CoverTree<MetricType, StatisticType, MatType, RootPointPolicy>::CoverTree( const CoverTree& other) : dataset((other.parent == NULL && other.localDataset) ? new MatType(*other.dataset) : other.dataset), point(other.point), scale(other.scale), base(other.base), stat(other.stat), numDescendants(other.numDescendants), parent(other.parent), parentDistance(other.parentDistance), furthestDescendantDistance(other.furthestDescendantDistance), localMetric(false), localDataset(other.parent == NULL && other.localDataset), metric(other.metric), distanceComps(0) { // Copy each child by hand. for (size_t i = 0; i < other.NumChildren(); ++i) { children.push_back(new CoverTree(other.Child(i))); children[i]->Parent() = this; } // Propagate matrix, but only if we are the root. if (parent == NULL && localDataset) { std::queue<CoverTree*> queue; for (size_t i = 0; i < NumChildren(); ++i) queue.push(children[i]); while (!queue.empty()) { CoverTree* node = queue.front(); queue.pop(); node->dataset = dataset; for (size_t i = 0; i < node->NumChildren(); ++i) queue.push(node->children[i]); } } }
CoverTree<MetricType, StatisticType, MatType, RootPointPolicy>::CoverTree( const CoverTree& other) : dataset((other.parent == NULL) ? new MatType(*other.dataset) : NULL), point(other.point), scale(other.scale), base(other.base), stat(other.stat), numDescendants(other.numDescendants), parent(other.parent), parentDistance(other.parentDistance), furthestDescendantDistance(other.furthestDescendantDistance), localMetric(false), localDataset(other.parent == NULL), metric(other.metric), distanceComps(0) { // Copy each child by hand. for (size_t i = 0; i < other.NumChildren(); ++i) { children.push_back(new CoverTree(other.Child(i))); children[i]->Parent() = this; children[i]->dataset = this->dataset; } }
void CoverTree<MetricType, StatisticType, MatType, RootPointPolicy>:: SingleTreeTraverser<RuleType>::Traverse( const size_t queryIndex, CoverTree& referenceNode) { // This is a non-recursive implementation (which should be faster than a // recursive implementation). typedef CoverTreeMapEntry<MetricType, StatisticType, MatType, RootPointPolicy> MapEntryType; // We will use this map as a priority queue. Each key represents the scale, // and then the vector is all the nodes in that scale which need to be // investigated. Because no point in a scale can add a point in its own // scale, we know that the vector for each scale is final when we get to it. // In addition, map is organized in such a way that rbegin() will return the // largest scale. std::map<int, std::vector<MapEntryType> > mapQueue; // Create the score for the children. double rootChildScore = rule.Score(queryIndex, referenceNode); if (rootChildScore == DBL_MAX) { numPrunes += referenceNode.NumChildren(); } else { // Manually add the children of the first node. // Often, a ruleset will return without doing any computation on cover trees // using TreeTraits::FirstPointIsCentroid; this is an optimization that // (theoretically) the compiler should get right. double rootBaseCase = rule.BaseCase(queryIndex, referenceNode.Point()); // Don't add the self-leaf. size_t i = 0; if (referenceNode.Child(0).NumChildren() == 0) { ++numPrunes; i = 1; } for (/* i was set above. */; i < referenceNode.NumChildren(); ++i) { MapEntryType newFrame; newFrame.node = &referenceNode.Child(i); newFrame.score = rootChildScore; newFrame.baseCase = rootBaseCase; newFrame.parent = referenceNode.Point(); // Put it into the map. mapQueue[newFrame.node->Scale()].push_back(newFrame); } } // Now begin the iteration through the map, but only if it has anything in it. if (mapQueue.empty()) return; typename std::map<int, std::vector<MapEntryType> >::reverse_iterator rit = mapQueue.rbegin(); // We will treat the leaves differently (below). while ((*rit).first != INT_MIN) { // Get a reference to the current scale. std::vector<MapEntryType>& scaleVector = (*rit).second; // Before traversing all the points in this scale, sort by score. std::sort(scaleVector.begin(), scaleVector.end()); // Now loop over each element. for (size_t i = 0; i < scaleVector.size(); ++i) { // Get a reference to the current element. const MapEntryType& frame = scaleVector.at(i); CoverTree* node = frame.node; const double score = frame.score; const size_t parent = frame.parent; const size_t point = node->Point(); double baseCase = frame.baseCase; // First we recalculate the score of this node to find if we can prune it. if (rule.Rescore(queryIndex, *node, score) == DBL_MAX) { ++numPrunes; continue; } // Create the score for the children. const double childScore = rule.Score(queryIndex, *node); // Now if this childScore is DBL_MAX we can prune all children. In this // recursion setup pruning is all or nothing for children. if (childScore == DBL_MAX) { numPrunes += node->NumChildren(); continue; } // If we are a self-child, the base case has already been evaluated. // Often, a ruleset will return without doing any computation on cover // trees using TreeTraits::FirstPointIsCentroid; this is an optimization // that (theoretically) the compiler should get right. if (point != parent) baseCase = rule.BaseCase(queryIndex, point); // Don't add the self-leaf. size_t j = 0; if (node->Child(0).NumChildren() == 0) { ++numPrunes; j = 1; } for (/* j is already set. */; j < node->NumChildren(); ++j) { MapEntryType newFrame; newFrame.node = &node->Child(j); newFrame.score = childScore; newFrame.baseCase = baseCase; newFrame.parent = point; mapQueue[newFrame.node->Scale()].push_back(newFrame); } } // Now clear the memory for this scale; it isn't needed anymore. mapQueue.erase((*rit).first); } // Now deal with the leaves. for (size_t i = 0; i < mapQueue[INT_MIN].size(); ++i) { const MapEntryType& frame = mapQueue[INT_MIN].at(i); CoverTree* node = frame.node; const double score = frame.score; const size_t point = node->Point(); // First, recalculate the score of this node to find if we can prune it. double rescore = rule.Rescore(queryIndex, *node, score); if (rescore == DBL_MAX) { ++numPrunes; continue; } // For this to be a valid dual-tree algorithm, we *must* evaluate the // combination, even if pruning it will make no difference. It's the // definition. const double actualScore = rule.Score(queryIndex, *node); if (actualScore == DBL_MAX) { ++numPrunes; continue; } else { // Evaluate the base case, since the combination was not pruned. // Often, a ruleset will return without doing any computation on cover // trees using TreeTraits::FirstPointIsCentroid; this is an optimization // that (theoretically) the compiler should get right. rule.BaseCase(queryIndex, point); } } }
CoverTree<MetricType, StatisticType, MatType, RootPointPolicy>::CoverTree( MatType&& data, MetricType& metric, const ElemType base) : dataset(new MatType(std::move(data))), point(RootPointPolicy::ChooseRoot(dataset)), scale(INT_MAX), base(base), numDescendants(0), parent(NULL), parentDistance(0), furthestDescendantDistance(0), localMetric(false), localDataset(true), metric(&metric), distanceComps(0) { // If there is only one point or zero points in the dataset... uh, we're done. // Technically, if the dataset has zero points, our node is not correct... if (dataset->n_cols <= 1) return; // Kick off the building. Create the indices array and the distances array. arma::Col<size_t> indices = arma::linspace<arma::Col<size_t> >(1, dataset->n_cols - 1, dataset->n_cols - 1); // This is now [1 2 3 4 ... n]. We must be sure that our point does not // occur. if (point != 0) indices[point - 1] = 0; // Put 0 back into the set; remove what was there. arma::vec distances(dataset->n_cols - 1); // Build the initial distances. ComputeDistances(point, indices, distances, dataset->n_cols - 1); // Create the children. size_t farSetSize = 0; size_t usedSetSize = 0; CreateChildren(indices, distances, dataset->n_cols - 1, farSetSize, usedSetSize); // If we ended up creating only one child, remove the implicit node. while (children.size() == 1) { // Prepare to delete the implicit child node. CoverTree* old = children[0]; // Now take its children and set their parent correctly. children.erase(children.begin()); for (size_t i = 0; i < old->NumChildren(); ++i) { children.push_back(&(old->Child(i))); // Set its parent correctly, and rebuild the statistic. old->Child(i).Parent() = this; old->Child(i).Stat() = StatisticType(old->Child(i)); } // Remove all the children so they don't get erased. old->Children().clear(); // Reduce our own scale. scale = old->Scale(); // Now delete it. delete old; } // Use the furthest descendant distance to determine the scale of the root // node. scale = (int) ceil(log(furthestDescendantDistance) / log(base)); // Initialize statistic. stat = StatisticType(*this); Log::Info << distanceComps << " distance computations during tree " << "construction." << std::endl; }
