;
		ICmpMinimap* cmpMinimap = static_cast<ICmpMinimap*>(it->second);
		entity_pos_t posX, posZ;
		if (cmpMinimap->GetRenderData(v.r, v.g, v.b, posX, posZ))
		{
			ICmpRangeManager::ELosVisibility vis = cmpRangeManager->GetLosVisibility(it->first, g_Game->GetPlayerID());
			if (vis != ICmpRangeManager::VIS_HIDDEN)
			{
				v.a = 255;
				v.x = posX.ToFloat()*sx;
				v.y = -posZ.ToFloat()*sy;
				vertexArray.push_back(v);
			}
		}
	}

	if (!vertexArray.empty())
	{
		glEnableClientState(GL_VERTEX_ARRAY);
		glEnableClientState(GL_COLOR_ARRAY);
		shader->VertexPointer(2, GL_FLOAT, sizeof(MinimapUnitVertex), &vertexArray[0].x);
		shader->ColorPointer(4, GL_UNSIGNED_BYTE, sizeof(MinimapUnitVertex), &vertexArray[0].r);

		glDrawArrays(GL_POINTS, 0, (GLsizei)vertexArray.size());

		glDisableClientState(GL_COLOR_ARRAY);
		glDisableClientState(GL_VERTEX_ARRAY);
	}

	PROFILE_END("minimap units");
	
	if (g_Renderer.GetRenderPath() == CRenderer::RP_SHADER)
	{
		tech->EndPass();

		CShaderDefines defines;
		defines.Add("MINIMAP_LINE", "1");
		tech = g_Renderer.GetShaderManager().LoadEffect(CStrIntern("minimap"), g_Renderer.GetSystemShaderDefines(), defines);
		tech->BeginPass();
		shader = tech->GetShader();
	}

	DrawViewRect();

	glPopMatrix();
	
	glMatrixMode(GL_PROJECTION);
	glPopMatrix();
	glMatrixMode(GL_MODELVIEW);
	glPopMatrix();
	
	if (g_Renderer.GetRenderPath() == CRenderer::RP_SHADER)
	{
		tech->EndPass();
	}
	else
	{
		shader->Unbind();
	}

	// Reset everything back to normal
	glPointSize(1.0f);
	glEnable(GL_TEXTURE_2D);
	glDepthMask(1);
}
Exemple #9
0
void ShaderModelRenderer::Render(const RenderModifierPtr& modifier, const CShaderDefines& context, int flags)
{
	if (m->submissions.empty())
		return;

	CMatrix3D worldToCam;
	g_Renderer.GetViewCamera().m_Orientation.GetInverse(worldToCam);

	/*
	 * Rendering approach:
	 * 
	 * m->submissions contains the list of CModels to render.
	 * 
	 * The data we need to render a model is:
	 *  - CShaderTechnique
	 *  - CTexture
	 *  - CShaderUniforms
	 *  - CModelDef (mesh data)
	 *  - CModel (model instance data)
	 * 
	 * For efficient rendering, we need to batch the draw calls to minimise state changes.
	 * (Uniform and texture changes are assumed to be cheaper than binding new mesh data,
	 * and shader changes are assumed to be most expensive.)
	 * First, group all models that share a technique to render them together.
	 * Within those groups, sub-group by CModelDef.
	 * Within those sub-groups, sub-sub-group by CTexture.
	 * Within those sub-sub-groups, sub-sub-sub-group by CShaderUniforms.
	 * 
	 * Alpha-blended models have to be sorted by distance from camera,
	 * then we can batch as long as the order is preserved.
	 * Non-alpha-blended models can be arbitrarily reordered to maximise batching.
	 * 
	 * For each model, the CShaderTechnique is derived from:
	 *  - The current global 'context' defines
	 *  - The CModel's material's defines
	 *  - The CModel's material's shader effect name
	 * 
	 * There are a smallish number of materials, and a smaller number of techniques.
	 * 
	 * To minimise technique lookups, we first group models by material,
	 * in 'materialBuckets' (a hash table).
	 * 
	 * For each material bucket we then look up the appropriate shader technique.
	 * If the technique requires sort-by-distance, the model is added to the
	 * 'sortByDistItems' list with its computed distance.
	 * Otherwise, the bucket's list of models is sorted by modeldef+texture+uniforms,
	 * then the technique and model list is added to 'techBuckets'.
	 * 
	 * 'techBuckets' is then sorted by technique, to improve batching when multiple
	 * materials map onto the same technique.
	 * 
	 * (Note that this isn't perfect batching: we don't sort across models in
	 * multiple buckets that share a technique. In practice that shouldn't reduce
	 * batching much (we rarely have one mesh used with multiple materials),
	 * and it saves on copying and lets us sort smaller lists.)
	 * 
	 * Extra tech buckets are added for the sorted-by-distance models without reordering.
	 * Finally we render by looping over each tech bucket, then looping over the model
	 * list in each, rebinding the GL state whenever it changes.
	 */

 	typedef boost::unordered_map<SMRMaterialBucketKey, std::vector<CModel*>, SMRMaterialBucketKeyHash> MaterialBuckets_t;
	MaterialBuckets_t materialBuckets;

	{
		PROFILE3("bucketing by material");

		for (size_t i = 0; i < m->submissions.size(); ++i)
		{
			CModel* model = m->submissions[i];
			
