// // Method: getDSNodeHandle() // // Description: // This method looks up the DSNodeHandle for a given LLVM value. The context // of the value is the specified function, although if it is a global value, // the DSNodeHandle may exist within the global DSGraph. // // Return value: // A DSNodeHandle for the value is returned. This DSNodeHandle could either // be in the function's DSGraph or from the GlobalsGraph. Note that the // DSNodeHandle may represent a NULL DSNode. // DSNodeHandle CompleteChecks::getDSNodeHandle (const Value * V, const Function * F) { // // Get access to the points-to results. // EQTDDataStructures & dsaPass = getAnalysis<EQTDDataStructures>(); // // Ensure that the function has a DSGraph // assert (dsaPass.hasDSGraph(*F) && "No DSGraph for function!\n"); // // Lookup the DSNode for the value in the function's DSGraph. // DSGraph * TDG = dsaPass.getDSGraph(*F); DSNodeHandle DSH = TDG->getNodeForValue(V); // // If the value wasn't found in the function's DSGraph, then maybe we can // find the value in the globals graph. // if ((DSH.isNull()) && (isa<GlobalValue>(V))) { // // Try looking up this DSNode value in the globals graph. Note that // globals are put into equivalence classes; we may need to first find the // equivalence class to which our global belongs, find the global that // represents all globals in that equivalence class, and then look up the // DSNode Handle for *that* global. // DSGraph * GlobalsGraph = TDG->getGlobalsGraph (); DSH = GlobalsGraph->getNodeForValue(V); if (DSH.isNull()) { // // DSA does not currently handle global aliases. // if (!isa<GlobalAlias>(V)) { // // We have to dig into the globalEC of the DSGraph to find the DSNode. // const GlobalValue * GV = dyn_cast<GlobalValue>(V); const GlobalValue * Leader; Leader = GlobalsGraph->getGlobalECs().getLeaderValue(GV); DSH = GlobalsGraph->getNodeForValue(Leader); } } } return DSH; }
void GraphBuilder::visitLoadInst(LoadInst &LI) { // // Create a DSNode for the pointer dereferenced by the load. If the DSNode // is NULL, do nothing more (this can occur if the load is loading from a // NULL pointer constant (bugpoint can generate such code). // DSNodeHandle Ptr = getValueDest(LI.getPointerOperand()); if (Ptr.isNull()) return; // Load from null // Make that the node is read from... Ptr.getNode()->setReadMarker(); // Ensure a typerecord exists... Ptr.getNode()->growSizeForType(LI.getType(), Ptr.getOffset()); if (isa<PointerType>(LI.getType())) setDestTo(LI, getLink(Ptr)); // check that it is the inserted value if(TypeInferenceOptimize) if(LI.hasOneUse()) if(StoreInst *SI = dyn_cast<StoreInst>(*(LI.use_begin()))) if(SI->getOperand(0) == &LI) { ++NumIgnoredInst; return; } Ptr.getNode()->mergeTypeInfo(LI.getType(), Ptr.getOffset()); }
void DSMonitor::witness(DSNodeHandle N, std::vector<Value*> VS, std::string M) { if (N.isNull() || N.getNode()->isCollapsedNode()) return; watch(N,VS,M); check(); }
// Method: getDSNodeHandle() // // Description: // This method looks up the DSNodeHandle for a given LLVM value. The context // of the value is the specified function, although if it is a global value, // the DSNodeHandle may exist within the global DSGraph. // // Return value: // A DSNodeHandle for the value is returned. This DSNodeHandle could either // be in the function's DSGraph or from the GlobalsGraph. Note that the // DSNodeHandle may represent a NULL DSNode. // template<class dsa> DSNodeHandle TypeSafety<dsa>::getDSNodeHandle (const Value * V, const Function * F) { // // Ensure that the function has a DSGraph // assert (dsaPass->hasDSGraph(*F) && "No DSGraph for function!\n"); // // Lookup the DSNode for the value in the function's DSGraph. // const DSGraph * TDG = dsaPass->getDSGraph(*F); DSNodeHandle DSH; if(TDG->hasNodeForValue(V)) DSH = TDG->getNodeForValue(V); // // If the value wasn't found in the function's DSGraph, then maybe we can // find the value in the globals graph. // if ((DSH.isNull()) && (isa<GlobalValue>(V))) { // // Try looking up this DSNode value in the globals graph. Note that // globals are put into equivalence classes; we may need to first find the // equivalence class to which our global belongs, find the global that // represents all globals in that equivalence class, and then look up the // DSNode Handle for *that* global. // DSH = getDSNodeHandle(cast<GlobalValue>(V)); } return DSH; }
