JVMState* WarmCallGenerator::generate(JVMState* jvms, Parse* parent_parser) { Compile* C = Compile::current(); if (C->log() != NULL) { C->log()->elem("warm_call bci='%d'", jvms->bci()); } jvms = _if_cold->generate(jvms, parent_parser); if (jvms != NULL) { Node* m = jvms->map()->control(); if (m->is_CatchProj()) m = m->in(0); else m = C->top(); if (m->is_Catch()) m = m->in(0); else m = C->top(); if (m->is_Proj()) m = m->in(0); else m = C->top(); if (m->is_CallJava()) { _call_info->set_call(m->as_Call()); _call_info->set_hot_cg(_if_hot); #ifndef PRODUCT if (PrintOpto || PrintOptoInlining) { tty->print_cr("Queueing for warm inlining at bci %d:", jvms->bci()); tty->print("WCI: "); _call_info->print(); } #endif _call_info->set_heat(_call_info->compute_heat()); C->set_warm_calls(_call_info->insert_into(C->warm_calls())); } } return jvms; }
bool LateInlineMHCallGenerator::do_late_inline_check(JVMState* jvms) { CallGenerator* cg = for_method_handle_inline(jvms, _caller, method(), _input_not_const); if (!_input_not_const) { _attempt++; } if (cg != NULL) { assert(!cg->is_late_inline() && cg->is_inline(), "we're doing late inlining"); _inline_cg = cg; Compile::current()->dec_number_of_mh_late_inlines(); return true; } call_node()->set_generator(this); return false; }
JVMState* PredictedIntrinsicGenerator::generate(JVMState* jvms, Parse* parent_parser) { GraphKit kit(jvms); PhaseGVN& gvn = kit.gvn(); CompileLog* log = kit.C->log(); if (log != NULL) { log->elem("predicted_intrinsic bci='%d' method='%d'", jvms->bci(), log->identify(method())); } Node* slow_ctl = _intrinsic->generate_predicate(kit.sync_jvms()); if (kit.failing()) return NULL; // might happen because of NodeCountInliningCutoff SafePointNode* slow_map = NULL; JVMState* slow_jvms; if (slow_ctl != NULL) { PreserveJVMState pjvms(&kit); kit.set_control(slow_ctl); if (!kit.stopped()) { slow_jvms = _cg->generate(kit.sync_jvms(), parent_parser); if (kit.failing()) return NULL; // might happen because of NodeCountInliningCutoff assert(slow_jvms != NULL, "must be"); kit.add_exception_states_from(slow_jvms); kit.set_map(slow_jvms->map()); if (!kit.stopped()) slow_map = kit.stop(); } } if (kit.stopped()) { // Predicate is always false. kit.set_jvms(slow_jvms); return kit.transfer_exceptions_into_jvms(); } // Generate intrinsic code: JVMState* new_jvms = _intrinsic->generate(kit.sync_jvms(), parent_parser); if (new_jvms == NULL) { // Intrinsic failed, so use slow code or make a direct call. if (slow_map == NULL) { CallGenerator* cg = CallGenerator::for_direct_call(method()); new_jvms = cg->generate(kit.sync_jvms(), parent_parser); } else { kit.set_jvms(slow_jvms); return kit.transfer_exceptions_into_jvms(); } } kit.add_exception_states_from(new_jvms); kit.set_jvms(new_jvms); // Need to merge slow and fast? if (slow_map == NULL) { // The fast path is the only path remaining. return kit.transfer_exceptions_into_jvms(); } if (kit.stopped()) { // Intrinsic method threw an exception, so it's just the slow path after all. kit.set_jvms(slow_jvms); return kit.transfer_exceptions_into_jvms(); } // Finish the diamond. kit.C->set_has_split_ifs(true); // Has chance for split-if optimization RegionNode* region = new (kit.C) RegionNode(3); region->init_req(1, kit.control()); region->init_req(2, slow_map->control()); kit.set_control(gvn.transform(region)); Node* iophi = PhiNode::make(region, kit.i_o(), Type::ABIO); iophi->set_req(2, slow_map->i_o()); kit.set_i_o(gvn.transform(iophi)); kit.merge_memory(slow_map->merged_memory(), region, 2); uint tos = kit.jvms()->stkoff() + kit.sp(); uint limit = slow_map->req(); for (uint i = TypeFunc::Parms; i < limit; i++) { // Skip unused stack slots; fast forward to monoff(); if (i == tos) { i = kit.jvms()->monoff(); if( i >= limit ) break; } Node* m = kit.map()->in(i); Node* n = slow_map->in(i); if (m != n) { const Type* t = gvn.type(m)->meet(gvn.type(n)); Node* phi = PhiNode::make(region, m, t); phi->set_req(2, n); kit.map()->set_req(i, gvn.transform(phi)); } } return kit.transfer_exceptions_into_jvms(); }