			CShaderDefines defs = model->GetMaterial().GetShaderDefines();
			CShaderConditionalDefines condefs = model->GetMaterial().GetConditionalDefines();
			
			for (size_t j = 0; j < condefs.GetSize(); ++j)
			{
				CShaderConditionalDefines::CondDefine &item = condefs.GetItem(j);
				int type = item.m_CondType;
				switch (type)
				{
					case DCOND_DISTANCE:
					{
						CVector3D modelpos = model->GetTransform().GetTranslation();
						float dist = worldToCam.Transform(modelpos).Z;
						
						float dmin = item.m_CondArgs[0];
						float dmax = item.m_CondArgs[1];
						
						if ((dmin < 0 || dist >= dmin) && (dmax < 0 || dist < dmax))
							defs.Add(item.m_DefName.c_str(), item.m_DefValue.c_str());
						
						break;
					}
				}
			}

			SMRMaterialBucketKey key(model->GetMaterial().GetShaderEffect(), defs);
			std::vector<CModel*>& bucketItems = materialBuckets[key];
			bucketItems.push_back(model);
		}
	}

	std::vector<SMRSortByDistItem> sortByDistItems;

	std::vector<CShaderTechniquePtr> sortByDistTechs;
		// indexed by sortByDistItems[i].techIdx
		// (which stores indexes instead of CShaderTechniquePtr directly
		// to avoid the shared_ptr copy cost when sorting; maybe it'd be better
		// if we just stored raw CShaderTechnique* and assumed the shader manager
		// will keep it alive long enough)

	std::vector<SMRTechBucket> techBuckets;

	{
		PROFILE3("processing material buckets");
		for (MaterialBuckets_t::iterator it = materialBuckets.begin(); it != materialBuckets.end(); ++it)
		{
			CShaderTechniquePtr tech = g_Renderer.GetShaderManager().LoadEffect(it->first.effect, context, it->first.defines);

			// Skip invalid techniques (e.g. from data file errors)
			if (!tech)
				continue;

			if (tech->GetSortByDistance())
			{
				// Add the tech into a vector so we can index it
				// (There might be duplicates in this list, but that doesn't really matter)
				if (sortByDistTechs.empty() || sortByDistTechs.back() != tech)
					sortByDistTechs.push_back(tech);
				size_t techIdx = sortByDistTechs.size()-1;

				// Add each model into sortByDistItems
				for (size_t i = 0; i < it->second.size(); ++i)
				{
					SMRSortByDistItem itemWithDist;
					itemWithDist.techIdx = techIdx;

					CModel* model = it->second[i];
					itemWithDist.model = model;

					CVector3D modelpos = model->GetTransform().GetTranslation();
					itemWithDist.dist = worldToCam.Transform(modelpos).Z;

					sortByDistItems.push_back(itemWithDist);
				}
			}
			else
			{
				// Sort model list by modeldef+texture, for batching
				// TODO: This only sorts by base texture. While this is an OK approximation
				// for most cases (as related samplers are usually used together), it would be better
				// to take all the samplers into account when sorting here.
				std::sort(it->second.begin(), it->second.end(), SMRBatchModel());

				// Add a tech bucket pointing at this model list
				SMRTechBucket techBucket = { tech, &it->second[0], it->second.size() };
				techBuckets.push_back(techBucket);
			}
		}
	}

	{
		PROFILE3("sorting tech buckets");
		// Sort by technique, for better batching
		std::sort(techBuckets.begin(), techBuckets.end(), SMRCompareTechBucket());
	}

	// List of models corresponding to sortByDistItems[i].model
	// (This exists primarily because techBuckets wants a CModel**;
	// we could avoid the cost of copying into this list by adding
	// a stride length into techBuckets and not requiring contiguous CModel*s)
	std::vector<CModel*> sortByDistModels;

	if (!sortByDistItems.empty())
	{
		{
			PROFILE3("sorting items by dist");
			std::sort(sortByDistItems.begin(), sortByDistItems.end(), SMRCompareSortByDistItem());
		}

		{
			PROFILE3("batching dist-sorted items");

			sortByDistModels.reserve(sortByDistItems.size());

			// Find runs of distance-sorted models that share a technique,
			// and create a new tech bucket for each run

			size_t start = 0; // start of current run
			size_t currentTechIdx = sortByDistItems[start].techIdx;

			for (size_t end = 0; end < sortByDistItems.size(); ++end)
			{
				sortByDistModels.push_back(sortByDistItems[end].model);

				size_t techIdx = sortByDistItems[end].techIdx;
				if (techIdx != currentTechIdx)
				{
					// Start of a new run - push the old run into a new tech bucket
					SMRTechBucket techBucket = { sortByDistTechs[currentTechIdx], &sortByDistModels[start], end-start };
					techBuckets.push_back(techBucket);
					start = end;
					currentTechIdx = techIdx;
				}
			}

			// Add the tech bucket for the final run
			SMRTechBucket techBucket = { sortByDistTechs[currentTechIdx], &sortByDistModels[start], sortByDistItems.size()-start };
			techBuckets.push_back(techBucket);
		}
	}

	{
		PROFILE3("rendering bucketed submissions");

		size_t idxTechStart = 0;
		
		// This vector keeps track of texture changes during rendering. It is kept outside the
		// loops to avoid excessive reallocations. The token allocation of 64 elements 
		// should be plenty, though it is reallocated below (at a cost) if necessary.
		std::vector<CTexture*> currentTexs;
		currentTexs.reserve(64);
		
		// texBindings holds the identifier bindings in the shader, which can no longer be defined 
		// statically in the ShaderRenderModifier class. texBindingNames uses interned strings to
		// keep track of when bindings need to be reevaluated.
		std::vector<CShaderProgram::Binding> texBindings;
		texBindings.reserve(64);
		std::vector<CStrIntern> texBindingNames;
		texBindingNames.reserve(64);

		while (idxTechStart < techBuckets.size())
		{
			CShaderTechniquePtr currentTech = techBuckets[idxTechStart].tech;

			// Find runs [idxTechStart, idxTechEnd) in techBuckets of the same technique
			size_t idxTechEnd;
			for (idxTechEnd = idxTechStart + 1; idxTechEnd < techBuckets.size(); ++idxTechEnd)
			{
				if (techBuckets[idxTechEnd].tech != currentTech)
					break;
			}

			// For each of the technique's passes, render all the models in this run
			for (int pass = 0; pass < currentTech->GetNumPasses(); ++pass)
			{
				currentTech->BeginPass(pass);

				const CShaderProgramPtr& shader = currentTech->GetShader(pass);
				int streamflags = shader->GetStreamFlags();

				modifier->BeginPass(shader);

				m->vertexRenderer->BeginPass(streamflags);
				
