/////////////////////////////////////////////////////////////////// // Create information about the terrain and wave vertices. void WaterManager::CreateSuperfancyInfo(CSimulation2* simulation) { if (m_VBWaves) { g_VBMan.Release(m_VBWaves); m_VBWaves = NULL; } if (m_VBWavesIndices) { g_VBMan.Release(m_VBWavesIndices); m_VBWavesIndices = NULL; } CTerrain* terrain = g_Game->GetWorld()->GetTerrain(); ssize_t mapSize = terrain->GetVerticesPerSide(); CmpPtr<ICmpWaterManager> cmpWaterManager(*simulation, SYSTEM_ENTITY); if (!cmpWaterManager) return; // REALLY shouldn't happen and will most likely crash. // Using this to get some more optimization on circular maps CmpPtr<ICmpRangeManager> cmpRangeManager(*simulation, SYSTEM_ENTITY); if (!cmpRangeManager) return; bool circular = cmpRangeManager->GetLosCircular(); float mSize = mapSize*mapSize; float halfSize = (mapSize/2.0); // Warning: this won't work with multiple water planes m_WaterHeight = cmpWaterManager->GetExactWaterLevel(0,0); // TODO: change this whenever we incrementally update because it's def. not too efficient delete[] m_WaveX; delete[] m_WaveZ; delete[] m_DistanceToShore; delete[] m_FoamFactor; m_WaveX = new float[mapSize*mapSize]; m_WaveZ = new float[mapSize*mapSize]; m_DistanceToShore = new float[mapSize*mapSize]; m_FoamFactor = new float[mapSize*mapSize]; u16* heightmap = terrain->GetHeightMap(); // some temporary stuff for wave intensity // not really used too much right now. u8* waveForceHQ = new u8[mapSize*mapSize]; u16 waterHeightInu16 = m_WaterHeight/HEIGHT_SCALE; // used to cache terrain normals since otherwise we'd recalculate them a lot (I'm blurring the "normal" map). // this might be updated to actually cache in the terrain manager but that's not for now. CVector3D* normals = new CVector3D[mapSize*mapSize]; // calculate wave force (not really used right now) // and puts into "normals" the terrain normal at that point // so as to avoid recalculating terrain normals too often. for (ssize_t i = 0; i < mapSize; ++i) { for (ssize_t j = 0; j < mapSize; ++j) { normals[j*mapSize + i] = terrain->CalcExactNormal(((float)i)*4.0f,((float)j)*4.0f); if (circular && (i-halfSize)*(i-halfSize)+(j-halfSize)*(j-halfSize) > mSize) { waveForceHQ[j*mapSize + i] = 255; continue; } u8 color = 0; for (int v = 0; v <= 18; v += 3){ if (j-v >= 0 && i-v >= 0 && heightmap[(j-v)*mapSize + i-v] > waterHeightInu16) { if (color == 0) color = 5; else color++; } } waveForceHQ[j*mapSize + i] = 255 - color * 40; } } // this creates information for waves and stores it in float arrays. PatchRData then puts it in the vertex info for speed. for (ssize_t i = 0; i < mapSize; ++i) { for (ssize_t j = 0; j < mapSize; ++j) { if (circular && (i-halfSize)*(i-halfSize)+(j-halfSize)*(j-halfSize) > mSize) { m_WaveX[j*mapSize + i] = 0.0f; m_WaveZ[j*mapSize + i] = 0.0f; m_DistanceToShore[j*mapSize + i] = 100; m_FoamFactor[j*mapSize + i] = 0.0f; continue; } float depth = m_WaterHeight - heightmap[j*mapSize + i]*HEIGHT_SCALE; int distanceToShore = 10000; // calculation of the distance to the shore. // TODO: this is fairly dumb, though it returns a good result // Could be sped up a fair bit. if (depth >= 0) { // check in the square around. for (int xx = -5; xx <= 5; ++xx) { for (int yy = -5; yy <= 