CallGenerator* CallGenerator::for_method_handle_inline(JVMState* jvms, ciMethod* caller, ciMethod* callee, bool& input_not_const) { GraphKit kit(jvms); PhaseGVN& gvn = kit.gvn(); Compile* C = kit.C; vmIntrinsics::ID iid = callee->intrinsic_id(); input_not_const = true; switch (iid) { case vmIntrinsics::_invokeBasic: { // Get MethodHandle receiver: Node* receiver = kit.argument(0); if (receiver->Opcode() == Op_ConP) { input_not_const = false; const TypeOopPtr* oop_ptr = receiver->bottom_type()->is_oopptr(); ciMethod* target = oop_ptr->const_oop()->as_method_handle()->get_vmtarget(); guarantee(!target->is_method_handle_intrinsic(), "should not happen"); // XXX remove const int vtable_index = Method::invalid_vtable_index; CallGenerator* cg = C->call_generator(target, vtable_index, false, jvms, true, PROB_ALWAYS, NULL, true, true); assert(cg == NULL || !cg->is_late_inline() || cg->is_mh_late_inline(), "no late inline here"); if (cg != NULL && cg->is_inline()) return cg; } } break; case vmIntrinsics::_linkToVirtual: case vmIntrinsics::_linkToStatic: case vmIntrinsics::_linkToSpecial: case vmIntrinsics::_linkToInterface: { // Get MemberName argument: Node* member_name = kit.argument(callee->arg_size() - 1); if (member_name->Opcode() == Op_ConP) { input_not_const = false; const TypeOopPtr* oop_ptr = member_name->bottom_type()->is_oopptr(); ciMethod* target = oop_ptr->const_oop()->as_member_name()->get_vmtarget(); // In lamda forms we erase signature types to avoid resolving issues // involving class loaders. When we optimize a method handle invoke // to a direct call we must cast the receiver and arguments to its // actual types. ciSignature* signature = target->signature(); const int receiver_skip = target->is_static() ? 0 : 1; // Cast receiver to its type. if (!target->is_static()) { Node* arg = kit.argument(0); const TypeOopPtr* arg_type = arg->bottom_type()->isa_oopptr(); const Type* sig_type = TypeOopPtr::make_from_klass(signature->accessing_klass()); if (arg_type != NULL && !arg_type->higher_equal(sig_type)) { Node* cast_obj = gvn.transform(new (C) CheckCastPPNode(kit.control(), arg, sig_type)); kit.set_argument(0, cast_obj); } } // Cast reference arguments to its type. for (int i = 0; i < signature->count(); i++) { ciType* t = signature->type_at(i); if (t->is_klass()) { Node* arg = kit.argument(receiver_skip + i); const TypeOopPtr* arg_type = arg->bottom_type()->isa_oopptr(); const Type* sig_type = TypeOopPtr::make_from_klass(t->as_klass()); if (arg_type != NULL && !arg_type->higher_equal(sig_type)) { Node* cast_obj = gvn.transform(new (C) CheckCastPPNode(kit.control(), arg, sig_type)); kit.set_argument(receiver_skip + i, cast_obj); } } } // Try to get the most accurate receiver type const bool is_virtual = (iid == vmIntrinsics::_linkToVirtual); const bool is_virtual_or_interface = (is_virtual || iid == vmIntrinsics::_linkToInterface); int vtable_index = Method::invalid_vtable_index; bool call_does_dispatch = false; ciKlass* speculative_receiver_type = NULL; if (is_virtual_or_interface) { ciInstanceKlass* klass = target->holder(); Node* receiver_node = kit.argument(0); const TypeOopPtr* receiver_type = gvn.type(receiver_node)->isa_oopptr(); // call_does_dispatch and vtable_index