				// When the shader technique changes, textures need to be
				// rebound, so ensure there are no remnants from the last pass.
				// (the vector size is set to 0, but memory is not freed)
				currentTexs.clear();
				texBindings.clear();
				texBindingNames.clear();
				
				CModelDef* currentModeldef = NULL;
				CShaderUniforms currentStaticUniforms;

				for (size_t idx = idxTechStart; idx < idxTechEnd; ++idx)
				{
					CModel** models = techBuckets[idx].models;
					size_t numModels = techBuckets[idx].numModels;
					for (size_t i = 0; i < numModels; ++i)
					{
						CModel* model = models[i];

						if (flags && !(model->GetFlags() & flags))
							continue;

						CMaterial::SamplersVector samplers = model->GetMaterial().GetSamplers();
						size_t samplersNum = samplers.size();
						
						// make sure the vectors are the right virtual sizes, and also
						// reallocate if there are more samplers than expected.
						if (currentTexs.size() != samplersNum)
						{
							currentTexs.resize(samplersNum, NULL);
							texBindings.resize(samplersNum, CShaderProgram::Binding());
							texBindingNames.resize(samplersNum, CStrIntern());
							
							// ensure they are definitely empty
							std::fill(texBindings.begin(), texBindings.end(), CShaderProgram::Binding());
							std::fill(currentTexs.begin(), currentTexs.end(), (CTexture*)NULL);
							std::fill(texBindingNames.begin(), texBindingNames.end(), CStrIntern());
						}
						
						// bind the samplers to the shader
						for (size_t s = 0; s < samplersNum; ++s)
						{
							CMaterial::TextureSampler &samp = samplers[s];
							
							CShaderProgram::Binding bind = texBindings[s];
							// check that the handles are current
							// and reevaluate them if necessary
							if (texBindingNames[s] == samp.Name && bind.Active())
							{
								bind = texBindings[s];
							}
							else
							{
								bind = shader->GetTextureBinding(samp.Name.c_str());		
								texBindings[s] = bind;
								texBindingNames[s] = samp.Name;
							}

							// same with the actual sampler bindings
							CTexture* newTex = samp.Sampler.get();
							if (bind.Active() && newTex != currentTexs[s])
							{
								shader->BindTexture(bind, samp.Sampler->GetHandle());
								currentTexs[s] = newTex;
							}
						}

						// Bind modeldef when it changes
						CModelDef* newModeldef = model->GetModelDef().get();
						if (newModeldef != currentModeldef)
						{
							currentModeldef = newModeldef;
							m->vertexRenderer->PrepareModelDef(shader, streamflags, *currentModeldef);
						}

						// Bind all uniforms when any change
						CShaderUniforms newStaticUniforms = model->GetMaterial().GetStaticUniforms();
						if (newStaticUniforms != currentStaticUniforms)
						{
							currentStaticUniforms = newStaticUniforms;
							currentStaticUniforms.BindUniforms(shader);
						}
						
						CShaderRenderQueries renderQueries = model->GetMaterial().GetRenderQueries();
						
						for (size_t q = 0; q < renderQueries.GetSize(); q++)
						{
							CShaderRenderQueries::RenderQuery rq = renderQueries.GetItem(q);
							//if (str == g_Renderer.GetShaderManager().QueryTime)
							if (rq.first == RQUERY_TIME)
							{
								
								//renderQueries.Set(str, (float)time, 0.0f, 0.0f, 0.0f);
								//shader->Uniform(rq.second, CVector3D(time,0,0));
								CShaderProgram::Binding binding = shader->GetUniformBinding(rq.second);
								if (binding.Active())
								{
									double time = g_Renderer.GetTimeManager().GetGlobalTime();
									shader->Uniform(binding, time, 0,0,0);
								}
							}
						}
						//renderQueries.BindUniforms(shader);

						modifier->PrepareModel(shader, model);

						CModelRData* rdata = static_cast<CModelRData*>(model->GetRenderData());
						ENSURE(rdata->GetKey() == m->vertexRenderer.get());

						m->vertexRenderer->RenderModel(shader, streamflags, model, rdata);
					}
				}

				m->vertexRenderer->EndPass(streamflags);

				currentTech->EndPass(pass);
			}

			idxTechStart = idxTechEnd;
		}
	}
}
Exemple #10
0
// TODO: render the minimap in a framebuffer and just draw the frambuffer texture
//	most of the time, updating the framebuffer twice a frame.
// Here it updates as ping-pong either texture or vertex array each sec to lower gpu stalling
// (those operations cause a gpu sync, which slows down the way gpu works)
void CMiniMap::Draw()
{
	PROFILE3("render minimap");

	// The terrain isn't actually initialized until the map is loaded, which
	// happens when the game is started, so abort until then.
	if (!(GetGUI() && g_Game && g_Game->IsGameStarted()))
		return;

	CSimulation2* sim = g_Game->GetSimulation2();
	CmpPtr<ICmpRangeManager> cmpRangeManager(*sim, SYSTEM_ENTITY);
	ENSURE(cmpRangeManager);

	// Set our globals in case they hadn't been set before
	m_Camera = g_Game->GetView()->GetCamera();
	m_Terrain = g_Game->GetWorld()->GetTerrain();
	m_Width  = (u32)(m_CachedActualSize.right - m_CachedActualSize.left);
	m_Height = (u32)(m_CachedActualSize.bottom - m_CachedActualSize.top);
	m_MapSize = m_Terrain->GetVerticesPerSide();
	m_TextureSize = (GLsizei)round_up_to_pow2((size_t)m_MapSize);
	m_MapScale = (cmpRangeManager->GetLosCircular() ? 1.f : 1.414f);

	if (!m_TerrainTexture || g_GameRestarted)
		CreateTextures();