5; ++yy) { if (i+xx >= 0 && i + xx < mapSize) if (j + yy >= 0 && j + yy < mapSize) { float hereDepth = m_WaterHeight - heightmap[(j+yy)*mapSize + (i+xx)]*HEIGHT_SCALE; if (hereDepth < 0 && xx*xx + yy*yy < distanceToShore) distanceToShore = xx*xx + yy*yy; } } } // refine the calculation if we're close enough if (distanceToShore < 9) { for (float xx = -2.5f; xx <= 2.5f; ++xx) { for (float yy = -2.5f; yy <= 2.5f; ++yy) { float hereDepth = m_WaterHeight - terrain->GetExactGroundLevel( (i+xx)*4, (j+yy)*4 ); if (hereDepth < 0 && xx*xx + yy*yy < distanceToShore) distanceToShore = xx*xx + yy*yy; } } } } else { for (int xx = -2; xx <= 2; ++xx) { for (int yy = -2; yy <= 2; ++yy) { float hereDepth = m_WaterHeight - terrain->GetVertexGroundLevel(i+xx, j+yy); if (hereDepth > 0) distanceToShore = 0; } } } // speedup with default values for land squares if (distanceToShore == 10000) { m_WaveX[j*mapSize + i] = 0.0f; m_WaveZ[j*mapSize + i] = 0.0f; m_DistanceToShore[j*mapSize + i] = 100; m_FoamFactor[j*mapSize + i] = 0.0f; continue; } // We'll compute the normals and the "water raise", to know about foam // Normals are a pretty good calculation but it's slow since we normalize so much. CVector3D normal; int waterRaise = 0; for (int xx = -4; xx <= 4; xx += 2) // every 2 tile is good enough. { for (int yy = -4; yy <= 4; yy += 2) { if (j+yy < mapSize && i+xx < mapSize && i+xx >= 0 && j+yy >= 0) normal += normals[(j+yy)*mapSize + (i+xx)]; if (terrain->GetVertexGroundLevel(i+xx,j+yy) < heightmap[j*mapSize + i]*HEIGHT_SCALE) waterRaise += heightmap[j*mapSize + i]*HEIGHT_SCALE - terrain->GetVertexGroundLevel(i+xx,j+yy); } } // normalizes the terrain info to avoid foam moving at too different speeds. normal *= 0.012345679f; normal[1] = 0.1f; normal = normal.Normalized(); m_WaveX[j*mapSize + i] = normal[0]; m_WaveZ[j*mapSize + i] = normal[2]; // distance is /5.0 to be a [0,1] value. m_DistanceToShore[j*mapSize + i] = sqrtf(distanceToShore)/5.0f; // TODO: this can probably be cached as I'm integer here. // computing the amount of foam I want depth = clamp(depth,0.0f,10.0f); float foamAmount = (waterRaise/255.0f) * (1.0f - depth/10.0f) * (waveForceHQ[j*mapSize+i]/255.0f) * (m_Waviness/8.0f); foamAmount += clamp(m_Waviness/2.0f - distanceToShore,0.0f,m_Waviness/2.0f)/(m_Waviness/2.0f) * clamp(m_Waviness/9.0f,0.3f,1.0f); foamAmount = foamAmount > 1.0f ? 1.0f: foamAmount; m_FoamFactor[j*mapSize + i] = foamAmount; } } delete[] normals; delete[] waveForceHQ; // TODO: The rest should be cleaned up // okay let's create the waves squares. i'll divide the map in arbitrary squares // For each of these squares, check if waves are needed. // If yes, look for the best positionning (in order to have a nice blending with the shore) // Then clean-up: remove squares that are too close to each other std::vector<CVector2D> waveSquares; int size = 8; // I think this is the size of the squares. for (int i = 0; i < mapSize/size; ++i) { for (int j = 0; j < mapSize/size; ++j) { int landTexel = 0; int waterTexel = 0; CVector3D avnormal (0.0f,0.0f,0.0f); CVector2D landPosition(0.0f,0.0f); CVector2D waterPosition(0.0f,0.0f); for (int xx = 0; xx < size; ++xx) { for (int yy = 0; yy < size; ++yy) { if (terrain->GetVertexGroundLevel(i*size+xx,j*size+yy) > m_WaterHeight) { landTexel++; landPosition += CVector2D(i*size+xx,j*size+yy); } else { waterPosition += CVector2D(i*size+xx,j*size+yy); waterTexel++; avnormal += terrain->CalcExactNormal( (i*size+xx)*4.0f,(j*size+yy)*4.0f); } } } if (landTexel < size/2) continue; landPosition /= landTexel; waterPosition /= waterTexel; avnormal[1] = 1.0f; avnormal.Normalize(); avnormal[1] = 0.0f; // this should help ensure that the shore is pretty flat. if (avnormal.Length() <= 0.2f) continue; // To get the best position for squares, I start at the mean "ocean" position // And step by step go to the mean "land" position. I keep the position where I change from water to land. // If this never happens, the square is scrapped. if (terrain->GetExactGroundLevel(waterPosition.X*4.0f,waterPosition.Y*4.0f) > m_WaterHeight) continue; CVector2D squarePos(-1,-1); for (u8 i = 0; i < 40; i++) { squarePos = landPosition * (i/40.0f) + waterPosition * (1.0f-(i/40.0f)); if (terrain->GetExactGroundLevel(squarePos.X*4.0f,squarePos.Y*4.0f) > m_WaterHeight) break; } if (squarePos.X == -1) continue; u8 enter = 1; // okaaaaaay. Got a square. Check for proximity. for (unsigned long i = 0; i < waveSquares.size(); i++) { if ( CVector2D(waveSquares[i]-squarePos).LengthSquared() < 80) { enter = 0; break; } } if (enter == 1) waveSquares.push_back(squarePos); } } // Actually create the waves' meshes. std::vector<SWavesVertex> waves_vertex_data; std::vector<GLushort> waves_indices; // loop through each square point. Look in the square around it, calculate the normal // create the square. for (unsigned long i = 0; i < waveSquares.size(); i++) { CVector2D pos(waveSquares[i]); CVector3D avgnorm(0.0f,0.0f,0.0f); for (int xx = -size/2; xx < size/2; ++xx) { for (int yy = -size/2; yy < size/2; ++yy) { avgnorm += terrain->CalcExactNormal((pos.X+xx)*4.0f,(pos.Y+yy)*4.0f); } } avgnorm[1] = 0.1f; // okay crank out a square. // we have the direction of the square. We'll get the perpendicular vector too CVector2D perp(-avgnorm[2],avgnorm[0]); perp = perp.Normalized(); avgnorm = avgnorm.Normalized(); SWavesVertex vertex[4]; vertex[0].m_Position = CVector3D(pos.X + perp.X*(size/2.2f) - avgnorm[0]*1.0f, 0.0f,pos.Y + perp.Y*(size/2.2f) - avgnorm[2]*1.0f); vertex[0].m_Position *= 4.0f; vertex[0].m_Position.Y = m_WaterHeight + 1.0f; vertex[0].m_UV[1] = 1; vertex[0].m_UV[0] = 0; vertex[1].m_Position = CVector3D(pos.X - perp.X*(size/2.2f) - avgnorm[0]*1.0f, 0.0f,pos.Y - perp.Y*(size/2.2f) - avgnorm[2]*1.0f); vertex[1].m_Position *= 4.0f; vertex[1].m_Position.Y = m_WaterHeight + 1.0f; vertex[1].m_UV[1] = 1; vertex[1].m_UV[0] = 1; vertex[3].m_Position = CVector3D(pos.X + perp.X*(size/2.2f) + avgnorm[0]*(size/1.5f), 0.0f,pos.Y + perp.Y*(size/2.2f) + avgnorm[2]*(size/1.5f)); vertex[3].m_Position *= 4.0f; vertex[3].m_Position.Y = m_WaterHeight + 1.0f; vertex[3].m_UV[1] = 0; vertex[3].m_UV[0] = 0; vertex[2].m_Position = CVector3D(pos.X - perp.X*(size/2.2f) + avgnorm[0]*(size/1.5f), 0.0f,pos.Y - perp.Y*(size/2.2f) + avgnorm[2]*(size/1.5f)); vertex[2].m_Position *= 4.0f; vertex[2].m_Position.Y = m_WaterHeight + 1.0f; vertex[2].m_UV[1] = 0; vertex[2].m_UV[0] = 