are out-parameters. They might be changed. target = C->optimize_virtual_call(caller, jvms->bci(), klass, target, receiver_type, is_virtual, call_does_dispatch, vtable_index); // out-parameters // We lack profiling at this call but type speculation may // provide us with a type speculative_receiver_type = receiver_type->speculative_type(); } CallGenerator* cg = C->call_generator(target, vtable_index, call_does_dispatch, jvms, true, PROB_ALWAYS, speculative_receiver_type, true, true); assert(cg == NULL || !cg->is_late_inline() || cg->is_mh_late_inline(), "no late inline here"); if (cg != NULL && cg->is_inline()) return cg; } } break; default: fatal(err_msg_res("unexpected intrinsic %d: %s", iid, vmIntrinsics::name_at(iid))); break; } return NULL; }
JVMState* PredictedCallGenerator::generate(JVMState* jvms, Parse* parent_parser) { GraphKit kit(jvms); PhaseGVN& gvn = kit.gvn(); // We need an explicit receiver null_check before checking its type. // We share a map with the caller, so his JVMS gets adjusted. Node* receiver = kit.argument(0); CompileLog* log = kit.C->log(); if (log != NULL) { log->elem("predicted_call bci='%d' klass='%d'", jvms->bci(), log->identify(_predicted_receiver)); } receiver = kit.null_check_receiver_before_call(method()); if (kit.stopped()) { return kit.transfer_exceptions_into_jvms(); } Node* exact_receiver = receiver; // will get updated in place... Node* slow_ctl = kit.type_check_receiver(receiver, _predicted_receiver, _hit_prob, &exact_receiver); SafePointNode* slow_map = NULL; JVMState* slow_jvms; { PreserveJVMState pjvms(&kit); kit.set_control(slow_ctl); if (!kit.stopped()) { slow_jvms = _if_missed->generate(kit.sync_jvms(), parent_parser); if (kit.failing()) return NULL; // might happen because of NodeCountInliningCutoff assert(slow_jvms != NULL, "must be"); kit.add_exception_states_from(slow_jvms); kit.set_map(slow_jvms->map()); if (!kit.stopped()) slow_map = kit.stop(); } } if (kit.stopped()) { // Instance exactly does not matches the desired type. kit.set_jvms(slow_jvms); return kit.transfer_exceptions_into_jvms(); } // fall through if the instance exactly matches the desired type kit.replace_in_map(receiver, exact_receiver); // Make the hot call: JVMState* new_jvms = _if_hit->generate(kit.sync_jvms(), parent_parser); if (new_jvms == NULL) { // Inline failed, so make a direct call. assert(_if_hit->is_inline(), "must have been a failed inline"); CallGenerator* cg = CallGenerator::for_direct_call(_if_hit->method()); new_jvms = cg->generate(kit.sync_jvms(), parent_parser); } kit.add_exception_states_from(new_jvms); kit.set_jvms(new_jvms); // Need to merge slow and fast? if (slow_map == NULL) { // The fast path is the only path remaining. return kit.transfer_exceptions_into_jvms(); } if (kit.stopped()) { // Inlined method threw an exception, so it's just the slow path after all. kit.set_jvms(slow_jvms); return kit.transfer_exceptions_into_jvms(); } // Finish the diamond. kit.C->set_has_split_ifs(true); // Has chance for split-if optimization RegionNode* region = new (kit.C) RegionNode(3); region->init_req(1, kit.control()); region->init_req(2, slow_map->control()); kit.set_control(gvn.transform(region)); Node* iophi = PhiNode::make(region, kit.i_o(), Type::ABIO); iophi->set_req(2, slow_map->i_o()); kit.set_i_o(gvn.transform(iophi)); kit.merge_memory(slow_map->merged_memory(), region, 2); uint tos = kit.jvms()->stkoff() + kit.sp(); uint limit = slow_map->req(); for (uint i = TypeFunc::Parms; i < limit; i++) { // Skip unused stack slots; fast forward to monoff(); if (i == tos) { i = kit.jvms()->monoff(); if( i >= limit ) break; } Node* m = kit.map()->in(i); Node* n = slow_map->in(i); if (m != n) { const Type* t = gvn.type(m)->meet(gvn.type(n)); Node* phi = PhiNode::make(region, m, t); phi->set_req(2, n); kit.map()->set_req(i, gvn.transform(phi)); } } return kit.transfer_exceptions_into_jvms(); }
