DETOUR_DECL_MEMBER(void, CTFTankBoss_TankBossThink)
	{
		static CountdownTimer ctNodes;
		
		if (ctNodes.IsElapsed()) {
			ctNodes.Start(0.5f);
			
			ForEachEntityByRTTI<CPathTrack>([](CPathTrack *node){
				NDebugOverlay::Box(node->GetAbsOrigin(), Vector(-10.0f, -10.0f, -10.0f), Vector(10.0f, 10.0f, 10.0f),
					0xff, 0xff, 0xff, 0x80, 0.5f);
				NDebugOverlay::EntityTextAtPosition(node->GetAbsOrigin(), 0, CFmtStrN<16>("#%d", i), 0.5f, 0xff, 0xff, 0xff, 0xff);
				
				CPathTrack *next = node->GetNext();
				if (next != nullptr) {
					NDebugOverlay::HorzArrow(node->GetAbsOrigin(), next->GetAbsOrigin(), 3.0f, 0xff, 0xff, 0xff, 0xff, true, 0.5f);
				}
			});
		}
		
		auto tank = reinterpret_cast<CTFTankBoss *>(this);
		
		NDebugOverlay::EntityText(ENTINDEX(tank), 0, CFmtStrN<256>("%.1f%%", GetTankProgress(tank) * 100.0f),
			gpGlobals->interval_per_tick, 0xff, 0xff, 0xff, 0xff);
		
	//	NDebugOverlay::EntityText(ENTINDEX(tank), 0, CFmtStrN<256>("m_hCurrentNode:    #%d", ENTINDEX(*m_hCurrentNode)),
	//		gpGlobals->interval_per_tick, 0xff, 0xff, 0xff, 0xff);
	//	NDebugOverlay::EntityText(ENTINDEX(tank), 1, CFmtStrN<256>("m_iCurrentNode:    %d", *m_iCurrentNode),
	//		gpGlobals->interval_per_tick, 0xff, 0xff, 0xff, 0xff);
	//	NDebugOverlay::EntityText(ENTINDEX(tank), 2, CFmtStrN<256>("m_flTotalDistance: %.0f", *m_flTotalDistance),
	//		gpGlobals->interval_per_tick, 0xff, 0xff, 0xff, 0xff);
	//	NDebugOverlay::EntityText(ENTINDEX(tank), 3, CFmtStrN<256>("m_NodeDists[i]:    %.0f", (*m_NodeDists)[*m_iCurrentNode]),
	//		gpGlobals->interval_per_tick, 0xff, 0xff, 0xff, 0xff);
		
		DETOUR_MEMBER_CALL(CTFTankBoss_TankBossThink)();
	}
Exemple #2
0
//-----------------------------------------------------------------------------
void C_Fish::ClientThink()
{
	if (FishDebug.GetBool())
	{
		debugoverlay->AddLineOverlay( m_pos, m_actualPos, 255, 0, 0, true, 0.1f );
		switch( m_localLifeState )
		{
			case LIFE_DYING:
				debugoverlay->AddTextOverlay( m_pos, 0.1f, "DYING" );
				break;

			case LIFE_DEAD:
				debugoverlay->AddTextOverlay( m_pos, 0.1f, "DEAD" );
				break;
		}
	}

	float deltaT = gpGlobals->frametime;


	// check if we just died
	if (m_localLifeState == LIFE_ALIVE && m_lifeState != LIFE_ALIVE)
	{
		// we have died
		m_localLifeState = LIFE_DYING;

		m_deathDepth = m_pos.z;

		// determine surface float angle
		m_deathAngle = RandomFloat( 87.0f, 93.0f ) * ((RandomInt( 0, 100 ) < 50) ? 1.0f : -1.0f);
	}


	switch( m_localLifeState )
	{
		case LIFE_DYING:
		{
			// depth parameter
			float t = (m_pos.z - m_deathDepth) / (m_waterLevel - m_deathDepth);
			t *= t;

			// roll onto side
			m_angles.z = m_deathAngle * t;

			// float to surface
			const float fudge = 2.0f;
			if (m_pos.z < m_waterLevel - fudge)
			{
				m_vel.z += (1.0f - t) * m_buoyancy * deltaT;
			}
			else
			{
				m_localLifeState = LIFE_DEAD;
			}

			break;
		}

		case LIFE_DEAD:
		{
			// depth parameter
			float t = (m_pos.z - m_deathDepth) / (m_waterLevel - m_deathDepth);
			t *= t;

			// roll onto side
			m_angles.z = m_deathAngle * t;

