template <typename PointSource, typename PointTarget, typename Scalar> inline void pcl::registration::TransformationEstimationSVD<PointSource, PointTarget, Scalar>::estimateRigidTransformation ( ConstCloudIterator<PointSource>& source_it, ConstCloudIterator<PointTarget>& target_it, Matrix4 &transformation_matrix) const { // Convert to Eigen format const int npts = static_cast <int> (source_it.size ()); Eigen::Matrix<Scalar, 3, Eigen::Dynamic> cloud_src (3, npts); Eigen::Matrix<Scalar, 3, Eigen::Dynamic> cloud_tgt (3, npts); for (int i = 0; i < npts; ++i) { cloud_src (0, i) = source_it->x; cloud_src (1, i) = source_it->y; cloud_src (2, i) = source_it->z; ++source_it; cloud_tgt (0, i) = target_it->x; cloud_tgt (1, i) = target_it->y; cloud_tgt (2, i) = target_it->z; ++target_it; } if (use_umeyama_) { // Call Umeyama directly from Eigen (PCL patched version until Eigen is released) transformation_matrix = pcl::umeyama (cloud_src, cloud_tgt, false); } else { source_it.reset (); target_it.reset (); // <cloud_src,cloud_src> is the source dataset transformation_matrix.setIdentity (); Eigen::Matrix<Scalar, 4, 1> centroid_src, centroid_tgt; // Estimate the centroids of source, target compute3DCentroid (source_it, centroid_src); compute3DCentroid (target_it, centroid_tgt); source_it.reset (); target_it.reset (); // Subtract the centroids from source, target Eigen::Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic> cloud_src_demean, cloud_tgt_demean; demeanPointCloud (source_it, centroid_src, cloud_src_demean); demeanPointCloud (target_it, centroid_tgt, cloud_tgt_demean); getTransformationFromCorrelation (cloud_src_demean, centroid_src, cloud_tgt_demean, centroid_tgt, transformation_matrix); } }
template <typename PointT, typename Scalar> void pcl::demeanPointCloud (ConstCloudIterator<PointT> &cloud_iterator, const Eigen::Matrix<Scalar, 4, 1> ¢roid, Eigen::Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic> &cloud_out, int npts) { // Calculate the number of points if not given if (npts == 0) { while (cloud_iterator.isValid ()) { ++npts; ++cloud_iterator; } cloud_iterator.reset (); } cloud_out = Eigen::Matrix<Scalar, 4, Eigen::Dynamic>::Zero (4, npts); // keep the data aligned int i = 0; while (cloud_iterator.isValid ()) { cloud_out (0, i) = cloud_iterator->x - centroid[0]; cloud_out (1, i) = cloud_iterator->y - centroid[1]; cloud_out (2, i) = cloud_iterator->z - centroid[2]; ++i; ++cloud_iterator; } }
template <typename PointT, typename Scalar> void pcl::demeanPointCloud (ConstCloudIterator<PointT> &cloud_iterator, const Eigen::Matrix<Scalar, 4, 1> ¢roid, pcl::PointCloud<PointT> &cloud_out, int npts) { // Calculate the number of points if not given if (npts == 0) { while (cloud_iterator.isValid ()) { ++npts; ++cloud_iterator; } cloud_iterator.reset (); } int i = 0; cloud_out.resize (npts); // Subtract the centroid from cloud_in while (cloud_iterator.isValid ()) { cloud_out[i].x = cloud_iterator->x - centroid[0]; cloud_out[i].y = cloud_iterator->y - centroid[1]; cloud_out[i].z = cloud_iterator->z - centroid[2]; ++i; ++cloud_iterator; } cloud_out.width = cloud_out.size (); cloud_out.height = 1; }
TEST (PCL, compute3DCentroidCloudIterator) { pcl::PointIndices pindices; std::vector<int> indices; PointXYZ point; PointCloud<PointXYZ> cloud; Eigen::Vector4f centroid_f; for (point.x = -1; point.x < 2; point.x += 2) { for (point.y = -1; point.y < 2; point.y += 2) { for (point.z = -1; point.z < 2; point.z += 2) { cloud.push_back (point); } } } cloud.is_dense = true; indices.resize (4); // only positive y values indices [0] = 2; indices [1] = 3; indices [2] = 6; indices [3] = 7; // Test finite data { ConstCloudIterator<PointXYZ> it (cloud, indices); EXPECT_EQ (compute3DCentroid (it, centroid_f), 4); EXPECT_EQ (centroid_f[0], 0.0f); EXPECT_EQ (centroid_f[1], 1.0f); EXPECT_EQ (centroid_f[2], 0.0f); EXPECT_EQ (centroid_f[3], 1.0f); Eigen::Vector4d centroid_d; it.reset (); EXPECT_EQ (compute3DCentroid (it, centroid_d), 4); EXPECT_EQ (centroid_d[0], 0.0); EXPECT_EQ (centroid_d[1], 1.0); EXPECT_EQ (centroid_d[2], 0.0); EXPECT_EQ (centroid_d[3], 1.0); } // Test for non-finite data { point.getVector3fMap() << std::numeric_limits<float>::quiet_NaN (), std::numeric_limits<float>::quiet_NaN (), std::numeric_limits<float>::quiet_NaN (); cloud.push_back (point); cloud.is_dense = false; ConstCloudIterator<PointXYZ> it (cloud); EXPECT_EQ (8, compute3DCentroid (it, centroid_f)); EXPECT_EQ_VECTORS (Eigen::Vector4f (0.f, 0.f, 0.f, 1.f), centroid_f); } }
template <typename PointSource, typename PointTarget, typename Scalar> inline void pcl::registration::TransformationEstimationTranslation<PointSource, PointTarget, Scalar>::estimateRigidTransformation ( ConstCloudIterator<PointSource>& source_it, ConstCloudIterator<PointTarget>& target_it, Matrix4 &transformation_matrix) const { source_it.reset (); target_it.reset (); // <cloud_src,cloud_src> is the source dataset transformation_matrix.setIdentity (); Eigen::Matrix<Scalar, 4, 1> centroid_src, centroid_tgt; // Estimate the centroids of source, target compute3DCentroid (source_it, centroid_src); compute3DCentroid (target_it, centroid_tgt); source_it.reset (); target_it.reset (); getTransformationFromCorrelation (centroid_src, centroid_tgt, transformation_matrix); }
template <typename PointSource, typename PointTarget, typename Scalar> inline void pcl::registration::TransformationEstimation2D<PointSource, PointTarget, Scalar>::estimateRigidTransformation ( ConstCloudIterator<PointSource>& source_it, ConstCloudIterator<PointTarget>& target_it, Matrix4 &transformation_matrix) const { source_it.reset (); target_it.reset (); Eigen::Matrix<Scalar, 4, 1> centroid_src, centroid_tgt; // Estimate the centroids of source, target compute3DCentroid (source_it, centroid_src); compute3DCentroid (target_it, centroid_tgt); source_it.reset (); target_it.reset (); // ignore z component centroid_src[2] = 0.0f; centroid_tgt[2] = 0.0f; // Subtract the centroids from source, target Eigen::Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic> cloud_src_demean, cloud_tgt_demean; demeanPointCloud (source_it, centroid_src, cloud_src_demean); demeanPointCloud (target_it, centroid_tgt, cloud_tgt_demean); getTransformationFromCorrelation (cloud_src_demean, centroid_src, cloud_tgt_demean, centroid_tgt, transformation_matrix); }