//------------------------------Ideal------------------------------------------ // Check for the case of comparing an unknown klass loaded from the primary // super-type array vs a known klass with no subtypes. This amounts to // checking to see an unknown klass subtypes a known klass with no subtypes; // this only happens on an exact match. We can shorten this test by 1 load. Node *CmpPNode::Ideal( PhaseGVN *phase, bool can_reshape ) { // Constant pointer on right? const Type *t2 = phase->type(in(2)); if( t2 == TypePtr::NULL_PTR || !t2->singleton() || t2 == Type::TOP ) return NULL; // Now check for LoadKlass on left. Node *ldk1 = in(1); if( ldk1->Opcode() != Op_LoadKlass ) return NULL; // Check for loading from primary supertype array. // Any nested loadklass from loadklass+con must be from the p.s.array Node *adr1 = ldk1->in(MemNode::Address); if( adr1->Opcode() != Op_AddP ) return NULL; Node *ldk2 = adr1->in(AddPNode::Address); Node *off2 = adr1->in(AddPNode::Offset); if( ldk2->Opcode() != Op_LoadKlass ) return NULL; jint con2; if( !off2->get_int(&con2) ) return NULL; // Get the constant klass we are comparing to. ciType *superklass = t2->is_klassptr()->klass(); // Verify that we understand the situation if( ((ciKlass*)superklass)->super_check_offset() != (juint)con2 ) return NULL; // Might be element-klass loading from array klass // If 'superklass' has no subklasses and is not an interface, then we are // assured that the only input which will pass the type check is // 'superklass' itself. // // We could be more liberal here, and allow the optimization on interfaces // which have a single implementor. This would require us to increase the // expressiveness of the add_dependency() mechanism. // Object arrays must have their base element have no subtypes while( superklass->is_obj_array_klass() ) superklass = superklass->as_obj_array_klass()->base_element_type(); if( superklass->is_instance_klass() ) { ciInstanceKlass* ik = superklass->as_instance_klass(); if( ik->has_subklass() || ik->flags().is_interface() ) return NULL; // Add a dependency if there is a chance that a subclass will be added later. if( !ik->flags().is_final()) { CompileLog* log = phase->C->log(); if (log != NULL){ log->elem("cast_up reason='!has_subklass' from='%d' to='(exact)'", log->identify(ik)); } phase->C->recorder()->add_dependent(ik, NULL); } } // Bypass the dependent load, and compare directly this->set_req(1,ldk2); return this; }
//------------------------------array_store_check------------------------------ // pull array from stack and check that the store is valid void Parse::array_store_check() { // Shorthand access to array store elements without popping them. Node *obj = peek(0); Node *idx = peek(1); Node *ary = peek(2); if (_gvn.type(obj) == TypePtr::NULL_PTR) { // There's never a type check on null values. // This cutout lets us avoid the uncommon_trap(Reason_array_check) // below, which turns into a performance liability if the // gen_checkcast folds up completely. return; } // Extract the array klass type int klass_offset = oopDesc::klass_offset_in_bytes(); Node* p = basic_plus_adr( ary, ary, klass_offset ); // p's type is array-of-OOPS plus klass_offset Node* array_klass = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeInstPtr::KLASS) ); // Get the array klass const TypeKlassPtr *tak = _gvn.type(array_klass)->is_klassptr(); // array_klass's type is generally INexact array-of-oop. Heroically // cast the array klass to EXACT array and uncommon-trap if the cast // fails. bool always_see_exact_class = false; if (MonomorphicArrayCheck && !too_many_traps(Deoptimization::Reason_array_check)) { always_see_exact_class = true; // (If no MDO at all, hope for the best, until a trap actually occurs.) } // Is the array klass is exactly its defined type? if (always_see_exact_class && !tak->klass_is_exact()) { // Make a constant out of the inexact array klass const TypeKlassPtr *extak = tak->cast_to_exactness(true)->is_klassptr(); Node* con = makecon(extak); Node* cmp = _gvn.transform(new (C) CmpPNode( array_klass, con )); Node* bol = _gvn.transform(new (C) BoolNode( cmp, BoolTest::eq )); Node* ctrl= control(); { BuildCutout unless(this, bol, PROB_MAX); uncommon_trap(Deoptimization::Reason_array_check, Deoptimization::Action_maybe_recompile, tak->klass()); } if (stopped()) { // MUST uncommon-trap? set_control(ctrl); // Then Don't Do It, just fall into the normal checking } else { // Cast array klass to exactness: // Use the exact constant value we know it is. replace_in_map(array_klass,con); CompileLog* log = C->log(); if (log != NULL) { log->elem("cast_up reason='monomorphic_array' from='%d' to='(exact)'", log->identify(tak->klass())); } array_klass = con; // Use cast value moving forward } } // Come here for polymorphic array klasses // Extract the array element class int element_klass_offset = in_bytes(ObjArrayKlass::element_klass_offset()); Node *p2 = basic_plus_adr(array_klass, array_klass, element_klass_offset); Node *a_e_klass = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p2, tak) ); // Check (the hard way) and throw if not a subklass. // Result is ignored, we just need the CFG effects. gen_checkcast( obj, a_e_klass ); }
JVMState* PredictedCallGenerator::generate(JVMState* jvms, Parse* parent_parser) { GraphKit kit(jvms); PhaseGVN& gvn = kit.gvn(); // We need an explicit receiver null_check before checking its type. // We share a map with the caller, so his JVMS gets adjusted. Node* receiver = kit.argument(0); CompileLog* log = kit.C->log(); if (log != NULL) { log->elem("predicted_call bci='%d' klass='%d'", jvms->bci(), log->identify(_predicted_receiver)); } receiver = kit.null_check_receiver_before_call(method()); if (kit.stopped()) { return kit.transfer_exceptions_into_jvms(); } Node* exact_receiver = receiver; // will get updated in place... Node* slow_ctl = kit.type_check_receiver(receiver, _predicted_receiver, _hit_prob, &exact_receiver); SafePointNode* slow_map = NULL; JVMState* slow_jvms; { PreserveJVMState pjvms(&kit); kit.set_control(slow_ctl); if (!kit.stopped()) { slow_jvms = _if_missed->generate(kit.sync_jvms(), parent_parser); if (kit.failing()) return NULL; // might happen because of NodeCountInliningCutoff assert(slow_jvms != NULL, "must be"); kit.add_exception_states_from(slow_jvms); kit.set_map(slow_jvms->map()); if (!kit.stopped()) slow_map = kit.stop(); } } if (kit.stopped()) { // Instance exactly does not matches the desired type. kit.set_jvms(slow_jvms); return kit.transfer_exceptions_into_jvms(); } // fall through if the instance exactly matches the desired type kit.replace_in_map(receiver, exact_receiver); // Make the hot call: JVMState* new_jvms = _if_hit->generate(kit.sync_jvms(), parent_parser); if (new_jvms == NULL) { // Inline failed, so make a direct call. assert(_if_hit->is_inline(), "must have been a failed inline"); CallGenerator* cg = CallGenerator::for_direct_call(_if_hit->method()); new_jvms = cg->generate(kit.sync_jvms(), parent_parser); } kit.add_exception_states_from(new_jvms); kit.set_jvms(new_jvms); // Need to merge slow and fast? if (slow_map == NULL) { // The fast path is the only path remaining. return kit.transfer_exceptions_into_jvms(); } if (kit.stopped()) { // Inlined method threw an exception, so it's just the slow path after all. kit.set_jvms(slow_jvms); return kit.transfer_exceptions_into_jvms(); } // Finish the diamond. kit.C->set_has_split_ifs(true); // Has chance for split-if optimization RegionNode* region = new (kit.C) RegionNode(3); region->init_req(1, kit.control()); region->init_req(2, slow_map->control()); kit.set_control(gvn.transform(region)); Node* iophi = PhiNode::make(region, kit.i_o(), Type::ABIO); iophi->set_req(2, slow_map->i_o()); kit.set_i_o(gvn.transform(iophi)); kit.merge_memory(slow_map->merged_memory(), region, 2); uint tos = kit.jvms()->stkoff() + kit.sp(); uint limit = slow_map->req(); for (uint i = TypeFunc::Parms; i < limit; i++) { // Skip unused stack slots; fast forward to monoff(); if (i == tos) { i = kit.jvms()->monoff(); if( i >= limit ) break; } Node* m = kit.map()->in(i); Node* n = slow_map->in(i); if (m != n) { const Type* t = gvn.type(m)->meet(gvn.type(n)); Node* phi = PhiNode::make(region, m, t); phi->set_req(2, n); kit.map()->set_req(i, gvn.transform(phi)); } } return kit.transfer_exceptions_into_jvms(); }
