/** * @brief Subdivides all of the Cells within this Universe into rings * and angular sectors. */ void Universe::subdivideCells() { log_printf(DEBUG, "Subdividing Cells for Universe %d", _id); std::map<int, Cell*>::iterator iter1; while (iter1 != _cells.end()) { for (iter1 = _cells.begin(); iter1 != _cells.end(); ++iter1) { if ((*iter1).second->getType() == MATERIAL) { CellBasic* cell = static_cast<CellBasic*>((*iter1).second); if (cell->getNumRings() > 0 || cell->getNumSectors() > 0) { std::vector<CellBasic*> newcells = cell->subdivideCell(); log_printf(DEBUG, "Cell %d in Universe %d has %d subcells", cell->getId(), _id, newcells.size()); std::vector<CellBasic*>::iterator iter2; for (iter2=newcells.begin(); iter2!=newcells.end(); ++iter2) addCell((*iter2)); _cells.erase(iter1); break; } } } } }
/** * @brief Returns a CellBasic in this Universe. * @param cell_id the integer the cell_id * @return Returns the CellFill pointer. */ CellBasic* Universe::getCellBasic(int cell_id) { CellBasic* cell = NULL; if (_cells.find(cell_id) == _cells.end()) log_printf(ERROR, "Unable to return Cell with ID = %d from Universe with " "ID = %d since the it does not contain this Cell", cell_id, _id); cell = static_cast<CellBasic*>(_cells.at(cell_id)); if (cell->getType() != MATERIAL) log_printf(WARNING, "Retrieving Cell %d from Universe %d, but it " "is not a MATERIAL type Cell", cell->getId(), _id); return cell; }
/** * @brief Subdivides the Cell into clones for fuel pin angular sectors. */ void CellBasic::sectorize() { /* If the user didn't request any sectors, don't make any */ if (_num_sectors == 0) return; double azim_angle; double delta_azim = 2. * M_PI / _num_sectors; double A, B; /* A container for each of the bouding planes for the sector Cells */ std::vector<Plane*> planes; log_printf(DEBUG, "Sectorizing Cell %d with %d sectors",_id, _num_sectors); /* Create each of the bounding planes for the sector Cells */ for (int i=0; i < _num_sectors; i++) { /* Figure out the angle for this plane */ azim_angle = i * delta_azim; /* Instantiate the plane */ A = cos(azim_angle); B = sin(azim_angle); Plane* plane = new Plane(A, B, 0.); planes.push_back(plane); log_printf(DEBUG, "Created sector Plane id = %d, angle = %f, A = %f, " "B = %f", i, azim_angle, A, B); } /* Create sectors using disjoint halfspaces of pairing Planes */ for (int i=0; i < _num_sectors; i++) { /* Create new CellBasic clone for this sector Cell */ CellBasic* sector = clone(); sector->setNumSectors(0); sector->setNumRings(0); log_printf(DEBUG, "Creating a new sector Cell %d for Cell %d", sector->getId(), _id); /* Add new bounding planar Surfaces to the clone */ sector->addSurface(+1, planes.at(i)); if (_num_sectors != 2) { if (i+1 < _num_sectors) sector->addSurface(-1, planes.at(i+1)); else sector->addSurface(-1, planes.at(0)); } /* Store the clone in the parent Cell's container of sector Cells */ _sectors.push_back(sector); } /* Store all of the sectors in the parent Cell's subcells container */ _subcells.clear(); _subcells.insert(_subcells.end(), _sectors.begin(), _sectors.end()); }
/** * @brief Initializes the FSR volumes and Materials array. * @details This method assigns each FSR a unique, monotonically increasing * ID, sets the Material for each FSR, and assigns a volume based on * the cumulative length of all of the segments inside the FSR. */ void CPUSolver::initializeFSRs() { log_printf(INFO, "Initializing flat source regions..."); /* Delete old FSR arrays if they exist */ if (_FSR_volumes != NULL) delete [] _FSR_volumes; if (_FSR_materials != NULL) delete [] _FSR_materials; _FSR_volumes = (FP_PRECISION*)calloc(_num_FSRs, sizeof(FP_PRECISION)); _FSR_materials = new Material*[_num_FSRs]; _FSR_locks = new omp_lock_t[_num_FSRs]; int num_segments; segment* curr_segment; segment* segments; FP_PRECISION volume; CellBasic* cell; Material* material; Universe* univ_zero = _geometry->getUniverse(0); /* Set each FSR's "volume" by accumulating the total length of all Tracks * inside the FSR. Loop over azimuthal angles, Tracks and Track segments. */ for (int i=0; i < _tot_num_tracks; i++) { int azim_index = _tracks[i]->getAzimAngleIndex(); num_segments = _tracks[i]->getNumSegments(); segments = _tracks[i]->getSegments(); for (int s=0; s < num_segments; s++) { curr_segment = &segments[s]; volume = curr_segment->_length * _azim_weights[azim_index]; _FSR_volumes[curr_segment->_region_id] += volume; } } /* Loop over all FSRs to extract FSR material pointers */ #pragma omp parallel for private(cell, material) schedule(guided) for (int r=0; r < _num_FSRs; r++) { /* Get the Cell corresponding to this FSR from the geometry */ cell = _geometry->findCellContainingFSR(r); /* Get the Cell's Material and assign it to the FSR */ material = _geometry->getMaterial(cell->getMaterial()); _FSR_materials[r] = material; log_printf(DEBUG, "FSR ID = %d has Cell ID = %d and Material ID = %d " "and volume = %f", r, cell->getId(), _FSR_materials[r]->getUid(), _FSR_volumes[r]); } /* Loop over all FSRs to initialize OpenMP locks */ #pragma omp parallel for schedule(guided) for (int r=0; r < _num_FSRs; r++) omp_init_lock(&_FSR_locks[r]); return; }