// Method: getDSNodeHandle() // // Description: // This method looks up the DSNodeHandle for a given LLVM globalvalue. // The value is looked up in the globals graph // // Return value: // A DSNodeHandle for the value is returned. This DSNodeHandle is from // the GlobalsGraph. Note that the DSNodeHandle may represent a NULL DSNode. // template<class dsa> DSNodeHandle TypeSafety<dsa>::getDSNodeHandle(const GlobalValue *V) { DSNodeHandle DSH; const DSGraph * GlobalsGraph = dsaPass->getGlobalsGraph (); if(GlobalsGraph->hasNodeForValue(V)) { DSH = GlobalsGraph->getNodeForValue(V); } // // Try looking up this DSNode value in the globals graph. Note that // globals are put into equivalence classes; we may need to first find the // equivalence class to which our global belongs, find the global that // represents all globals in that equivalence class, and then look up the // DSNode Handle for *that* global. // if (DSH.isNull()) { // // DSA does not currently handle global aliases. // if (!isa<GlobalAlias>(V)) { // // We have to dig into the globalEC of the DSGraph to find the DSNode. // const GlobalValue * GV = dyn_cast<GlobalValue>(V); const GlobalValue * Leader; Leader = GlobalsGraph->getGlobalECs().getLeaderValue(GV); DSH = GlobalsGraph->getNodeForValue(Leader); } } return DSH; }
void GraphBuilder::visitVAArgInst(VAArgInst &I) { Module *M = FB->getParent(); Triple TargetTriple(M->getTargetTriple()); Triple::ArchType Arch = TargetTriple.getArch(); switch(Arch) { case Triple::x86_64: { // On x86_64, we have va_list as a struct {i32, i32, i8*, i8* } // The first i8* is where arguments generally go, but the second i8* can // be used also to pass arguments by register. // We model this by having both the i8*'s point to an array of pointers // to the arguments. DSNodeHandle Ptr = G.getVANodeFor(*FB); DSNodeHandle Dest = getValueDest(&I); if (Ptr.isNull()) return; // Make that the node is read and written Ptr.getNode()->setReadMarker()->setModifiedMarker(); // Not updating type info, as it is already a collapsed node if (isa<PointerType>(I.getType())) Dest.mergeWith(Ptr); return; } default: { assert(0 && "What frontend generates this?"); DSNodeHandle Ptr = getValueDest(I.getOperand(0)); //FIXME: also updates the argument if (Ptr.isNull()) return; // Make that the node is read and written Ptr.getNode()->setReadMarker()->setModifiedMarker(); // Ensure a type record exists. DSNode *PtrN = Ptr.getNode(); PtrN->mergeTypeInfo(I.getType(), Ptr.getOffset()); if (isa<PointerType>(I.getType())) setDestTo(I, getLink(Ptr)); } } }
void PoolRegisterElimination::removeTypeSafeRegistrations (const char * name) { // // Scan through all uses of the registration function and see if it can be // safely removed. If so, schedule it for removal. // std::vector<CallInst*> toBeRemoved; Function * F = intrinsic->getIntrinsic(name).F; // // Look for and record all registrations that can be deleted. // for (Value::use_iterator UI=F->use_begin(), UE=F->use_end(); UI != UE; ++UI) { // // Get the pointer to the registered object. // CallInst * CI = cast<CallInst>(*UI); Value * Ptr = intrinsic->getValuePointer(CI); // Lookup the DSNode for the value in the function's DSGraph. // DSGraph * TDG = dsaPass->getDSGraph(*(CI->getParent()->getParent())); DSNodeHandle DSH = TDG->getNodeForValue(Ptr); assert ((!(DSH.isNull())) && "No DSNode for Value!\n"); // // If the DSNode is type-safe and is never used as an array, then there // will never be a need to look it up in a splay tree, so remove its // registration. // DSNode * N = DSH.getNode(); if(!N->isArrayNode() && TS->isTypeSafe(Ptr, F)){ toBeRemoved.push_back(CI); } } // // Update the statistics. // if (toBeRemoved.size()) { RemovedRegistration += toBeRemoved.size(); TypeSafeRegistrations += toBeRemoved.size(); } // // Remove the unnecesary registrations. // std::vector<CallInst*>::iterator it, end; for (it = toBeRemoved.begin(), end = toBeRemoved.end(); it != end; ++it) { (*it)->eraseFromParent(); } }