	// only update 2x / second
	// (note: since units only move a few pixels per second on the minimap,
	// we can get away with infrequent updates; this is slow)
	// TODO: Update all but camera at same speed as simulation
	static double last_time;
	const double cur_time = timer_Time();
	const bool doUpdate = cur_time - last_time > 0.5;
	if (doUpdate)
	{
		last_time = cur_time;
		if (m_TerrainDirty)
			RebuildTerrainTexture();
	}

	const float x = m_CachedActualSize.left, y = m_CachedActualSize.bottom;
	const float x2 = m_CachedActualSize.right, y2 = m_CachedActualSize.top;
	const float z = GetBufferedZ();
	const float texCoordMax = (float)(m_MapSize - 1) / (float)m_TextureSize;
	const float angle = GetAngle();
	const float unitScale = (cmpRangeManager->GetLosCircular() ? 1.f : m_MapScale/2.f);

	// Disable depth updates to prevent apparent z-fighting-related issues
	//  with some drivers causing units to get drawn behind the texture.
	glDepthMask(0);

	CShaderProgramPtr shader;
	CShaderTechniquePtr tech;

	CShaderDefines baseDefines;
	baseDefines.Add(str_MINIMAP_BASE, str_1);
	tech = g_Renderer.GetShaderManager().LoadEffect(str_minimap, g_Renderer.GetSystemShaderDefines(), baseDefines);
	tech->BeginPass();
	shader = tech->GetShader();

	// Draw the main textured quad
	shader->BindTexture(str_baseTex, m_TerrainTexture);
	const CMatrix3D baseTransform = GetDefaultGuiMatrix();
	CMatrix3D baseTextureTransform;
	baseTextureTransform.SetIdentity();
	shader->Uniform(str_transform, baseTransform);
	shader->Uniform(str_textureTransform, baseTextureTransform);

	DrawTexture(shader, texCoordMax, angle, x, y, x2, y2, z);

	// Draw territory boundaries
	glEnable(GL_BLEND);

	CTerritoryTexture& territoryTexture = g_Game->GetView()->GetTerritoryTexture();

	shader->BindTexture(str_baseTex, territoryTexture.GetTexture());
	const CMatrix3D* territoryTransform = territoryTexture.GetMinimapTextureMatrix();
	shader->Uniform(str_transform, baseTransform);
	shader->Uniform(str_textureTransform, *territoryTransform);

	DrawTexture(shader, 1.0f, angle, x, y, x2, y2, z);
	tech->EndPass();

	// Draw the LOS quad in black, using alpha values from the LOS texture
	CLOSTexture& losTexture = g_Game->GetView()->GetLOSTexture();

	CShaderDefines losDefines;
	losDefines.Add(str_MINIMAP_LOS, str_1);
	tech = g_Renderer.GetShaderManager().LoadEffect(str_minimap, g_Renderer.GetSystemShaderDefines(), losDefines);
	tech->BeginPass();
	shader = tech->GetShader();
	shader->BindTexture(str_baseTex, losTexture.GetTexture());

	glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);

	const CMatrix3D* losTransform = losTexture.GetMinimapTextureMatrix();
	shader->Uniform(str_transform, baseTransform);
	shader->Uniform(str_textureTransform, *losTransform);

	DrawTexture(shader, 1.0f, angle, x, y, x2, y2, z);
	tech->EndPass();

	glDisable(GL_BLEND);

	PROFILE_START("minimap units");

	CShaderDefines pointDefines;
	pointDefines.Add(str_MINIMAP_POINT, str_1);
	tech = g_Renderer.GetShaderManager().LoadEffect(str_minimap, g_Renderer.GetSystemShaderDefines(), pointDefines);
	tech->BeginPass();
	shader = tech->GetShader();
	shader->Uniform(str_transform, baseTransform);
	shader->Uniform(str_pointSize, 3.f);

	CMatrix3D unitMatrix;
	unitMatrix.SetIdentity();
	// Center the minimap on the origin of the axis of rotation.
	unitMatrix.Translate(-(x2 - x) / 2.f, -(y2 - y) / 2.f, 0.f);
	// Rotate the map.
	unitMatrix.RotateZ(angle);
	// Scale square maps to fit.
	unitMatrix.Scale(unitScale, unitScale, 1.f);
	// Move the minimap back to it's starting position.
	unitMatrix.Translate((x2 - x) / 2.f, (y2 - y) / 2.f, 0.f);
	// Move the minimap to it's final location.
	unitMatrix.Translate(x, y, z);
	// Apply the gui matrix.
	unitMatrix *= GetDefaultGuiMatrix();
	// Load the transform into the shader.
	shader->Uniform(str_transform, unitMatrix);

	const float sx = (float)m_Width / ((m_MapSize - 1) * TERRAIN_TILE_SIZE);
	const float sy = (float)m_Height / ((m_MapSize - 1) * TERRAIN_TILE_SIZE);

	CSimulation2::InterfaceList ents = sim->GetEntitiesWithInterface(IID_Minimap);

	if (doUpdate)
	{
		VertexArrayIterator<float[2]> attrPos = m_AttributePos.GetIterator<float[2]>();
		VertexArrayIterator<u8[4]> attrColor = m_AttributeColor.GetIterator<u8[4]>();

		m_EntitiesDrawn = 0;
		MinimapUnitVertex v;
		std::vector<MinimapUnitVertex> pingingVertices;
		pingingVertices.reserve(MAX_ENTITIES_DRAWN / 2);

		if (cur_time > m_NextBlinkTime)
		{
			m_BlinkState = !m_BlinkState;
			m_NextBlinkTime = cur_time + m_HalfBlinkDuration;
		}

		entity_pos_t posX, posZ;
		for (CSimulation2::InterfaceList::const_iterator it = ents.begin(); it != ents.end(); ++it)
		{
			ICmpMinimap* cmpMinimap = static_cast<ICmpMinimap*>(it->second);
			if (cmpMinimap->GetRenderData(v.r, v.g, v.b, posX, posZ))
			{
				ICmpRangeManager::ELosVisibility vis = cmpRangeManager->GetLosVisibility(it->first, g_Game->GetPlayerID());
				if (vis != ICmpRangeManager::VIS_HIDDEN)
				{
					v.a = 255;
					v.x = posX.ToFloat() * sx;
					v.y = -posZ.ToFloat() * sy;