1; waves_indices.push_back(waves_vertex_data.size()); waves_vertex_data.push_back(vertex[0]); waves_indices.push_back(waves_vertex_data.size()); waves_vertex_data.push_back(vertex[1]); waves_indices.push_back(waves_vertex_data.size()); waves_vertex_data.push_back(vertex[2]); waves_indices.push_back(waves_vertex_data.size()); waves_vertex_data.push_back(vertex[3]); } // no vertex buffers if no data generated if (waves_indices.empty()) return; // waves // allocate vertex buffer m_VBWaves = g_VBMan.Allocate(sizeof(SWavesVertex), waves_vertex_data.size(), GL_STATIC_DRAW, GL_ARRAY_BUFFER); m_VBWaves->m_Owner->UpdateChunkVertices(m_VBWaves, &waves_vertex_data[0]); // Construct indices buffer m_VBWavesIndices = g_VBMan.Allocate(sizeof(GLushort), waves_indices.size(), GL_STATIC_DRAW, GL_ELEMENT_ARRAY_BUFFER); m_VBWavesIndices->m_Owner->UpdateChunkVertices(m_VBWavesIndices, &waves_indices[0]); }
/////////////////////////////////////////////////////////////////// // Create information about the terrain and wave vertices. void WaterManager::CreateSuperfancyInfo(CSimulation2* simulation) { if (m_VBWaves) { g_VBMan.Release(m_VBWaves); m_VBWaves = NULL; } if (m_VBWavesIndices) { g_VBMan.Release(m_VBWavesIndices); m_VBWavesIndices = NULL; } CTerrain* terrain = g_Game->GetWorld()->GetTerrain(); CmpPtr<ICmpWaterManager> cmpWaterManager(*simulation, SYSTEM_ENTITY); if (!cmpWaterManager) return; // REALLY shouldn't happen and will most likely crash. // Using this to get some more optimization on circular maps CmpPtr<ICmpRangeManager> cmpRangeManager(*simulation, SYSTEM_ENTITY); if (!cmpRangeManager) return; bool circular = cmpRangeManager->GetLosCircular(); float mSize = m_MapSize*m_MapSize; float halfSize = (m_MapSize/2.0); // Warning: this won't work with multiple water planes m_WaterHeight = cmpWaterManager->GetExactWaterLevel(0,0); // Get the square we want to work on. size_t Xstart = m_updatei0 >= m_MapSize ? m_MapSize-1 : m_updatei0; size_t Xend = m_updatei1 >= m_MapSize ? m_MapSize-1 : m_updatei1; size_t Zstart = m_updatej0 >= m_MapSize ? m_MapSize-1 : m_updatej0; size_t Zend = m_updatej1 >= m_MapSize ? m_MapSize-1 : m_updatej1; if (m_WaveX == NULL) { m_WaveX = new float[m_MapSize*m_MapSize]; m_WaveZ = new float[m_MapSize*m_MapSize]; m_DistanceToShore = new float[m_MapSize*m_MapSize]; m_FoamFactor = new float[m_MapSize*m_MapSize]; } u16* heightmap = terrain->GetHeightMap(); // some temporary stuff for wave intensity // not really used too much right now. //u8* waveForceHQ = new u8[mapSize*mapSize]; // used to cache terrain normals since otherwise we'd recalculate them a lot (I'm blurring the "normal" map). // this might be updated to actually cache in the terrain manager but that's not for now. CVector3D* normals = new CVector3D[m_MapSize*m_MapSize]; // taken out of the bottom loop, blurs the normal map // To remove if below is reactivated size_t blurZstart = (int)(Zstart-4) < 0 ? 0 : Zstart - 4; size_t blurZend = Zend+4 >= m_MapSize ? m_MapSize-1 : Zend + 4; size_t blurXstart = (int)(Xstart-4) < 0 ? 