JVMState* PredictedIntrinsicGenerator::generate(JVMState* jvms, Parse* parent_parser) { GraphKit kit(jvms); PhaseGVN& gvn = kit.gvn(); CompileLog* log = kit.C->log(); if (log != NULL) { log->elem("predicted_intrinsic bci='%d' method='%d'", jvms->bci(), log->identify(method())); } Node* slow_ctl = _intrinsic->generate_predicate(kit.sync_jvms()); if (kit.failing()) return NULL; // might happen because of NodeCountInliningCutoff SafePointNode* slow_map = NULL; JVMState* slow_jvms; if (slow_ctl != NULL) { PreserveJVMState pjvms(&kit); kit.set_control(slow_ctl); if (!kit.stopped()) { slow_jvms = _cg->generate(kit.sync_jvms(), parent_parser); if (kit.failing()) return NULL; // might happen because of NodeCountInliningCutoff assert(slow_jvms != NULL, "must be"); kit.add_exception_states_from(slow_jvms); kit.set_map(slow_jvms->map()); if (!kit.stopped()) slow_map = kit.stop(); } } if (kit.stopped()) { // Predicate is always false. kit.set_jvms(slow_jvms); return kit.transfer_exceptions_into_jvms(); } // Generate intrinsic code: JVMState* new_jvms = _intrinsic->generate(kit.sync_jvms(), parent_parser); if (new_jvms == NULL) { // Intrinsic failed, so use slow code or make a direct call. if (slow_map == NULL) { CallGenerator* cg = CallGenerator::for_direct_call(method()); new_jvms = cg->generate(kit.sync_jvms(), parent_parser); } else { kit.set_jvms(slow_jvms); return kit.transfer_exceptions_into_jvms(); } } kit.add_exception_states_from(new_jvms); kit.set_jvms(new_jvms); // Need to merge slow and fast? if (slow_map == NULL) { // The fast path is the only path remaining. return kit.transfer_exceptions_into_jvms(); } if (kit.stopped()) { // Intrinsic method threw an exception, so it's just the slow path after all. kit.set_jvms(slow_jvms); return kit.transfer_exceptions_into_jvms(); } // Finish the diamond. kit.C->set_has_split_ifs(true); // Has chance for split-if optimization RegionNode* region = new (kit.C) RegionNode(3); region->init_req(1, kit.control()); region->init_req(2, slow_map->control()); kit.set_control(gvn.transform(region)); Node* iophi = PhiNode::make(region, kit.i_o(), Type::ABIO); iophi->set_req(2, slow_map->i_o()); kit.set_i_o(gvn.transform(iophi)); kit.merge_memory(slow_map->merged_memory(), region, 2); uint tos = kit.jvms()->stkoff() + kit.sp(); uint limit = slow_map->req(); for (uint i = TypeFunc::Parms; i < limit; i++) { // Skip unused stack slots; fast forward to monoff(); if (i == tos) { i = kit.jvms()->monoff(); if( i >= limit ) break; } Node* m = kit.map()->in(i); Node* n = slow_map->in(i); if (m != n) { const Type* t = gvn.type(m)->meet(gvn.type(n)); Node* phi = PhiNode::make(region, m, t); phi->set_req(2, n); kit.map()->set_req(i, gvn.transform(phi)); } } return kit.transfer_exceptions_into_jvms(); }
void LateInlineCallGenerator::do_late_inline() { // Can't inline it CallStaticJavaNode* call = call_node(); if (call == NULL || call->outcnt() == 0 || call->in(0) == NULL || call->in(0)->is_top()) { return; } const TypeTuple *r = call->tf()->domain(); for (int i1 = 0; i1 < method()->arg_size(); i1++) { if (call->in(TypeFunc::Parms + i1)->is_top() && r->field_at(TypeFunc::Parms + i1) != Type::HALF) { assert(Compile::current()->inlining_incrementally(), "shouldn't happen during parsing"); return; } } if (call->in(TypeFunc::Memory)->is_top()) { assert(Compile::current()->inlining_incrementally(), "shouldn't happen during parsing"); return; } Compile* C = Compile::current(); // Remove inlined methods from Compiler's