					// Check minimap pinging to indicate something
					if (m_BlinkState && cmpMinimap->CheckPing(cur_time, m_PingDuration))
					{
						v.r = 255; // ping color is white
						v.g = 255;
						v.b = 255;
						pingingVertices.push_back(v);
					}
					else
					{
						addVertex(v, attrColor, attrPos);
						++m_EntitiesDrawn;
					}
				}
			}
		}

		// Add the pinged vertices at the end, so they are drawn on top
		for (size_t v = 0; v < pingingVertices.size(); ++v)
		{
			addVertex(pingingVertices[v], attrColor, attrPos);
			++m_EntitiesDrawn;
		}

		ENSURE(m_EntitiesDrawn < MAX_ENTITIES_DRAWN);
		m_VertexArray.Upload();
	}

	m_VertexArray.PrepareForRendering();

	if (m_EntitiesDrawn > 0)
	{
#if !CONFIG2_GLES
		if (g_Renderer.GetRenderPath() == CRenderer::RP_SHADER)
			glEnable(GL_VERTEX_PROGRAM_POINT_SIZE);
#endif

		u8* indexBase = m_IndexArray.Bind();
		u8* base = m_VertexArray.Bind();
		const GLsizei stride = (GLsizei)m_VertexArray.GetStride();

		shader->VertexPointer(2, GL_FLOAT, stride, base + m_AttributePos.offset);
		shader->ColorPointer(4, GL_UNSIGNED_BYTE, stride, base + m_AttributeColor.offset);
		shader->AssertPointersBound();

		if (!g_Renderer.m_SkipSubmit)
			glDrawElements(GL_POINTS, (GLsizei)(m_EntitiesDrawn), GL_UNSIGNED_SHORT, indexBase);

		g_Renderer.GetStats().m_DrawCalls++;
		CVertexBuffer::Unbind();

#if !CONFIG2_GLES
		if (g_Renderer.GetRenderPath() == CRenderer::RP_SHADER)
			glDisable(GL_VERTEX_PROGRAM_POINT_SIZE);
#endif
	}

	tech->EndPass();

	DrawViewRect(unitMatrix);

	PROFILE_END("minimap units");

	// Reset depth mask
	glDepthMask(1);
}
Exemple #11
0
// Render fancy water
bool TerrainRenderer::RenderFancyWater(const CShaderDefines& context, ShadowMap* shadow)
{
	PROFILE3_GPU("fancy water");
	
	WaterManager* WaterMgr = g_Renderer.GetWaterManager();
	CShaderDefines defines = context;
	
	WaterMgr->UpdateQuality();

	// If we're using fancy water, make sure its shader is loaded
	if (!m->fancyWaterShader || WaterMgr->m_NeedsReloading)
	{
		if (WaterMgr->m_WaterNormal)
			defines.Add(str_USE_NORMALS, str_1);
		if (WaterMgr->m_WaterRealDepth)
			defines.Add(str_USE_REAL_DEPTH, str_1);
		if (WaterMgr->m_WaterFoam)
			defines.Add(str_USE_FOAM, str_1);
		if (WaterMgr->m_WaterCoastalWaves && false)
			defines.Add(str_USE_WAVES, str_1);
		if (WaterMgr->m_WaterRefraction)
			defines.Add(str_USE_REFRACTION, str_1);
		if (WaterMgr->m_WaterReflection)
			defines.Add(str_USE_REFLECTION, str_1);
		if (shadow && WaterMgr->m_WaterShadows)
			defines.Add(str_USE_SHADOWS, str_1);

		m->wavesShader = g_Renderer.GetShaderManager().LoadProgram("glsl/waves", defines);
		if (!m->wavesShader)
		{
			LOGERROR(L"Failed to load waves shader. Deactivating waves.\n");
			g_Renderer.SetOptionBool(CRenderer::OPT_WATERCOASTALWAVES, false);
			defines.Add(str_USE_WAVES, str_0);
		}
		
		// haven't updated the ARB shader yet so I'll always load the GLSL
		/*if (!g_Renderer.m_Options.m_PreferGLSL && !superFancy)
			m->fancyWaterShader = g_Renderer.GetShaderManager().LoadProgram("arb/water_high", defines);
		else*/
			m->fancyWaterShader = g_Renderer.GetShaderManager().LoadProgram("glsl/water_high", defines);
		
		if (!m->fancyWaterShader)
		{
			LOGERROR(L"Failed to load water shader. Falling back to non-fancy water.\n");
			WaterMgr->m_RenderWater = false;
			return false;
		}
		WaterMgr->m_NeedsReloading = false;
	}
	
	CLOSTexture& losTexture = g_Renderer.GetScene().GetLOSTexture();

	GLuint depthTex;
	// creating the real depth texture using the depth buffer.
	if (WaterMgr->m_WaterRealDepth)
	{
		if (WaterMgr->m_depthTT == 0)
		{
			glGenTextures(1, (GLuint*)&depthTex);
			WaterMgr->m_depthTT = depthTex;
			glBindTexture(GL_TEXTURE_2D, WaterMgr->m_depthTT);
			
#if CONFIG2_GLES
			GLenum format = GL_DEPTH_COMPONENT;
#else
			GLenum format = GL_DEPTH_COMPONENT32;
#endif
			