0 : Xstart - 4; size_t blurXend = Xend+4 >= m_MapSize ? m_MapSize-1 : Xend + 4; float ii = blurXstart*4.0f, jj = blurXend*4.0f; for (size_t j = blurZstart; j < blurZend; ++j, jj += 4.0f) { for (size_t i = blurXstart; i < blurXend; ++i, ii += 4.0f) { normals[j*m_MapSize + i] = terrain->CalcExactNormal(ii,jj); } } // TODO: reactivate? /* // calculate wave force (not really used right now) // and puts into "normals" the terrain normal at that point // so as to avoid recalculating terrain normals too often. for (ssize_t i = 0; i < mapSize; ++i) { for (ssize_t j = 0; j < mapSize; ++j) { normals[j*mapSize + i] = terrain->CalcExactNormal(((float)i)*4.0f,((float)j)*4.0f); if (circular && (i-halfSize)*(i-halfSize)+(j-halfSize)*(j-halfSize) > mSize) { waveForceHQ[j*mapSize + i] = 255; continue; } u8 color = 0; for (int v = 0; v <= 18; v += 3){ if (j-v >= 0 && i-v >= 0 && heightmap[(j-v)*mapSize + i-v] > waterHeightInu16) { if (color == 0) color = 5; else color++; } } waveForceHQ[j*mapSize + i] = 255 - color * 40; } } */ // Cache some data to spiral-search for the closest tile that's either coastal or water depending on what we are. // this is insanely faster. // I use a define because it's more readable and C++11 doesn't like this otherwise #define m_MapSize (ssize_t)m_MapSize ssize_t offset[24] = { -1,1,-m_MapSize,+m_MapSize, -1-m_MapSize,+1-m_MapSize,-1+m_MapSize,1+m_MapSize, -2,2,-2*m_MapSize,2*m_MapSize,-2-m_MapSize,-2+m_MapSize,2-m_MapSize,2+m_MapSize, -1-2*m_MapSize,+1-2*m_MapSize,-1+2*m_MapSize,1+2*m_MapSize, -2-2*m_MapSize,2+2*m_MapSize,-2+2*m_MapSize,2-2*m_MapSize }; float dist[24] = { 1.0f, 1.0f, 1.0f, 1.0f, 1.414f, 1.414f, 1.414f, 1.414f, 2.0f, 2.0f, 2.0f, 2.0f, 2.236f, 2.236f, 2.236f, 2.236f, 2.236f, 2.236f, 2.236f, 2.236f, 2.828f, 2.828f, 2.828f, 2.828f }; #undef m_MapSize // this creates information for waves and stores it in float arrays. PatchRData then puts it in the vertex info for speed. CVector3D normal; for (size_t j = Zstart; j < Zend; ++j) { for (size_t i = Xstart; i < Xend; ++i) { ssize_t register index = j*m_MapSize + i; if (circular && (i-halfSize)*(i-halfSize)+(j-halfSize)*(j-halfSize) > mSize) { m_WaveX[index] = 0.0f; m_WaveZ[index] = 0.0f; m_DistanceToShore[index] = 100; m_FoamFactor[index] = 0.0f; continue; } float depth = m_WaterHeight - heightmap[index]*HEIGHT_SCALE; float register distanceToShore = 10000.0f; // calculation of the distance to the shore. if (i > 0 && i < m_MapSize-1 && j > 0 && j < m_MapSize-1) { // search a 5x5 array with us in the center (do not search me) // much faster since we spiral search and can just stop once we've found the shore. // also everything is precomputed and we get exact results instead. int max = 8; if (i > 1 && i < m_MapSize-2 && j > 1 && j < m_MapSize-2) max = 24; for(int lookupI = 0; lookupI < max;++lookupI) { float hereDepth = m_WaterHeight - heightmap[index+offset[lookupI]]*HEIGHT_SCALE; distanceToShore = hereDepth <= 0 && depth >= 0 ? dist[lookupI] : (depth < 0 ? 1 : distanceToShore); if (distanceToShore < 5000.0f) goto FoundShore; } } else { // revert to for and if-based because I can't be bothered to special case all that. for (int xx = -1; xx <= 1;++xx) for (int yy = -1; yy <= 1;++yy) { if ((int)(i+xx) >= 0 && i+xx < m_MapSize && (int)(j+yy) >= 0 && j+yy < m_MapSize) { float hereDepth = m_WaterHeight - heightmap[index+xx+yy*m_MapSize]*HEIGHT_SCALE; distanceToShore = (hereDepth < 0 && sqrt((double)xx*xx+yy*yy) < distanceToShore) ? sqrt((double)xx*xx+yy*yy) : distanceToShore; } } } // speedup with default values for land squares if (distanceToShore > 5000.0f) { m_WaveX[index] = 0.0f; m_WaveZ[index] = 0.0f; m_DistanceToShore[index] = 100.0f; m_FoamFactor[index] = 0.0f; continue; } FoundShore: // We'll compute the normals and the "water raise", to know about foam // Normals are a pretty good calculation but it's slow since we normalize so much. normal.X = normal.Y = normal.Z = 0.0f; int waterRaise = 0; for (size_t yy = (int(j-3) < 0 ? 