lists. if (call->is_macro()) { C->remove_macro_node(call); } // Make a clone of the JVMState that appropriate to use for driving a parse JVMState* old_jvms = call->jvms(); JVMState* jvms = old_jvms->clone_shallow(C); uint size = call->req(); SafePointNode* map = new (C) SafePointNode(size, jvms); for (uint i1 = 0; i1 < size; i1++) { map->init_req(i1, call->in(i1)); } // Make sure the state is a MergeMem for parsing. if (!map->in(TypeFunc::Memory)->is_MergeMem()) { Node* mem = MergeMemNode::make(C, map->in(TypeFunc::Memory)); C->initial_gvn()->set_type_bottom(mem); map->set_req(TypeFunc::Memory, mem); } uint nargs = method()->arg_size(); // blow away old call arguments Node* top = C->top(); for (uint i1 = 0; i1 < nargs; i1++) { map->set_req(TypeFunc::Parms + i1, top); } jvms->set_map(map); // Make enough space in the expression stack to transfer // the incoming arguments and return value. map->ensure_stack(jvms, jvms->method()->max_stack()); for (uint i1 = 0; i1 < nargs; i1++) { map->set_argument(jvms, i1, call->in(TypeFunc::Parms + i1)); } // This check is done here because for_method_handle_inline() method // needs jvms for inlined state. if (!do_late_inline_check(jvms)) { map->disconnect_inputs(NULL, C); return; } C->print_inlining_insert(this); CompileLog* log = C->log(); if (log != NULL) { log->head("late_inline method='%d'", log->identify(method())); JVMState* p = jvms; while (p != NULL) { log->elem("jvms bci='%d' method='%d'", p->bci(), log->identify(p->method())); p = p->caller(); } log->tail("late_inline"); } // Setup default node notes to be picked up by the inlining Node_Notes* old_nn = C->default_node_notes(); if (old_nn != NULL) { Node_Notes* entry_nn = old_nn->clone(C); entry_nn->set_jvms(jvms); C->set_default_node_notes(entry_nn); } // Now perform the inling using the synthesized JVMState JVMState* new_jvms = _inline_cg->generate(jvms, NULL); if (new_jvms == NULL) return; // no change if (C->failing()) return; // Capture any exceptional control flow GraphKit kit(new_jvms); // Find the result object Node* result = C->top(); int result_size = method()->return_type()->size(); if (result_size != 0 && !kit.stopped()) { result = (result_size == 1) ? kit.pop() : kit.pop_pair(); } C->set_has_loops(C->has_loops() || _inline_cg->method()->has_loops()); C->env()->notice_inlined_method(_inline_cg->method()); C->set_inlining_progress(true); kit.replace_call(call, result); }
JVMState* PredicatedIntrinsicGenerator::generate(JVMState* jvms) { // The code we want to generate here is: // if (receiver == NULL) // uncommon_Trap // if (predicate(0)) // do_intrinsic(0) // else // if (predicate(1)) // do_intrinsic(1) // ... // else // do_java_comp GraphKit kit(jvms); PhaseGVN& gvn = kit.gvn(); CompileLog* log = kit.C->log(); if (log != NULL) { log->elem("predicated_intrinsic bci='%d' method='%d'", jvms->bci(), log->identify(method())); } if (!method()->is_static()) { // We need an explicit receiver null_check before checking its type in predicate. // We share a map with the caller, so his JVMS gets adjusted. Node* receiver = kit.null_check_receiver_before_call(method()); if (kit.stopped()) { return kit.transfer_exceptions_into_jvms(); } } int n_predicates = _intrinsic->predicates_count(); assert(n_predicates > 0, "sanity"); JVMState** result_jvms = NEW_RESOURCE_ARRAY(JVMState*, (n_predicates+1)); // Region for normal compilation code if intrinsic failed. Node* slow_region = new (kit.C) RegionNode(1); int results = 0; for (int predicate = 0; (predicate < n_predicates) && !kit.stopped(); predicate++) { #ifdef ASSERT JVMState* old_jvms = kit.jvms(); SafePointNode* old_map = kit.map(); Node* old_io = old_map->i_o(); Node* old_mem = old_map->memory(); Node* old_exc = old_map->next_exception(); #endif Node* else_ctrl = _intrinsic->generate_predicate(kit.sync_jvms(), predicate); #ifdef ASSERT // Assert(no_new_memory && no_new_io && no_new_exceptions) after generate_predicate. assert(old_jvms == kit.jvms(), "generate_predicate should not change jvm state"); SafePointNode* new_map = kit.map(); assert(old_io == new_map->i_o(), "generate_predicate should not change i_o"); assert(old_mem == new_map->memory(), "generate_predicate should not change memory"); assert(old_exc == new_map->next_exception(), "generate_predicate should not add exceptions"); #endif if (!kit.stopped()) { PreserveJVMState pjvms(&kit); // Generate intrinsic code: JVMState* new_jvms = _intrinsic->generate(kit.sync_jvms()); if (new_jvms == NULL) { // Intrinsic failed, use normal compilation path for this predicate. slow_region->add_req(kit.control()); } else { kit.add_exception_states_from(new_jvms); kit.set_jvms(new_jvms); if (!kit.stopped()) { result_jvms[results++] = kit.jvms(); } } } if (else_ctrl == NULL) { else_ctrl = kit.C->top(); } kit.set_control(else_ctrl); } if (!kit.stopped()) { // Final 'else' after predicates. slow_region->add_req(kit.control()); } if (slow_region->req() > 1) { PreserveJVMState pjvms(&kit); // Generate normal compilation code: kit.set_control(gvn.transform(slow_region)); JVMState* new_jvms = _cg->generate(kit.sync_jvms()); if (kit.failing()) return NULL; // might happen because of NodeCountInliningCutoff assert(new_jvms != NULL, "must be"); kit.add_exception_states_from(new_jvms); kit.set_jvms(new_jvms); if (!kit.stopped()) { result_jvms[results++] = kit.jvms(); } } if (results == 0) { // All paths ended in uncommon traps. (void) kit.stop(); return kit.transfer_exceptions_into_jvms(); } if (results == 1) { // Only one path kit.set_jvms(result_jvms[0]); return kit.transfer_exceptions_into_jvms(); } // Merge all paths. kit.C->set_has_split_ifs(true); // Has chance for split-if optimization RegionNode* region = new (kit.C) RegionNode(results + 1); Node* iophi = PhiNode::make(region, kit.i_o(), Type::ABIO); for (int i = 0; i < results; i++) { JVMState* jvms = result_jvms[i]; int path = i + 1; SafePointNode* map = jvms->map(); region->init_req(path, map->control()); iophi->set_req(path, map->i_o()); if (i == 0) { kit.set_jvms(jvms); } else { kit.merge_memory(map->merged_memory(), region, path); } } kit.set_control(gvn.transform(region)); kit.set_i_o(gvn.transform(iophi)); // Transform new memory Phis. for (MergeMemStream mms(kit.merged_memory()); mms.next_non_empty();) { Node* phi = mms.memory(); if (phi->is_Phi() && phi->in(0) == region) { mms.set_memory(gvn.transform(phi)); } } // Merge debug info. Node** ins = NEW_RESOURCE_ARRAY(Node*, results); uint tos = kit.jvms()->stkoff() + kit.sp(); Node* map = kit.map(); uint limit = map->req(); for (uint i = TypeFunc::Parms; i < limit; i++) { // Skip unused stack slots; fast forward to monoff(); if (i == tos) { i = kit.jvms()->monoff(); if( i >= limit ) break; } Node* n = map->in(i); ins[0] = n; const Type* t = gvn.type(n); bool needs_phi = false; for (int j = 1; j < results; j++) { JVMState* jvms = result_jvms[j]; Node* jmap = jvms->map(); Node* m = NULL; if (jmap->req() > i) { m = jmap->in(i); if (m != n) { needs_phi = true; t = t->meet_speculative(gvn.type(m)); } } ins[j] = m; } if (needs_phi) { Node* phi = PhiNode::make(region, n, t); for (int j = 1; j < results; j++) { phi->set_req(j + 1, ins[j]); } map->set_req(i, gvn.transform(phi)); } } return kit.transfer_exceptions_into_jvms(); }
void LateInlineCallGenerator::do_late_inline() { // Can't inline it if (call_node() == NULL || call_node()->outcnt() == 0 || call_node()->in(0) == NULL || call_node()->in(0)->is_top()) return; CallStaticJavaNode* call = call_node(); // Make a clone of the JVMState that appropriate to use for driving a parse Compile* C = Compile::current(); JVMState* jvms = call->jvms()->clone_shallow(C); uint size = call->req(); SafePointNode* map = new (C, size) SafePointNode(size, jvms); for (uint i1 = 0; i1 < size; i1++) { map->init_req(i1, call->in(i1)); } // Make sure the state is a MergeMem for parsing. if (!map->in(TypeFunc::Memory)->is_MergeMem()) { map->set_req(TypeFunc::Memory, MergeMemNode::make(C, map->in(TypeFunc::Memory))); } // Make enough space for the expression stack and transfer the incoming arguments int nargs = method()->arg_size(); jvms->set_map(map); map->ensure_stack(jvms, jvms->method()->max_stack()); if (nargs > 0) { for (int i1 = 0; i1 < nargs; i1++) { map->set_req(i1 + jvms->argoff(), call->in(TypeFunc::Parms + i1)); } } CompileLog* log = C->log(); if (log != NULL) { log->head("late_inline method='%d'", log->identify(method())); JVMState* p = jvms; while (p != NULL) { log->elem("jvms bci='%d' method='%d'", p->bci(), log->identify(p->method())); p = p->caller(); } log->tail("late_inline"); } // Setup default node notes to be picked up by the inlining Node_Notes* old_nn = C->default_node_notes(); if (old_nn != NULL) { Node_Notes* entry_nn = old_nn->clone(C); entry_nn->set_jvms(jvms); C->set_default_node_notes(entry_nn); } // Now perform the inling using the synthesized JVMState JVMState* new_jvms = _inline_cg->generate(jvms); if (new_jvms == NULL) return; // no change if (C->failing()) return; // Capture any exceptional control flow GraphKit kit(new_jvms); // Find the result object Node* result = C->top(); int result_size = method()->return_type()->size(); if (result_size != 0 && !kit.stopped()) { result = (result_size == 1) ? kit.pop() : kit.pop_pair(); } kit.replace_call(call, result); }
//------------------------------array_store_check------------------------------ // pull array from stack and check that the store is valid void Parse::array_store_check() { // Shorthand access to array store elements without popping them. Node *obj = peek(0); Node *idx = peek(1); Node *ary = peek(2); if (_gvn.type(obj) == TypePtr::NULL_PTR) { // There's never a type check on null values. // This cutout lets us avoid the uncommon_trap(Reason_array_check) // below, which turns into a performance liability if the // gen_checkcast folds up completely. return; } // Extract the array klass type int klass_offset = oopDesc::klass_offset_in_bytes(); Node* p = basic_plus_adr( ary, ary, klass_offset ); // p's type is array-of-OOPS plus klass_offset Node* array_klass = _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, TypeInstPtr::KLASS)); // Get the array klass const TypeKlassPtr *tak = _gvn.type(array_klass)->is_klassptr(); // The type of array_klass is usually INexact array-of-oop. Heroically // cast array_klass to EXACT array and uncommon-trap if the cast fails. // Make constant out of the inexact array klass, but use it only if the cast // succeeds. bool always_see_exact_class = false; if (MonomorphicArrayCheck && !too_many_traps(Deoptimization::Reason_array_check) && !tak->klass_is_exact() && tak != TypeKlassPtr::OBJECT) { // Regarding the fourth condition in the if-statement from above: // // If the compiler has determined that the type of array 'ary' (represented // by 'array_klass') is java/lang/Object, the compiler must not assume that // the array 'ary' is monomorphic. // // If 'ary' were of type java/lang/Object, this arraystore would have to fail, // because it is not possible to perform a arraystore into an object that is not // a "proper" array. // // Therefore, let's obtain at runtime the type of 'ary' and check if we can still // successfully perform the store. // // The implementation reasons for the condition are the following: // // java/lang/Object is the superclass of all arrays, but it is represented by the VM // as an InstanceKlass. The checks generated by gen_checkcast() (see below) expect // 'array_klass' to be ObjArrayKlass, which can result in invalid memory accesses. // // See issue JDK-8057622 for details. always_see_exact_class = true; // (If no MDO at all, hope for the best, until a trap actually occurs.) // Make a constant out of the inexact array klass const TypeKlassPtr *extak = tak->cast_to_exactness(true)->is_klassptr(); Node* con = makecon(extak); Node* cmp = _gvn.transform(new