			// TODO: use POT texture
			glTexImage2D(GL_TEXTURE_2D, 0, format, g_Renderer.GetWidth(), g_Renderer.GetHeight(),
						 0, GL_DEPTH_COMPONENT, GL_UNSIGNED_BYTE,NULL);
		}
		glBindTexture(GL_TEXTURE_2D, WaterMgr->m_depthTT);
#if !CONFIG2_GLES
		glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_MODE, GL_NONE);
#endif
		glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
		glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
		glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
		glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
		
		glCopyTexImage2D(GL_TEXTURE_2D,0,GL_DEPTH_COMPONENT, 0, 0, g_Renderer.GetWidth(), g_Renderer.GetHeight(), 0);
		
		glBindTexture(GL_TEXTURE_2D, 0);
	}
	// Calculating the advanced informations about Foam and all if the quality calls for it.
	/*if (WaterMgr->m_NeedInfoUpdate && (WaterMgr->m_WaterFoam || WaterMgr->m_WaterCoastalWaves))
	{
		WaterMgr->m_NeedInfoUpdate = false;
		WaterMgr->CreateSuperfancyInfo();
	}*/
	
	glEnable(GL_BLEND);
	glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
	glEnable(GL_DEPTH_TEST);
	glDepthFunc(GL_LEQUAL);

	double time = WaterMgr->m_WaterTexTimer;
	double period = 8;
	int curTex = (int)(time*60/period) % 60;
	int nexTex = (curTex + 1) % 60;

	GLuint FramebufferName = 0;

	// rendering waves to a framebuffer
	// TODO: reactivate this with something that looks good.
	if (false && WaterMgr->m_WaterCoastalWaves && WaterMgr->m_VBWaves && !g_AtlasGameLoop->running)
	{
		// Save the post-processing framebuffer.
		GLint fbo;
		glGetIntegerv(GL_FRAMEBUFFER_BINDING_EXT, &fbo);

		pglGenFramebuffersEXT(1, &FramebufferName);
		pglBindFramebufferEXT(GL_FRAMEBUFFER_EXT, FramebufferName);
		
		GLuint renderedTexture;
		if (WaterMgr->m_waveTT == 0)
		{
			glGenTextures(1, &renderedTexture);
			WaterMgr->m_waveTT = renderedTexture;
			
			glBindTexture(GL_TEXTURE_2D, WaterMgr->m_waveTT);
			// TODO: use POT texture
			glTexImage2D(GL_TEXTURE_2D, 0,GL_RGBA, (float)g_Renderer.GetWidth(), (float)g_Renderer.GetHeight(), 0,GL_RGBA, GL_UNSIGNED_BYTE, 0);

		}
		glBindTexture(GL_TEXTURE_2D, WaterMgr->m_waveTT);
		
		glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
		glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
		
		pglFramebufferTexture2DEXT(GL_FRAMEBUFFER_EXT, GL_COLOR_ATTACHMENT0_EXT, GL_TEXTURE_2D, WaterMgr->m_waveTT, 0);
		
		glClearColor(0.5f,0.5f,1.0f,0.0f);
		glClear(GL_COLOR_BUFFER_BIT);
		
		// rendering
		m->wavesShader->Bind();
		m->wavesShader->BindTexture(str_waveTex, WaterMgr->m_Wave);
		m->wavesShader->Uniform(str_time, (float)time);
		m->wavesShader->Uniform(str_waviness, WaterMgr->m_Waviness);
		m->wavesShader->Uniform(str_mapSize, (float)(WaterMgr->m_TexSize));
		
		SWavesVertex *base=(SWavesVertex *)WaterMgr->m_VBWaves->m_Owner->Bind();
		GLsizei stride = sizeof(SWavesVertex);
		m->wavesShader->VertexPointer(3, GL_FLOAT, stride, &base[WaterMgr->m_VBWaves->m_Index].m_Position);
		m->wavesShader->TexCoordPointer(GL_TEXTURE0,2,GL_BYTE, stride,&base[WaterMgr->m_VBWaves->m_Index].m_UV);
		m->wavesShader->AssertPointersBound();

		u8* indexBase = WaterMgr->m_VBWavesIndices->m_Owner->Bind();
		glDrawElements(GL_TRIANGLES, (GLsizei) WaterMgr->m_VBWavesIndices->m_Count, GL_UNSIGNED_SHORT, indexBase + sizeof(u16)*(WaterMgr->m_VBWavesIndices->m_Index));

		g_Renderer.m_Stats.m_DrawCalls++;
		CVertexBuffer::Unbind();
		m->wavesShader->Unbind();
		
		// rebind post-processing frambuffer.
		pglBindFramebufferEXT(GL_FRAMEBUFFER_EXT, fbo);
		glBindTexture(GL_TEXTURE_2D, 0);
		
	}
	
	m->fancyWaterShader->Bind();

	
	// Shift the texture coordinates by these amounts to make the water "flow"
	float tx = -fmod(time, 81.0 / (WaterMgr->m_Waviness/20.0 + 0.8) )/(81.0/ (WaterMgr->m_Waviness/20.0 + 0.8) );
	float ty = -fmod(time, 34.0 / (WaterMgr->m_Waviness/20.0 + 0.8) )/(34.0/ (WaterMgr->m_Waviness/20.0 + 0.8) );
	
	float repeatPeriod = WaterMgr->m_RepeatPeriod;
	
	const CCamera& camera = g_Renderer.GetViewCamera();
	CVector3D camPos = camera.m_Orientation.GetTranslation();

	m->fancyWaterShader->BindTexture(str_normalMap, WaterMgr->m_NormalMap[curTex]);
	m->fancyWaterShader->BindTexture(str_normalMap2, WaterMgr->m_NormalMap[nexTex]);
	
	if (WaterMgr->m_WaterFoam || WaterMgr->m_WaterCoastalWaves)
	{
		m->fancyWaterShader->BindTexture(str_Foam, WaterMgr->m_Foam);
		m->fancyWaterShader->Uniform(str_mapSize, (float)(WaterMgr->m_TexSize));
	}
	if (WaterMgr->m_WaterRealDepth)
		m->fancyWaterShader->BindTexture(str_depthTex, WaterMgr->m_depthTT);
	if (WaterMgr->m_WaterCoastalWaves)
		m->fancyWaterShader->BindTexture(str_waveTex, WaterMgr->m_waveTT);
	if (WaterMgr->m_WaterReflection)
	m->fancyWaterShader->BindTexture(str_reflectionMap, WaterMgr->m_ReflectionTexture);
	if (WaterMgr->m_WaterRefraction)
	m->fancyWaterShader->BindTexture(str_refractionMap, WaterMgr->m_RefractionTexture);

	m->fancyWaterShader->BindTexture(str_losMap, losTexture.GetTextureSmooth());

	const CLightEnv& lightEnv = g_Renderer.GetLightEnv();