void GraphBuilder::visitAtomicCmpXchgInst(AtomicCmpXchgInst &I) { if (isa<PointerType>(I.getType())) { visitInstruction (I); return; } // // Create a DSNode for the dereferenced pointer . If the DSNode is NULL, do // nothing more (this can occur if the pointer is a NULL constant; bugpoint // can generate such code). // DSNodeHandle Ptr = getValueDest(I.getPointerOperand()); if (Ptr.isNull()) return; // // Make that the memory object is read and written. // Ptr.getNode()->setReadMarker(); Ptr.getNode()->setModifiedMarker(); // // If the result of the compare-and-swap is a pointer, then we need to do // a few things: // o Merge the compare and swap values (which are pointers) with the result // o Merge the DSNode of the pointer *within* the memory object with the // DSNode of the compare, swap, and result DSNode. // if (isa<PointerType>(I.getType())) { // // Get the DSNodeHandle of the memory object returned from the load. Make // it the DSNodeHandle of the instruction's result. // DSNodeHandle FieldPtr = getLink (Ptr); setDestTo(I, getLink(Ptr)); // // Merge the result, compare, and swap values of the instruction. // FieldPtr.mergeWith (getValueDest (I.getCompareOperand())); FieldPtr.mergeWith (getValueDest (I.getNewValOperand())); } // // Modify the DSNode so that it has the loaded/written type at the // appropriate offset. // Ptr.getNode()->growSizeForType(I.getType(), Ptr.getOffset()); Ptr.getNode()->mergeTypeInfo(I.getType(), Ptr.getOffset()); return; }
// // TODO // template<class dsa> bool TypeSafety<dsa>::isFieldDisjoint (const GlobalValue * V, unsigned offset) { // // Get the DSNode for the specified value. // DSNodeHandle DH = getDSNodeHandle (V); DSNode *node = DH.getNode(); //unsigned offset = DH.getOffset(); DEBUG(errs() << " check fields overlap at: " << offset << "\n"); // // If there is no DSNode, claim that it is not type safe. // if (DH.isNull()) { return false; } // // If the DSNode is completely folded, then we know for sure that it is not // type-safe. // if (node->isNodeCompletelyFolded()) return false; // // If the memory object represented by this DSNode can be manipulated by // external code or DSA has otherwise not finished analyzing all operations // on it, declare it type-unsafe. // if (node->isExternalNode() || node->isIncompleteNode()) return false; // // If the pointer to the memory object came from some source not understood // by DSA or somehow came from/escapes to the realm of integers, declare it // type-unsafe. // if (node->isUnknownNode() || node->isIntToPtrNode() || node->isPtrToIntNode()) { return false; } return !((NodeInfo[node])[offset]); }
template<class dsa> bool TypeSafety<dsa>::isTypeSafe(const GlobalValue *V) { // // Get the DSNode for the specified value. // DSNodeHandle DH = getDSNodeHandle(V); // // If there is no DSNode, claim that it is not typesafe. // if (DH.isNull()) return false; // // See if the DSNode is one that we think is type-safe. // if (TypeSafeNodes.count (DH.getNode())) return true; return false; }
void DSMonitor::watch(DSNodeHandle N, std::vector<Value*> VS, std::string M) { if (N.isNull() || N.getNode()->isCollapsedNode()) { unwatch(); return; } this->N = N; this->VS = VS; this->message = M; DSGraph *G = N.getNode()->getParentGraph(); caption = getCaption(N.getNode(), G); if (!VS.empty()) { Instruction *I = getInstruction(VS[0]); if (I && I->getMetadata("dbg")) { const DebugLoc DL = I->getDebugLoc(); auto *scope = cast<DIScope>(DL.getScope()); location = scope->getFilename().str() + ":" + std::to_string(DL.getLine()) + ":" + std::to_string(DL.getCol()); } } }