virtual bool is_deferred() const { return _if_hit->is_deferred(); }
virtual bool is_inline() const { return _if_hit->is_inline(); }
void LateInlineCallGenerator::do_late_inline() { // Can't inline it CallStaticJavaNode* call = call_node(); if (call == NULL || call->outcnt() == 0 || call->in(0) == NULL || call->in(0)->is_top()) { return; } const TypeTuple *r = call->tf()->domain(); for (int i1 = 0; i1 < method()->arg_size(); i1++) { if (call->in(TypeFunc::Parms + i1)->is_top() && r->field_at(TypeFunc::Parms + i1) != Type::HALF) { assert(Compile::current()->inlining_incrementally(), "shouldn't happen during parsing"); return; } } if (call->in(TypeFunc::Memory)->is_top()) { assert(Compile::current()->inlining_incrementally(), "shouldn't happen during parsing"); return; } Compile* C = Compile::current(); // Remove inlined methods from Compiler's lists. if (call->is_macro()) { C->remove_macro_node(call); } // Make a clone of the JVMState that appropriate to use for driving a parse JVMState* old_jvms = call->jvms(); JVMState* jvms = old_jvms->clone_shallow(C); uint size = call->req(); SafePointNode* map = new (C) SafePointNode(size, jvms); for (uint i1 = 0; i1 < size; i1++) { map->init_req(i1, call->in(i1)); } // Make sure the state is a MergeMem for parsing. if (!map->in(TypeFunc::Memory)->is_MergeMem()) { Node* mem = MergeMemNode::make(C, map->in(TypeFunc::Memory)); C->initial_gvn()->set_type_bottom(mem); map->set_req(TypeFunc::Memory, mem); } uint nargs = method()->arg_size(); // blow away old call arguments Node* top = C->top(); for (uint i1 = 0; i1 < nargs; i1++) { map->set_req(TypeFunc::Parms + i1, top); } jvms->set_map(map); // Make enough space in the expression stack to transfer // the incoming arguments and return value. map->ensure_stack(jvms, jvms->method()->max_stack()); for (uint i1 = 0; i1 < nargs; i1++) { map->set_argument(jvms, i1, call->in(TypeFunc::Parms + i1)); } // This check is done here because for_method_handle_inline() method // needs jvms for inlined state. if (!do_late_inline_check(jvms)) { map->disconnect_inputs(NULL, C); return; } C->print_inlining_insert(this); CompileLog* log = C->log(); if (log != NULL) { log->head("late_inline method='%d'", log->identify(method())); JVMState* p = jvms; while (p != NULL) { log->elem("jvms bci='%d' method='%d'", p->bci(), log->identify(p->method())); p = p->caller(); } log->tail("late_inline"); } // Setup default node notes to be picked up by the inlining Node_Notes* old_nn = C->default_node_notes(); if (old_nn != NULL) { Node_Notes* entry_nn = old_nn->clone(C); entry_nn->set_jvms(jvms); C->set_default_node_notes(entry_nn); } // Now perform the inling using the synthesized JVMState JVMState* new_jvms = _inline_cg->generate(jvms, NULL); if (new_jvms == NULL) return; // no change if (C->failing()) return; // Capture any exceptional control flow GraphKit kit(new_jvms); // Find the result object Node* result = C->top(); int result_size = method()->return_type()->size(); if (result_size != 0 && !kit.stopped()) { result = (result_size == 1) ? kit.pop() : kit.pop_pair(); } C->set_has_loops(C->has_loops() || _inline_cg->method()->has_loops()); C->env()->notice_inlined_method(_inline_cg->method()); C->set_inlining_progress(true); kit.replace_call(call, result); }