	// TODO: only bind what's really needed for that.
	m->fancyWaterShader->Uniform(str_sunDir, lightEnv.GetSunDir());
	m->fancyWaterShader->Uniform(str_sunColor, lightEnv.m_SunColor.X);
	m->fancyWaterShader->Uniform(str_color, WaterMgr->m_WaterColor);
	m->fancyWaterShader->Uniform(str_specularStrength, WaterMgr->m_SpecularStrength);
	m->fancyWaterShader->Uniform(str_waviness, WaterMgr->m_Waviness);
	m->fancyWaterShader->Uniform(str_murkiness, WaterMgr->m_Murkiness);
	m->fancyWaterShader->Uniform(str_tint, WaterMgr->m_WaterTint);
	m->fancyWaterShader->Uniform(str_reflectionTintStrength, WaterMgr->m_ReflectionTintStrength);
	m->fancyWaterShader->Uniform(str_reflectionTint, WaterMgr->m_ReflectionTint);
	m->fancyWaterShader->Uniform(str_translation, tx, ty);
	m->fancyWaterShader->Uniform(str_repeatScale, 1.0f / repeatPeriod);
	m->fancyWaterShader->Uniform(str_reflectionMatrix, WaterMgr->m_ReflectionMatrix);
	m->fancyWaterShader->Uniform(str_refractionMatrix, WaterMgr->m_RefractionMatrix);
	m->fancyWaterShader->Uniform(str_losMatrix, losTexture.GetTextureMatrix());
	m->fancyWaterShader->Uniform(str_cameraPos, camPos);
	m->fancyWaterShader->Uniform(str_fogColor, lightEnv.m_FogColor);
	m->fancyWaterShader->Uniform(str_fogParams, lightEnv.m_FogFactor, lightEnv.m_FogMax, 0.f, 0.f);
	m->fancyWaterShader->Uniform(str_time, (float)time);
	m->fancyWaterShader->Uniform(str_screenSize, (float)g_Renderer.GetWidth(), (float)g_Renderer.GetHeight(), 0.0f, 0.0f);
	m->fancyWaterShader->BindTexture(str_skyCube, g_Renderer.GetSkyManager()->GetSkyCube());

	if (shadow && WaterMgr->m_WaterShadows)
	{
		m->fancyWaterShader->BindTexture(str_shadowTex, shadow->GetTexture());
		m->fancyWaterShader->Uniform(str_shadowTransform, shadow->GetTextureMatrix());
		int width = shadow->GetWidth();
		int height = shadow->GetHeight();
		m->fancyWaterShader->Uniform(str_shadowScale, width, height, 1.0f / width, 1.0f / height);
	}

	for (size_t i = 0; i < m->visiblePatches.size(); ++i)
	{
		CPatchRData* data = m->visiblePatches[i];
		data->RenderWater(m->fancyWaterShader);
	}

	m->fancyWaterShader->Unbind();

	pglActiveTextureARB(GL_TEXTURE0);
	pglDeleteFramebuffersEXT(1, &FramebufferName);

	glDisable(GL_BLEND);

	return true;
}
Exemple #12
0
void CPatchRData::RenderBlends(const std::vector<CPatchRData*>& patches, const CShaderDefines& context, 
			      ShadowMap* shadow, bool isDummyShader, const CShaderProgramPtr& dummy)
{
	Allocators::Arena<> arena(ARENA_SIZE);

	typedef std::vector<SBlendBatch, ProxyAllocator<SBlendBatch, Allocators::Arena<> > > BatchesStack;
	BatchesStack batches((BatchesStack::allocator_type(arena)));
	
	CShaderDefines contextBlend = context;
	contextBlend.Add("BLEND", "1");

 	PROFILE_START("compute batches");

 	// Reserve an arbitrary size that's probably big enough in most cases,
 	// to avoid heavy reallocations
 	batches.reserve(256);

	typedef std::vector<SBlendStackItem, ProxyAllocator<SBlendStackItem, Allocators::Arena<> > > BlendStacks;
	BlendStacks blendStacks((BlendStacks::allocator_type(arena)));
	blendStacks.reserve(patches.size());

	// Extract all the blend splats from each patch
 	for (size_t i = 0; i < patches.size(); ++i)
 	{
 		CPatchRData* patch = patches[i];
 		if (!patch->m_BlendSplats.empty())
 		{

 			blendStacks.push_back(SBlendStackItem(patch->m_VBBlends, patch->m_VBBlendIndices, patch->m_BlendSplats, arena));
 			// Reverse the splats so the first to be rendered is at the back of the list
 			std::reverse(blendStacks.back().splats.begin(), blendStacks.back().splats.end());
 		}
 	}

 	// Rearrange the collection of splats to be grouped by texture, preserving
 	// order of splats within each patch:
 	// (This is exactly the same algorithm used in CPatchRData::BuildBlends,
 	// but applied to patch-sized splats rather than to tile-sized splats;
 	// see that function for comments on the algorithm.)
	while (true)
	{
		if (!batches.empty())
		{
			CTerrainTextureEntry* tex = batches.back().m_Texture;

			for (size_t k = 0; k < blendStacks.size(); ++k)
			{
				SBlendStackItem::SplatStack& splats = blendStacks[k].splats;
				if (!splats.empty() && splats.back().m_Texture == tex)
				{
					CVertexBuffer::VBChunk* vertices = blendStacks[k].vertices;
					CVertexBuffer::VBChunk* indices = blendStacks[k].indices;