void initialize(const Module *M, const DataStructures *DS) { parseValue(M); assert(V && "Failed to parse value?"); if (isa<GlobalValue>(V)) { DSGraph *G = DS->getGlobalsGraph(); assert(G->hasNodeForValue(V) && "Node not in specified graph!"); NH = G->getNodeForValue(V); } else { assert(F && "No function?"); DSGraph *G = DS->getDSGraph(*F); assert(G->hasNodeForValue(V) && "Node not in specified graph!"); NH = G->getNodeForValue(V); } // Handle offsets, if any // For each offset in the offsets vector, follow the link at that offset for (OffsetVectorTy::const_iterator I = offsets.begin(), E = offsets.end(); I != E; ++I ) { assert(!NH.isNull() && "Null NodeHandle?"); assert(NH.hasLink(*I) && "Handle doesn't have link?"); // Follow the offset NH = NH.getLink(*I); } }
void GraphBuilder::visitStoreInst(StoreInst &SI) { Type *StoredTy = SI.getOperand(0)->getType(); DSNodeHandle Dest = getValueDest(SI.getOperand(1)); if (Dest.isNull()) return; // Mark that the node is written to... Dest.getNode()->setModifiedMarker(); // Ensure a type-record exists... Dest.getNode()->growSizeForType(StoredTy, Dest.getOffset()); // Avoid adding edges from null, or processing non-"pointer" stores if (isa<PointerType>(StoredTy)) Dest.addEdgeTo(getValueDest(SI.getOperand(0))); if(TypeInferenceOptimize) if(SI.getOperand(0)->hasOneUse()) if(isa<LoadInst>(SI.getOperand(0))){ ++NumIgnoredInst; return; } Dest.getNode()->mergeTypeInfo(StoredTy, Dest.getOffset()); }
void GraphBuilder::visitAtomicRMWInst(AtomicRMWInst &I) { // // Create a DSNode for the dereferenced pointer . If the DSNode is NULL, do // nothing more (this can occur if the pointer is a NULL constant; bugpoint // can generate such code). // DSNodeHandle Ptr = getValueDest(I.getPointerOperand()); if (Ptr.isNull()) return; // // Make that the memory object is read and written. // Ptr.getNode()->setReadMarker(); Ptr.getNode()->setModifiedMarker(); // // Modify the DSNode so that it has the loaded/written type at the // appropriate offset. // Ptr.getNode()->growSizeForType(I.getType(), Ptr.getOffset()); Ptr.getNode()->mergeTypeInfo(I.getType(), Ptr.getOffset()); return; }
void PoolRegisterElimination::removeSingletonRegistrations (const char * name) { // // Scan through all uses of the registration function and see if it can be // safely removed. If so, schedule it for removal. // std::vector<CallInst*> toBeRemoved; Function * F = intrinsic->getIntrinsic(name).F; // // Look for and record all registrations that can be deleted. // for (Value::use_iterator UI=F->use_begin(), UE=F->use_end(); UI != UE; ++UI) { // // Get the pointer to the registered object. // CallInst * CI = cast<CallInst>(*UI); Value * Ptr = intrinsic->getValuePointer(CI); // // Lookup the DSNode for the value in the function's DSGraph. // DSGraph * TDG = dsaPass->getDSGraph(*(CI->getParent()->getParent())); DSNodeHandle DSH = TDG->getNodeForValue(Ptr); assert ((!(DSH.isNull())) && "No DSNode for Value!\n"); // // If the object being registered is the same size as that found in the // DSNode, then we know it's a singleton object. The run-time doesn't need // such objects registered in the splay trees, so we can remove the // registration function. // DSNode * N = DSH.getNode(); Value * Size = intrinsic->getObjectSize (Ptr->stripPointerCasts()); if (Size) { if (ConstantInt * C = dyn_cast<ConstantInt>(Size)) { unsigned long size = C->getZExtValue(); if (size == N->getSize()) { toBeRemoved.push_back(CI); continue; } } } } // // Update the statistics. // if (toBeRemoved.size()) { RemovedRegistration += toBeRemoved.size(); SingletonRegistrations += toBeRemoved.size(); } // // Remove the unnecesary registrations. // std::vector<CallInst*>::iterator it, end; for (it = toBeRemoved.begin(), end = toBeRemoved.end(); it != end; ++it) { (*it)->eraseFromParent(); } }