			// keep near water surface
			const float sub = 0.5f;
			m_vel.z += 10.0f * (m_waterLevel - m_pos.z - sub) * deltaT;

			// bob on surface
			const float rollAmp = 5.0f;
			const float rollFreq = 2.33f;
			m_angles.z += rollAmp * sin( rollFreq * (gpGlobals->curtime + 10.0f * entindex()) ) * deltaT;

			const float rollAmp2 = 7.0f;
			const float rollFreq2 = 4.0f;
			m_angles.x += rollAmp2 * sin( rollFreq2 * (gpGlobals->curtime + 10.0f * entindex()) ) * deltaT;

			const float bobAmp = 0.75f;
			const float bobFreq = 4.0f;
			m_vel.z += bobAmp * sin( bobFreq * (gpGlobals->curtime + 10.0f * entindex()) ) * deltaT;

			const float bobAmp2 = 0.75f;
			const float bobFreq2 = 3.333f;
			m_vel.z += bobAmp2 * sin( bobFreq2 * (gpGlobals->curtime + 10.0f * entindex()) ) * deltaT;

			// decay movement speed to zero
			const float drag = 1.0f;
			m_vel.z -= drag * m_vel.z * deltaT;

			break;
		}

		case LIFE_ALIVE:
		{
			// use server-side Z coordinate directly
			m_pos.z = m_actualPos.z;

			// use server-side angles
			m_angles = m_actualAngles;

			// fishy wiggle based on movement
			if (!m_wiggleTimer.IsElapsed())
			{
				float swimPower = 1.0f - (m_wiggleTimer.GetElapsedTime() / m_wiggleTimer.GetCountdownDuration());
				const float amp = 6.0f * swimPower;
				float wiggle = amp * sin( m_wigglePhase );

				m_wigglePhase += m_wiggleRate * deltaT;

				// wiggle decay
				const float wiggleDecay = 5.0f;
				m_wiggleRate -= wiggleDecay * deltaT;

				m_angles.y += wiggle;
			}

			break;
		}
	}

	// compute error between our local position and actual server position
	Vector error = m_actualPos - m_pos;
	error.z = 0.0f;
	float errorLen = error.Length();

	if (m_localLifeState == LIFE_ALIVE)
	{
		// if error is far above average, start swimming
		const float wiggleThreshold = 2.0f;
		if (errorLen - m_averageError > wiggleThreshold)
		{
			// if error is large, we must have started swimming
			const float swimTime = 5.0f;
			m_wiggleTimer.Start( swimTime );

			m_wiggleRate = 2.0f * errorLen;

			const float maxWiggleRate = 30.0f;
			if (m_wiggleRate > maxWiggleRate)
			{
				m_wiggleRate = maxWiggleRate;
			}
		}

		// update average error
		m_errorHistory[ m_errorHistoryIndex++ ] = errorLen;
		if (m_errorHistoryIndex >= MAX_ERROR_HISTORY)
		{
			m_errorHistoryIndex = 0;
			m_errorHistoryCount = MAX_ERROR_HISTORY;
		}
		else if (m_errorHistoryCount < MAX_ERROR_HISTORY)
		{
			++m_errorHistoryCount;
		}

		m_averageError = 0.0f;
		if (m_errorHistoryCount)
		{
			for( int r=0; r<m_errorHistoryCount; ++r )
			{
				m_averageError += m_errorHistory[r];
			}
			m_averageError /= (float)m_errorHistoryCount;
		}
	}

	// keep fish motion smooth by correcting towards actual server position
	// NOTE: This only tracks XY motion
	const float maxError = 20.0f;
	float errorT = errorLen / maxError;
	if (errorT > 1.0f)
	{
		errorT = 1.0f;
	}

	// we want a nonlinear spring force for tracking
	errorT *= errorT;

	// as fish move faster, their error increases - use a stiffer spring when fast, and a weak one when slow
	const float trackRate = 0.0f + errorT * 115.0f;
	m_vel.x += trackRate * error.x * deltaT;
	m_vel.y += trackRate * error.y * deltaT;

	const float trackDrag = 2.0f + errorT * 6.0f;
	m_vel.x -= trackDrag * m_vel.x * deltaT;
	m_vel.y -= trackDrag * m_vel.y * deltaT;


	// euler integration
	m_pos += m_vel * deltaT;

	SetNetworkOrigin( m_pos );
	SetAbsOrigin( m_pos );

	SetNetworkAngles( m_angles );
	SetAbsAngles( m_angles );
}