void CoverTree<MetricType, RootPointPolicy, StatisticType>:: DualTreeTraverser<RuleType>::Traverse( CoverTree<MetricType, RootPointPolicy, StatisticType>& queryNode, std::map<int, std::vector<DualCoverTreeMapEntry> >& referenceMap) { if (referenceMap.size() == 0) return; // Nothing to do! // First recurse down the reference nodes as necessary. ReferenceRecursion(queryNode, referenceMap); // Did the map get emptied? if (referenceMap.size() == 0) return; // Nothing to do! // Now, reduce the scale of the query node by recursing. But we can't recurse // if the query node is a leaf node. if ((queryNode.Scale() != INT_MIN) && (queryNode.Scale() >= (*referenceMap.rbegin()).first)) { // Recurse into the non-self-children first. The recursion order cannot // affect the runtime of the algorithm, because each query child recursion's // results are separate and independent. I don't think this is true in // every case, and we may have to modify this section to consider scores in // the future. for (size_t i = 1; i < queryNode.NumChildren(); ++i) { // We need a copy of the map for this child. std::map<int, std::vector<DualCoverTreeMapEntry> > childMap; PruneMap(queryNode.Child(i), referenceMap, childMap); Traverse(queryNode.Child(i), childMap); } std::map<int, std::vector<DualCoverTreeMapEntry> > selfChildMap; PruneMap(queryNode.Child(0), referenceMap, selfChildMap); Traverse(queryNode.Child(0), selfChildMap); } if (queryNode.Scale() != INT_MIN) return; // No need to evaluate base cases at this level. It's all done. // If we have made it this far, all we have is a bunch of base case // evaluations to do. Log::Assert((*referenceMap.begin()).first == INT_MIN); Log::Assert(queryNode.Scale() == INT_MIN); std::vector<DualCoverTreeMapEntry>& pointVector = (*referenceMap.begin()).second; for (size_t i = 0; i < pointVector.size(); ++i) { // Get a reference to the frame. const DualCoverTreeMapEntry& frame = pointVector[i]; CoverTree<MetricType, RootPointPolicy, StatisticType>* refNode = frame.referenceNode; // If the point is the same as both parents, then we have already done this // base case. if ((refNode->Point() == refNode->Parent()->Point()) && (queryNode.Point() == queryNode.Parent()->Point())) { ++numPrunes; continue; } // Score the node, to see if we can prune it, after restoring the traversal // info. rule.TraversalInfo() = frame.traversalInfo; double score = rule.Score(queryNode, *refNode); if (score == DBL_MAX) { ++numPrunes; continue; } // If not, compute the base case. rule.BaseCase(queryNode.Point(), pointVector[i].referenceNode->Point()); } }
void CoverTree<MetricType, RootPointPolicy, StatisticType>:: DualTreeTraverser<RuleType>::ReferenceRecursion( CoverTree& queryNode, std::map<int, std::vector<DualCoverTreeMapEntry> >& referenceMap) { // First, reduce the maximum scale in the reference map down to the scale of // the query node. while (!referenceMap.empty()) { // Hacky bullshit to imitate jl cover tree. if (queryNode.Parent() == NULL && (*referenceMap.rbegin()).first < queryNode.Scale()) break; if (queryNode.Parent() != NULL && (*referenceMap.rbegin()).first <= queryNode.Scale()) break; // If the query node's scale is INT_MIN and the reference map's maximum // scale is INT_MIN, don't try to recurse... if ((queryNode.Scale() == INT_MIN) && ((*referenceMap.rbegin()).first == INT_MIN)) break; // Get a reference to the current largest scale. std::vector<DualCoverTreeMapEntry>& scaleVector = (*referenceMap.rbegin()).second; // Before traversing all the points in this scale, sort by score. std::sort(scaleVector.begin(), scaleVector.end()); // Now loop over each element. for (size_t i = 0; i < scaleVector.size(); ++i) { // Get a reference to the current element. const DualCoverTreeMapEntry& frame = scaleVector.at(i); CoverTree<MetricType, RootPointPolicy, StatisticType>* refNode = frame.referenceNode; // Create the score for the children. double score = rule.Rescore(queryNode, *refNode, frame.score); // Now if this childScore is DBL_MAX we can prune all children. In this // recursion setup pruning is all or nothing for children. if (score == DBL_MAX) { ++numPrunes; continue; } // If it is not pruned, we must evaluate the base case. // Add the children. for (size_t j = 0; j < refNode->NumChildren(); ++j) { rule.TraversalInfo() = frame.traversalInfo; double childScore = rule.Score(queryNode, refNode->Child(j)); if (childScore == DBL_MAX) { ++numPrunes; continue; } // It wasn't pruned; evaluate the base case. const double baseCase = rule.BaseCase(queryNode.Point(), refNode->Child(j).Point()); DualCoverTreeMapEntry newFrame; newFrame.referenceNode = &refNode->Child(j); newFrame.score = childScore; // Use the score of the parent. newFrame.baseCase = baseCase; newFrame.traversalInfo = rule.TraversalInfo(); referenceMap[newFrame.referenceNode->Scale()].push_back(newFrame); } } // Now clear the memory for this scale; it isn't needed anymore. referenceMap.erase((*referenceMap.rbegin()).first); } }