void GraphBuilder::visitCallSite(CallSite CS) { // // Get the called value. Strip off any casts which are lossless. // Value *Callee = CS.getCalledValue()->stripPointerCasts(); // Special case handling of certain libc allocation functions here. if (Function *F = dyn_cast<Function>(Callee)) if (F->isIntrinsic() && visitIntrinsic(CS, F)) return; //Can't do much about inline asm (yet!) if (isa<InlineAsm> (Callee)) { ++NumAsmCall; DSNodeHandle RetVal; Instruction *I = CS.getInstruction(); if (isa<PointerType > (I->getType())) RetVal = getValueDest(I); // Calculate the arguments vector... for (CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end(); I != E; ++I) if (isa<PointerType > ((*I)->getType())) RetVal.mergeWith(getValueDest(*I)); if (!RetVal.isNull()) RetVal.getNode()->foldNodeCompletely(); return; } // Set up the return value... DSNodeHandle RetVal; Instruction *I = CS.getInstruction(); if (isa<PointerType>(I->getType())) RetVal = getValueDest(I); DSNode *CalleeNode = 0; if (!isa<Function>(Callee)) { CalleeNode = getValueDest(Callee).getNode(); if (CalleeNode == 0) { DEBUG(errs() << "WARNING: Program is calling through a null pointer?\n" << *I); return; // Calling a null pointer? } } // NOTE: This code is identical to 'DSGraph::getDSCallSiteForCallSite', // the reason it's duplicated is because this calls getValueDest instead // of getNodeForValue to get the DSNodes for the arguments. Since we're in // local it's possible that we need to create a DSNode for the argument, as // opposed to getNodeForValue which simply retrieves the existing node. //Get the FunctionType for the called function const FunctionType *CalleeFuncType = DSCallSite::FunctionTypeOfCallSite(CS); int NumFixedArgs = CalleeFuncType->getNumParams(); // Sanity check--this really, really shouldn't happen if (!CalleeFuncType->isVarArg()) assert(CS.arg_size() == static_cast<unsigned>(NumFixedArgs) && "Too many arguments/incorrect function signature!"); std::vector<DSNodeHandle> Args; Args.reserve(CS.arg_end()-CS.arg_begin()); DSNodeHandle VarArgNH; // Calculate the arguments vector... // Add all fixed pointer arguments, then merge the rest together for (CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end(); I != E; ++I) if (isa<PointerType>((*I)->getType())) { DSNodeHandle ArgNode = getValueDest(*I); if (I - CS.arg_begin() < NumFixedArgs) { Args.push_back(ArgNode); } else { VarArgNH.mergeWith(ArgNode); } } // Add a new function call entry... if (CalleeNode) { ++NumIndirectCall; G.getFunctionCalls().push_back(DSCallSite(CS, RetVal, VarArgNH, CalleeNode, Args)); } else { ++NumDirectCall; G.getFunctionCalls().push_back(DSCallSite(CS, RetVal, VarArgNH, cast<Function>(Callee), Args)); } }
void GraphBuilder::visitGetElementPtrInst(User &GEP) { // // Ensure that the indexed pointer has a DSNode. // DSNodeHandle Value = getValueDest(GEP.getOperand(0)); if (Value.isNull()) Value = createNode(); // // There are a few quick and easy cases to handle. If the DSNode of the // indexed pointer is already folded, then we know that the result of the // GEP will have the same offset into the same DSNode // as the indexed pointer. // if (!Value.isNull() && Value.getNode()->isNodeCompletelyFolded()) { setDestTo(GEP, Value); return; } // // Okay, no easy way out. Calculate the offset into the object being // indexed. // int Offset = 0; // FIXME: I am not sure if the code below is completely correct (especially // if we start doing fancy analysis on non-constant array indices). // What if the array is indexed using a larger index than its declared // size? Does the LLVM verifier catch such issues? // // // Determine the offset (in bytes) between the result of the GEP and the // GEP's pointer operand. // // Note: All of these subscripts are indexing INTO the elements we have... // // FIXME: We can do better for array indexing. First, if the array index is // constant, we