JVMState* PredicatedIntrinsicGenerator::generate(JVMState* jvms) { // The code we want to generate here is: // if (receiver == NULL) // uncommon_Trap // if (predicate(0)) // do_intrinsic(0) // else // if (predicate(1)) // do_intrinsic(1) // ... // else // do_java_comp GraphKit kit(jvms); PhaseGVN& gvn = kit.gvn(); CompileLog* log = kit.C->log(); if (log != NULL) { log->elem("predicated_intrinsic bci='%d' method='%d'", jvms->bci(), log->identify(method())); } if (!method()->is_static()) { // We need an explicit receiver null_check before checking its type in predicate. // We share a map with the caller, so his JVMS gets adjusted. Node* receiver = kit.null_check_receiver_before_call(method()); if (kit.stopped()) { return kit.transfer_exceptions_into_jvms(); } } int n_predicates = _intrinsic->predicates_count(); assert(n_predicates > 0, "sanity"); JVMState** result_jvms = NEW_RESOURCE_ARRAY(JVMState*, (n_predicates+1)); // Region for normal compilation code if intrinsic failed. Node* slow_region = new (kit.C) RegionNode(1); int results = 0; for (int predicate = 0; (predicate < n_predicates) && !kit.stopped(); predicate++) { #ifdef ASSERT JVMState* old_jvms = kit.jvms(); SafePointNode* old_map = kit.map(); Node* old_io = old_map->i_o(); Node* old_mem = old_map->memory(); Node* old_exc = old_map->next_exception(); #endif Node* else_ctrl = _intrinsic->generate_predicate(kit.sync_jvms(), predicate); #ifdef ASSERT // Assert(no_new_memory && no_new_io && no_new_exceptions) after generate_predicate. assert(old_jvms == kit.jvms(), "generate_predicate should not change jvm state"); SafePointNode* new_map = kit.map(); assert(old_io == new_map->i_o(), "generate_predicate should not change i_o"); assert(old_mem == new_map->memory(), "generate_predicate should not change memory"); assert(old_exc == new_map->next_exception(), "generate_predicate should not add exceptions"); #endif if (!kit.stopped()) { PreserveJVMState pjvms(&kit); // Generate intrinsic code: JVMState* new_jvms = _intrinsic->generate(kit.sync_jvms()); if (new_jvms == NULL) { // Intrinsic failed, use normal compilation path for this predicate. slow_region->add_req(kit.control()); } else { kit.add_exception_states_from(new_jvms); kit.set_jvms(new_jvms); if (!kit.stopped()) { result_jvms[results++] = kit.jvms(); } } } if (else_ctrl == NULL) { else_ctrl = kit.C->top(); } kit.set_control(else_ctrl); } if (!kit.stopped()) { // Final 'else' after predicates. slow_region->add_req(kit.control()); } if (slow_region->req() > 1) { PreserveJVMState pjvms(&kit); // Generate normal compilation code: kit.set_control(gvn.transform(slow_region)); JVMState* new_jvms = _cg->generate(kit.sync_jvms()); if (kit.failing()) return NULL; // might happen because of NodeCountInliningCutoff assert(new_jvms != NULL, "must be"); kit.add_exception_states_from(new_jvms); kit.set_jvms(new_jvms); if (!kit.stopped()) { result_jvms[results++] = kit.jvms(); } } if (results == 0) { // All paths ended in uncommon traps. (void) kit.stop(); return kit.transfer_exceptions_into_jvms(); } if (results == 1) { // Only one path kit.set_jvms(result_jvms[0]); return kit.transfer_exceptions_into_jvms(); } // Merge all paths. kit.C->set_has_split_ifs(true); // Has chance for split-if optimization RegionNode* region = new (kit.C) RegionNode(results + 1); Node* iophi = PhiNode::make(region, kit.i_o(), Type::ABIO); for (int i = 0; i < results; i++) { JVMState* jvms = result_jvms[i]; int path = i + 1; SafePointNode* map = jvms->map(); region->init_req(path, map->control()); iophi->set_req(path, map->i_o()); if (i == 0) { kit.set_jvms(jvms); } else { kit.merge_memory(map->merged_memory(), region, path); } } kit.set_control(gvn.transform(region)); kit.set_i_o(gvn.transform(iophi)); // Transform