0 : j-3); yy <= (j+3 < m_MapSize-1 ? 0 : j-3); yy += 2) { for (size_t xx = (int(i-3) < 0 ? 0 : i-3); xx <= (i+3 < m_MapSize-1 ? 0 : i+3); xx += 2) // every 2 tile is good enough. { normal += normals[yy*m_MapSize + xx]; waterRaise += (heightmap[index]*HEIGHT_SCALE - heightmap[yy*m_MapSize + xx]) > 0 ? (heightmap[index]*HEIGHT_SCALE - heightmap[yy*m_MapSize + xx]) : 0; } } // normalizes the terrain info to avoid foam moving at too different speeds. normal *= 0.08f; // divide by about 11. normal[1] = 0.1f; normal = normal.Normalized(); m_WaveX[index] = normal[0]; m_WaveZ[index] = normal[2]; // distance is /5.0 to be a [0,1] value. m_DistanceToShore[index] = distanceToShore; // computing the amount of foam I want depth = clamp(depth,0.0f,10.0f); float foamAmount = (waterRaise/255.0f) * (1.0f - depth/10.0f) /** (waveForceHQ[j*m_MapSize+i]/255.0f)*/ * (m_Waviness/8.0f); foamAmount += clamp(m_Waviness/2.0f,0.0f,m_Waviness/2.0f)/(m_Waviness/2.0f) * clamp(m_Waviness/9.0f,0.3f,1.0f); foamAmount *= (m_Waviness/4.0f - distanceToShore); foamAmount = foamAmount > 1.0f ? 1.0f: (foamAmount < 0.0f ? 0.0f : foamAmount); m_FoamFactor[index] = foamAmount; } } delete[] normals; //delete[] waveForceHQ; // TODO: reactivate this with something that looks good and is efficient. /* // okay let's create the waves squares. i'll divide the map in arbitrary squares // For each of these squares, check if waves are needed. // If yes, look for the best positionning (in order to have a nice blending with the shore) // Then clean-up: remove squares that are too close to each other std::vector<CVector2D> waveSquares; int size = 8; // I think this is the size of the squares. for (size_t j = 0; j < m_MapSize/size; ++j) { for (size_t i = 0; i < m_MapSize/size; ++i) { int landTexel = 0; int waterTexel = 0; CVector3D avnormal (0.0f,0.0f,0.0f); CVector2D landPosition(0.0f,0.0f); CVector2D waterPosition(0.0f,0.0f); for (int yy = 0; yy < size; ++yy) { for (int xx = 0; xx < size; ++xx) { if (terrain->GetVertexGroundLevel(i*size+xx,j*size+yy) > m_WaterHeight) { landTexel++; landPosition += CVector2D(i*size+xx,j*size+yy); } else { waterPosition += CVector2D(i*size+xx,j*size+yy); waterTexel++; avnormal += terrain->CalcExactNormal( (i*size+xx)*4.0f,(j*size+yy)*4.0f); } } } if (landTexel < size/2) continue; landPosition /= landTexel; waterPosition /= waterTexel; avnormal[1] = 1.0f; avnormal.Normalize(); avnormal[1] = 0.0f; // this should help ensure that the shore is pretty flat. if (avnormal.Length() <= 0.2f) continue; // To get the best position for squares, I start at the mean "ocean" position // And step by step go to the mean "land" position. I keep the position where I change from water to land. // If this never happens, the square is scrapped. if (terrain->GetExactGroundLevel(waterPosition.X*4.0f,waterPosition.Y*4.0f) > m_WaterHeight) continue; CVector2D squarePos(-1,-1); for (u8 i = 0; i < 40; i++) { squarePos = landPosition * (i/40.0f) + waterPosition * (1.0f-(i/40.0f)); if (terrain->GetExactGroundLevel(squarePos.X*4.0f,squarePos.Y*4.0f) > m_WaterHeight) break; } if (squarePos.X == -1) continue; u8 enter = 1; // okaaaaaay. Got a square. Check for proximity. for (unsigned long i = 0; i < waveSquares.size(); i++) { if ( CVector2D(waveSquares[i]-squarePos).LengthSquared() < 80) { enter = 0; break; } } if (enter == 1) waveSquares.push_back(squarePos); } } // Actually create the waves' meshes. std::vector<SWavesVertex> waves_vertex_data; std::vector<GLushort> waves_indices; // loop through each square point. Look in the square around it, calculate the normal // create the square. for (unsigned long i = 0; i < waveSquares.size(); i++) { CVector2D pos(waveSquares[i]); CVector3D avgnorm(0.0f,0.0f,0.0f); for (int yy = -size/2; yy < size/2; ++yy) { for (int xx = -size/2; xx < size/2; ++xx) { avgnorm += terrain->CalcExactNormal((pos.X+xx)*4.0f,(pos.Y+yy)*4.0f); } } avgnorm[1] = 0.1f; // okay crank out a square. // we have the direction of the square. We'll get the perpendicular vector too CVector2D perp(-avgnorm[2],avgnorm[0]); perp = perp.Normalized(); avgnorm = avgnorm.Normalized(); GLushort index[4]; SWavesVertex vertex[4]; vertex[0].m_Position = CVector3D(pos.X + perp.X*(size/2.2f) - avgnorm[0]*1.0f, 0.0f,pos.Y + perp.Y*(size/2.2f) - avgnorm[2]*1.0f); vertex[0].m_Position *= 4.0f; vertex[0].m_Position.Y = m_WaterHeight + 1.0f; vertex[0].m_UV[1] = 1; vertex[0].m_UV[0] = 0; index[0] = waves_vertex_data.size(); waves_vertex_data.push_back(vertex[0]); vertex[1].m_Position = CVector3D(pos.X - perp.X*(size/2.2f) - avgnorm[0]*1.0f, 0.0f,pos.Y - perp.Y*(size/2.2f) - avgnorm[2]*1.0f); vertex[1].m_Position *= 4.0f; vertex[1].m_Position.Y = m_WaterHeight + 1.0f; vertex[1].m_UV[1] = 1; vertex[1].m_UV[0] = 1; index[1] = waves_vertex_data.size(); waves_vertex_data.push_back(vertex[1]); vertex[3].m_Position = CVector3D(pos.X + perp.X*(size/2.2f) + avgnorm[0]*(size/1.5f), 0.0f,pos.Y + perp.Y*(size/2.2f) + avgnorm[2]*(size/1.5f)); vertex[3].m_Position *= 4.0f; vertex[3].m_Position.Y = m_WaterHeight + 1.0f; vertex[3].m_UV[1] = 0; vertex[3].m_UV[0] = 0; index[3] = waves_vertex_data.size(); waves_vertex_data.push_back(vertex[3]); vertex[2].m_Position = CVector3D(pos.X - perp.X*(size/2.2f) + avgnorm[0]*(size/1.5f), 0.0f,pos.Y - perp.Y*(size/2.2f) + avgnorm[2]*(size/1.5f)); vertex[2].m_Position *= 4.0f; vertex[2].m_Position.Y = m_WaterHeight + 1.0f; vertex[2].m_UV[1] = 0; vertex[2].m_UV[0] = 1; index[2] = waves_vertex_data.size(); waves_vertex_data.push_back(vertex[2]); waves_indices.push_back(index[0]); waves_indices.push_back(index[1]); waves_indices.push_back(index[2]); waves_indices.push_back(index[2]); waves_indices.push_back(index[3]); waves_indices.push_back(index[0]); } // no vertex buffers if no data generated if (waves_indices.empty()) return; // waves // allocate vertex buffer m_VBWaves = g_VBMan.Allocate(sizeof(SWavesVertex), waves_vertex_data.size(), GL_STATIC_DRAW, GL_ARRAY_BUFFER); m_VBWaves->m_Owner->UpdateChunkVertices(m_VBWaves, &waves_vertex_data[0]); // Construct indices buffer m_VBWavesIndices = g_VBMan.Allocate(sizeof(GLushort), waves_indices.size(), GL_STATIC_DRAW, GL_ELEMENT_ARRAY_BUFFER); m_VBWavesIndices->m_Owner->UpdateChunkVertices(m_VBWavesIndices, &waves_indices[0]); */ }