can determine how much farther we're moving the // pointer. Second, we can try to use the results of other analysis // passes (e.g., ScalarEvolution) to find min/max values to do less // conservative type-folding. // for (gep_type_iterator I = gep_type_begin(GEP), E = gep_type_end(GEP); I != E; ++I) if (StructType *STy = dyn_cast<StructType>(*I)) { // indexing into a structure // next index must be a constant const ConstantInt* CUI = cast<ConstantInt>(I.getOperand()); int FieldNo = CUI->getSExtValue(); // increment the offset by the actual byte offset being accessed unsigned requiredSize = TD.getTypeAllocSize(STy) + Value.getOffset() + Offset; if(!Value.getNode()->isArrayNode() || Value.getNode()->getSize() <= 0){ if (requiredSize > Value.getNode()->getSize()) Value.getNode()->growSize(requiredSize); } Offset += (unsigned)TD.getStructLayout(STy)->getElementOffset(FieldNo); if(TypeInferenceOptimize) { if(ArrayType* AT = dyn_cast<ArrayType>(STy->getTypeAtIndex(FieldNo))) { Value.getNode()->mergeTypeInfo(AT, Value.getOffset() + Offset); if((++I) == E) { break; } // Check if we are still indexing into an array. // We only record the topmost array type of any nested array. // Keep skipping indexes till we reach a non-array type. // J is the type of the next index. // Uncomment the line below to get all the nested types. gep_type_iterator J = I; while(isa<ArrayType>(*(++J))) { // Value.getNode()->mergeTypeInfo(AT1, Value.getOffset() + Offset); if((++I) == E) { break; } J = I; } if((I) == E) { break; } } } } else if(ArrayType *ATy = dyn_cast<ArrayType>(*I)) { // indexing into an array. Value.getNode()->setArrayMarker(); Type *CurTy = ATy->getElementType(); if(!isa<ArrayType>(CurTy) && Value.getNode()->getSize() <= 0) { Value.getNode()->growSize(TD.getTypeAllocSize(CurTy)); } else if(isa<ArrayType>(CurTy) && Value.getNode()->getSize() <= 0){ Type *ETy = (cast<ArrayType>(CurTy))->getElementType(); while(isa<ArrayType>(ETy)) { ETy = (cast<ArrayType>(ETy))->getElementType(); } Value.getNode()->growSize(TD.getTypeAllocSize(ETy)); } // Find if the DSNode belongs to the array // If not fold. if((Value.getOffset() || Offset != 0) || (!isa<ArrayType>(CurTy) && (Value.getNode()->getSize() != TD.getTypeAllocSize(CurTy)))) { Value.getNode()->foldNodeCompletely(); Value.getNode(); Offset = 0; break; } } else if (const PointerType *PtrTy = dyn_cast<PointerType>(*I)) { Type *CurTy = PtrTy->getElementType(); // // Unless we're advancing the pointer by zero bytes via array indexing, // fold the node (i.e., mark it type-unknown) and indicate that we're // indexing zero bytes into the object. // // Note that we break out of the loop if we fold the node. Once // something is folded, all values within it are considered to alias. // if (!isa<Constant>(I.getOperand()) || !cast<Constant>(I.getOperand())->isNullValue()) { Value.getNode()->setArrayMarker(); if(!isa<ArrayType>(CurTy) && Value.getNode()->getSize() <= 0){ Value.getNode()->growSize(TD.getTypeAllocSize(CurTy)); } else if(isa<ArrayType>(CurTy) && Value.getNode()->getSize() <= 0){ Type *ETy = (cast<ArrayType>(CurTy))->getElementType(); while(isa<ArrayType>(ETy)) { ETy = (cast<ArrayType>(ETy))->getElementType(); } Value.getNode()->growSize(TD.getTypeAllocSize(ETy)); } if(Value.getOffset() || Offset != 0 || (!isa<ArrayType>(CurTy) && (Value.getNode()->getSize() != TD.getTypeAllocSize(CurTy)))) { Value.getNode()->foldNodeCompletely(); Value.getNode(); Offset = 0; break; } } } // Add in the offset calculated... Value.setOffset(Value.getOffset()+Offset); // Check the offset DSNode *N = Value.getNode(); if (N) N->checkOffsetFoldIfNeeded(Value.getOffset()); // Value is now the pointer we want to GEP to be... setDestTo(GEP, Value); }
void GraphBuilder::visitBitCastInst(BitCastInst &I) { if (!isa<PointerType>(I.getType())) return; // Only pointers DSNodeHandle Ptr = getValueDest(I.getOperand(0)); if (Ptr.isNull()) return; setDestTo(I, Ptr); }