					BatchElements& batch = PooledPairGet(PooledMapGet(batches.back().m_Batches, vertices->m_Owner, arena), indices->m_Owner, arena);
					batch.first.push_back(splats.back().m_IndexCount);

		 			u8* indexBase = indices->m_Owner->GetBindAddress();
		 			batch.second.push_back(indexBase + sizeof(u16)*(indices->m_Index + splats.back().m_IndexStart));

					splats.pop_back();
				}
			}
		}

		CTerrainTextureEntry* bestTex = NULL;
		size_t bestStackSize = 0;

		for (size_t k = 0; k < blendStacks.size(); ++k)
		{
			SBlendStackItem::SplatStack& splats = blendStacks[k].splats;
			if (splats.size() > bestStackSize)
			{
				bestStackSize = splats.size();
				bestTex = splats.back().m_Texture;
			}
		}

		if (bestStackSize == 0)
			break;

		SBlendBatch layer(arena);
		layer.m_Texture = bestTex;
		batches.push_back(layer);
	}

 	PROFILE_END("compute batches");

 	CVertexBuffer* lastVB = NULL;

 	for (BatchesStack::iterator itt = batches.begin(); itt != batches.end(); ++itt)
	{		
		if (itt->m_Texture->GetMaterial().GetSamplers().size() == 0)
			continue;
		
		int numPasses = 1;
		CShaderTechniquePtr techBase;
		
		if (!isDummyShader)
		{
			techBase = g_Renderer.GetShaderManager().LoadEffect(itt->m_Texture->GetMaterial().GetShaderEffect(), contextBlend, itt->m_Texture->GetMaterial().GetShaderDefines());
			
			numPasses = techBase->GetNumPasses();
		}
		
		CShaderProgramPtr previousShader;
		for (int pass = 0; pass < numPasses; ++pass)
		{
			if (!isDummyShader)
			{
				techBase->BeginPass(pass);
				TerrainRenderer::PrepareShader(techBase->GetShader(), shadow);
				
				glEnable(GL_BLEND);
				glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
			}
				
			const CShaderProgramPtr& shader = isDummyShader ? dummy : techBase->GetShader(pass);
				
			if (itt->m_Texture)
			{
				CMaterial::SamplersVector samplers = itt->m_Texture->GetMaterial().GetSamplers();
				size_t samplersNum = samplers.size();
				
				for (size_t s = 0; s < samplersNum; ++s)
				{
					CMaterial::TextureSampler &samp = samplers[s];
					shader->BindTexture(samp.Name.c_str(), samp.Sampler);
				}

				shader->BindTexture("blendTex", itt->m_Texture->m_TerrainAlpha->second.m_hCompositeAlphaMap);

				itt->m_Texture->GetMaterial().GetStaticUniforms().BindUniforms(shader);
				
#if !CONFIG2_GLES
				if (isDummyShader)
				{
					pglClientActiveTextureARB(GL_TEXTURE0);
					glMatrixMode(GL_TEXTURE);
					glLoadMatrixf(itt->m_Texture->GetTextureMatrix());
					glMatrixMode(GL_MODELVIEW);
				}
				else
#endif
				{
					float c = itt->m_Texture->GetTextureMatrix()[0];
					float ms = itt->m_Texture->GetTextureMatrix()[8];
					shader->Uniform("textureTransform", c, ms, -ms, 0.f);
				}
			}
			else
			{
				shader->BindTexture("baseTex", g_Renderer.GetTextureManager().GetErrorTexture());
			}

			for (VertexBufferBatches::iterator itv = itt->m_Batches.begin(); itv != itt->m_Batches.end(); ++itv)
			{
				// Rebind the VB only if it changed since the last batch
				if (itv->first != lastVB || shader != previousShader)
				{
					lastVB = itv->first;
					previousShader = shader;
					GLsizei stride = sizeof(SBlendVertex);
					SBlendVertex *base = (SBlendVertex *)itv->first->Bind();

					shader->VertexPointer(3, GL_FLOAT, stride, &base->m_Position[0]);
					shader->ColorPointer(4, GL_UNSIGNED_BYTE, stride, &base->m_DiffuseColor);
					shader->NormalPointer(GL_FLOAT, stride, &base->m_Normal[0]);
					shader->TexCoordPointer(GL_TEXTURE0, 3, GL_FLOAT, stride, &base->m_Position[0]);
					shader->TexCoordPointer(GL_TEXTURE1, 2, GL_FLOAT, stride, &base->m_AlphaUVs[0]);
				}

				shader->AssertPointersBound();

				for (IndexBufferBatches::iterator it = itv->second.begin(); it != itv->second.end(); ++it)
				{
					it->first->Bind();

					BatchElements& batch = it->second;

					if (!g_Renderer.m_SkipSubmit)
					{
						for (size_t i = 0; i < batch.first.size(); ++i)
							glDrawElements(GL_TRIANGLES, batch.first[i], GL_UNSIGNED_SHORT, batch.second[i]);
					}

					g_Renderer.m_Stats.m_DrawCalls++;
					g_Renderer.m_Stats.m_BlendSplats++;
					g_Renderer.m_Stats.m_TerrainTris += std::accumulate(batch.first.begin(), batch.first.end(), 0) / 3;
				}
			}
			
			if (!isDummyShader)
			{
				glDisable(GL_BLEND);
				techBase->EndPass();
			}
		}
	}

#if !CONFIG2_GLES
	if (isDummyShader)
	{
		pglClientActiveTextureARB(GL_TEXTURE0);
		glMatrixMode(GL_TEXTURE);
		glLoadIdentity();
		glMatrixMode(GL_MODELVIEW);
	}
#endif

	CVertexBuffer::Unbind();
}