new memory Phis. for (MergeMemStream mms(kit.merged_memory()); mms.next_non_empty();) { Node* phi = mms.memory(); if (phi->is_Phi() && phi->in(0) == region) { mms.set_memory(gvn.transform(phi)); } } // Merge debug info. Node** ins = NEW_RESOURCE_ARRAY(Node*, results); uint tos = kit.jvms()->stkoff() + kit.sp(); Node* map = kit.map(); uint limit = map->req(); for (uint i = TypeFunc::Parms; i < limit; i++) { // Skip unused stack slots; fast forward to monoff(); if (i == tos) { i = kit.jvms()->monoff(); if( i >= limit ) break; } Node* n = map->in(i); ins[0] = n; const Type* t = gvn.type(n); bool needs_phi = false; for (int j = 1; j < results; j++) { JVMState* jvms = result_jvms[j]; Node* jmap = jvms->map(); Node* m = NULL; if (jmap->req() > i) { m = jmap->in(i); if (m != n) { needs_phi = true; t = t->meet_speculative(gvn.type(m)); } } ins[j] = m; } if (needs_phi) { Node* phi = PhiNode::make(region, n, t); for (int j = 1; j < results; j++) { phi->set_req(j + 1, ins[j]); } map->set_req(i, gvn.transform(phi)); } } return kit.transfer_exceptions_into_jvms(); }
JVMState* PredictedDynamicCallGenerator::generate(JVMState* jvms) { GraphKit kit(jvms); Compile* C = kit.C; PhaseGVN& gvn = kit.gvn(); CompileLog* log = C->log(); if (log != NULL) { log->elem("predicted_dynamic_call bci='%d'", jvms->bci()); } const TypeOopPtr* predicted_mh_ptr = TypeOopPtr::make_from_constant(_predicted_method_handle, true); Node* predicted_mh = kit.makecon(predicted_mh_ptr); Node* bol = NULL; int bc = jvms->method()->java_code_at_bci(jvms->bci()); if (bc != Bytecodes::_invokedynamic) { // This is the selectAlternative idiom for guardWithTest or // similar idioms. Node* receiver = kit.argument(0); // Check if the MethodHandle is the expected one Node* cmp = gvn.transform(new (C, 3) CmpPNode(receiver, predicted_mh)); bol = gvn.transform(new (C, 2) BoolNode(cmp, BoolTest::eq) ); } else { // Get the constant pool cache from the caller class. ciMethod* caller_method = jvms->method(); ciBytecodeStream str(caller_method); str.force_bci(jvms->bci()); // Set the stream to the invokedynamic bci. ciCPCache* cpcache = str.get_cpcache(); // Get the offset of the CallSite from the constant pool cache // pointer. int index = str.get_method_index(); size_t call_site_offset = cpcache->get_f1_offset(index); // Load the CallSite object from the constant pool cache. const TypeOopPtr* cpcache_type = TypeOopPtr::make_from_constant(cpcache); // returns TypeAryPtr of type T_OBJECT const TypeOopPtr* call_site_type = TypeOopPtr::make_from_klass(C->env()->CallSite_klass()); Node* cpcache_adr = kit.makecon(cpcache_type); Node* call_site_adr = kit.basic_plus_adr(cpcache_adr, call_site_offset); // The oops in the constant pool cache are not compressed; load then as raw pointers. Node* call_site = kit.make_load(kit.control(), call_site_adr, call_site_type, T_ADDRESS, Compile::AliasIdxRaw); // Load the target MethodHandle from the CallSite object. const TypeOopPtr* target_type = TypeOopPtr::make_from_klass(C->env()->MethodHandle_klass()); Node* target_adr = kit.basic_plus_adr(call_site, call_site, java_lang_invoke_CallSite::target_offset_in_bytes()); Node* target_mh = kit.make_load(kit.control(), target_adr, target_type, T_OBJECT); // Check if the MethodHandle is still the same. Node* cmp = gvn.transform(new (C, 3) CmpPNode(target_mh, predicted_mh)); bol = gvn.transform(new (C, 2) BoolNode(cmp, BoolTest::eq) ); } IfNode* iff = kit.create_and_xform_if(kit.control(), bol, _hit_prob, COUNT_UNKNOWN); kit.set_control( gvn.transform(new (C, 1) IfTrueNode (iff))); Node* slow_ctl = gvn.transform(new (C, 1) IfFalseNode(iff)); SafePointNode* slow_map = NULL; JVMState* slow_jvms; { PreserveJVMState pjvms(&kit); kit.set_control(slow_ctl); if (!kit.stopped()) { slow_jvms = _if_missed->generate(kit.sync_jvms()); if (kit.failing()) return NULL; // might happen because of NodeCountInliningCutoff assert(slow_jvms != NULL, "must be"); kit.add_exception_states_from(slow_jvms); kit.set_map(slow_jvms->map()); if (!kit.stopped()) slow_map = kit.stop(); } } if (kit.stopped()) { // Instance exactly does not matches the desired type. kit.set_jvms(slow_jvms); return kit.transfer_exceptions_into_jvms(); } // Make the hot call: JVMState* new_jvms = _if_hit->generate(kit.sync_jvms()); if (new_jvms == NULL) { // Inline failed, so make a direct call. assert(_if_hit->is_inline(), "must have been a failed inline"); CallGenerator* cg = CallGenerator::for_direct_call(_if_hit->method()); new_jvms = cg->generate(kit.sync_jvms()); } kit.add_exception_states_from(new_jvms); kit.set_jvms(new_jvms); // Need to merge slow and fast? if (slow_map == NULL) { // The fast path is the only path remaining. return kit.transfer_exceptions_into_jvms(); } if (kit.stopped()) { // Inlined method threw an exception, so it's just the slow path after all. kit.set_jvms(slow_jvms); return kit.transfer_exceptions_into_jvms(); } // Finish the diamond. kit.C->set_has_split_ifs(true); // Has chance for split-if optimization RegionNode* region = new (C, 3) RegionNode(3); region->init_req(1, kit.control()); region->init_req(2, slow_map->control()); kit.set_control(gvn.transform(region)); Node* iophi = PhiNode::make(region, kit.i_o(), Type::ABIO); iophi->set_req(2, slow_map->i_o()); kit.set_i_o(gvn.transform(iophi)); kit.merge_memory(slow_map->merged_memory(), region, 2); uint tos = kit.jvms()->stkoff() + kit.sp(); uint limit = slow_map->req(); for (uint i = TypeFunc::Parms; i < limit; i++) { // Skip unused stack slots; fast forward to monoff(); if (i == tos) { i = kit.jvms()->monoff(); if( i >= limit ) break; } Node* m = kit.map()->in(i); Node* n = slow_map->in(i); if (m != n) { const Type* t = gvn.type(m)->meet(gvn.type(n)); Node* phi = PhiNode::make(region, m, t); phi->set_req(2, n); kit.map()->set_req(i, gvn.transform(phi)); } } return kit.transfer_exceptions_into_jvms(); }
void LateInlineCallGenerator::do_late_inline() { // Can't inline it if (call_node() == NULL || call_node()->outcnt() == 0 || call_node()->in(0) == NULL || call_node()->in(0)->is_top()) return; CallStaticJavaNode* call = call_node(); // Make a clone of the JVMState that appropriate to use for driving a parse Compile* C = Compile::current(); JVMState* jvms = call->jvms()->clone_shallow(C); uint size = call->req(); SafePointNode* map = new (C, size) SafePointNode(size, jvms); for (uint i1 = 0; i1 < size; i1++) { map->init_req(i1, call->in(i1)); } // Make sure the state is a MergeMem for parsing. if (!map->in(TypeFunc::Memory)->is_MergeMem()) { map->set_req(TypeFunc::Memory, MergeMemNode::make(C, map->in(TypeFunc::Memory))); } // Make enough space for the expression stack and transfer the incoming arguments int nargs = method()->arg_size(); jvms->set_map(map); map->ensure_stack(jvms, jvms->method()->max_stack()); if (nargs > 0) { for (int i1 = 0; i1 < nargs; i1++) { map->set_req(i1 + jvms->argoff(), call->in(TypeFunc::Parms + i1)); } } CompileLog* log = C->log(); if (log != NULL) { log->head("late_inline method='%d'", log->identify(method())); JVMState* p = jvms; while (p != NULL) { log->elem("jvms bci='%d' method='%d'", p->bci(), log->identify(p->method())); p = p->caller(); } log->tail("late_inline"); } // Setup default node notes to be picked up by the inlining Node_Notes* old_nn = C->default_node_notes(); if (old_nn != NULL) { Node_Notes* entry_nn = old_nn->clone(C); entry_nn->set_jvms(jvms); C->set_default_node_notes(entry_nn); } // Now perform the inling using the synthesized JVMState JVMState* new_jvms = _inline_cg->generate(jvms); if (new_jvms == NULL) return; // no change if (C->failing()) return; // Capture any exceptional control flow GraphKit kit(new_jvms); // Find the result object Node* result = C->top(); int result_size = method()->return_type()->size(); if (result_size != 0 && !kit.stopped()) { result = (result_size == 1) ? kit.pop() : kit.pop_pair(); } kit.replace_call(call, result); }
CallGenerator* CallGenerator::for_method_handle_inline(JVMState* jvms, ciMethod* caller, ciMethod* callee) { GraphKit kit(jvms); PhaseGVN& gvn = kit.gvn(); Compile* C = kit.C; vmIntrinsics::ID iid = callee->intrinsic_id(); switch (iid) { case vmIntrinsics::_invokeBasic: { // get MethodHandle receiver Node* receiver = kit.argument(0); if (receiver->Opcode() == Op_ConP) { const TypeOopPtr* oop_ptr = receiver->bottom_type()->is_oopptr(); ciMethod* target = oop_ptr->const_oop()->as_method_handle()->get_vmtarget(); guarantee(!target->is_method_handle_intrinsic(), "should not happen"); // XXX remove const int vtable_index = methodOopDesc::invalid_vtable_index; CallGenerator* cg = C->call_generator(target, vtable_index, false, jvms, true, PROB_ALWAYS); if (cg != NULL && cg->is_inline()) return cg; } else { if (PrintInlining) CompileTask::print_inlining(callee, jvms->depth() - 1, jvms->bci(), "receiver not constant"); } } break; case vmIntrinsics::_linkToVirtual: case vmIntrinsics::_linkToStatic: case vmIntrinsics::_linkToSpecial: case vmIntrinsics::_linkToInterface: { // pop MemberName argument Node* member_name = kit.argument(callee->arg_size() - 1); if (member_name->Opcode() == Op_ConP) { const TypeOopPtr* oop_ptr = member_name->bottom_type()->is_oopptr(); ciMethod* target = oop_ptr->const_oop()->as_member_name()->get_vmtarget(); // In lamda forms we erase signature types to avoid resolving issues // involving class loaders. When we optimize a method handle invoke // to a direct call we must cast the receiver and arguments to its // actual types. ciSignature* signature = target->signature(); const int receiver_skip = target->is_static() ? 0 : 1; // Cast receiver to its type. if (!target->is_static()) { Node* arg = kit.argument(0); const TypeOopPtr* arg_type = arg->bottom_type()->isa_oopptr(); const Type* sig_type = TypeOopPtr::make_from_klass(signature->accessing_klass()); if (arg_type != NULL && !arg_type->higher_equal(sig_type)) { Node* cast_obj = gvn.transform(new (C) CheckCastPPNode(kit.control(), arg, sig_type)); kit.set_argument(0, cast_obj); } } // Cast reference arguments to its type. for (int i = 0; i < signature->count(); i++) { ciType* t = signature->type_at(i); if (t->is_klass()) { Node* arg = kit.argument(receiver_skip + i); const TypeOopPtr* arg_type = arg->bottom_type()->isa_oopptr(); const Type* sig_type = TypeOopPtr::make_from_klass(t->as_klass()); if (arg_type != NULL && !arg_type->higher_equal(sig_type)) { Node* cast_obj = gvn.transform(new (C) CheckCastPPNode(kit.control(), arg, sig_type)); kit.set_argument(receiver_skip + i, cast_obj); } } } const int vtable_index = methodOopDesc::invalid_vtable_index; const bool call_is_virtual = target->is_abstract(); // FIXME workaround CallGenerator* cg = C->call_generator(target, vtable_index, call_is_virtual, jvms, true, PROB_ALWAYS); if (cg != NULL && cg->is_inline()) return cg; } } break; default: fatal(err_msg_res("unexpected intrinsic %d: %s", iid, vmIntrinsics::name_at(iid))); break; } return NULL; }