CmpPNode( array_klass, con )); Node* bol = _gvn.transform(new BoolNode( cmp, BoolTest::eq )); Node* ctrl= control(); { BuildCutout unless(this, bol, PROB_MAX); uncommon_trap(Deoptimization::Reason_array_check, Deoptimization::Action_maybe_recompile, tak->klass()); } if (stopped()) { // MUST uncommon-trap? set_control(ctrl); // Then Don't Do It, just fall into the normal checking } else { // Cast array klass to exactness: // Use the exact constant value we know it is. replace_in_map(array_klass,con); CompileLog* log = C->log(); if (log != NULL) { log->elem("cast_up reason='monomorphic_array' from='%d' to='(exact)'", log->identify(tak->klass())); } array_klass = con; // Use cast value moving forward } } // Come here for polymorphic array klasses // Extract the array element class int element_klass_offset = in_bytes(ObjArrayKlass::element_klass_offset()); Node *p2 = basic_plus_adr(array_klass, array_klass, element_klass_offset); // We are allowed to use the constant type only if cast succeeded. If always_see_exact_class is true, // we must set a control edge from the IfTrue node created by the uncommon_trap above to the // LoadKlassNode. Node* a_e_klass = _gvn.transform(LoadKlassNode::make(_gvn, always_see_exact_class ? control() : NULL, immutable_memory(), p2, tak)); // Check (the hard way) and throw if not a subklass. // Result is ignored, we just need the CFG effects. gen_checkcast(obj, a_e_klass); }
void Compilation::build_hir() { CHECK_BAILOUT(); // setup ir CompileLog* log = this->log(); if (log != NULL) { log->begin_head("parse method='%d' ", log->identify(_method)); log->stamp(); log->end_head(); } _hir = new IR(this, method(), osr_bci()); if (log) log->done("parse"); if (!_hir->is_valid()) { bailout("invalid parsing"); return; } #ifndef PRODUCT if (PrintCFGToFile) { CFGPrinter::print_cfg(_hir, "After Generation of HIR", true, false); } #endif #ifndef PRODUCT if (PrintCFG || PrintCFG0) { tty->print_cr("CFG after parsing"); _hir->print(true); } if (PrintIR || PrintIR0 ) { tty->print_cr("IR after parsing"); _hir->print(false); } #endif _hir->verify(); if (UseC1Optimizations) { NEEDS_CLEANUP // optimization PhaseTraceTime timeit(_t_optimize_blocks); _hir->optimize_blocks(); } _hir->verify(); _hir->split_critical_edges(); #ifndef PRODUCT if (PrintCFG || PrintCFG1) { tty->print_cr("CFG after optimizations"); _hir->print(true); } if (PrintIR || PrintIR1 ) { tty->print_cr("IR after optimizations"); _hir->print(false); } #endif _hir->verify(); // compute block ordering for code generation // the control flow must not be changed from here on _hir->compute_code(); if (UseGlobalValueNumbering) { // No resource mark here! LoopInvariantCodeMotion can allocate ValueStack objects. int instructions = Instruction::number_of_instructions(); GlobalValueNumbering gvn(_hir); assert(instructions == Instruction::number_of_instructions(), "shouldn't have created an instructions"); } _hir->verify(); #ifndef PRODUCT if (PrintCFGToFile) { CFGPrinter::print_cfg(_hir, "Before RangeCheckElimination", true, false); } #endif if (RangeCheckElimination) { if (_hir->osr_entry() == NULL) { PhaseTraceTime timeit(_t_rangeCheckElimination); RangeCheckElimination::eliminate(_hir); } } #ifndef PRODUCT if (PrintCFGToFile) { CFGPrinter::print_cfg(_hir, "After RangeCheckElimination", true, false); } #endif if (UseC1Optimizations) { // loop invariant code motion reorders instructions and range // check elimination adds new instructions so do null check // elimination after. NEEDS_CLEANUP // optimization PhaseTraceTime timeit(_t_optimize_null_checks); _hir->eliminate_null_checks(); } _hir->verify(); // compute use counts after global value numbering _hir->compute_use_counts(); #ifndef PRODUCT if (PrintCFG || PrintCFG2) { tty->print_cr("CFG before code generation"); _hir->code()->print(true); } if (PrintIR || PrintIR2 ) { tty->print_cr("IR before code generation"); _hir->code()->print(false, true); } #endif _hir->verify(); }