// Calculate the RDF normalisation for the Box bool Box::calculateRDFNormalisation(ProcessPool& procPool, Data2D& boxNorm, double rdfRange, double rdfBinWidth, int nPoints) const { // Setup array - we will use a nominal bin width of 0.1 Angstroms and then interpolate to the rdfBinWidth afterwards const double binWidth = 0.1; const double rBinWidth = 1.0/binWidth; int bin, nBins = rdfRange / binWidth; Data2D normData; normData.initialise(nBins); Array<double>& y = normData.arrayY(); for (int n=0; n<nBins; ++n) normData.arrayX()[n] = (n+0.5)*binWidth; Vec3<double> centre = axes_*Vec3<double>(0.5,0.5,0.5); // Divide points over processes const int nPointsPerProcess = nPoints / procPool.nProcesses(); Messenger::print("--> Number of insertion points (per process) is %i\n", nPointsPerProcess); y = 0.0; for (int n=0; n<nPointsPerProcess; ++n) { bin = (randomCoordinate() - centre).magnitude() * rBinWidth; if (bin < nBins) y[bin] += 1.0; } if (!procPool.allSum(y.array(), nBins)) return false; // Normalise histogram data, and scale by volume and binWidth ratio y /= double(nPointsPerProcess*procPool.nProcesses()); y *= volume_ * (rdfBinWidth / binWidth); normData.interpolate(); // Write histogram data for random distribution if (procPool.isMaster()) normData.save("duq.box.random"); // Now we have the interpolated data, create the proper interpolated data nBins = rdfRange/rdfBinWidth; boxNorm.clear(); // Rescale against expected volume for spherical shells double shellVolume, r = 0.0, maxHalf = inscribedSphereRadius(), x = 0.5*rdfBinWidth; for (int n=0; n<nBins; ++n) { // We know that up to the maximum (orthogonal) half-cell width the normalisation should be exactly 1.0... if (x < maxHalf) boxNorm.addPoint(x, 1.0); else { shellVolume = (4.0/3.0)*PI*(pow(r+rdfBinWidth,3.0) - pow(r,3.0)); boxNorm.addPoint(x, shellVolume / normData.interpolated(x)); // boxNorm[n] = normData.interpolated(r); } r += rdfBinWidth; x += rdfBinWidth; } // Interpolate normalisation array boxNorm.interpolate(); // Write final box normalisation file if (procPool.isMaster()) boxNorm.save("duq.box.norm"); return true; }
/*! * \brief Smooth data */ void Data2D::smooth(int avgSize, int skip) { // First, create a new dataset using Y-averages of the current data Data2D avg; double y; int n, m, i = avgSize/2; for (n=i; n < x_.nItems()-i; n += (1+skip)) { y = 0.0; for (m=n-i; m <= n+i; ++m) y += y_[m]; y /= avgSize; avg.addPoint(x_[n], y); } avg.interpolate(); // Now go through old data, setting new Y values from the interpolation for (n=0; n<x_.nItems(); ++n) y_[n] = avg.interpolated(x_[n]); }
/*! * \brief Subtract interpolated data */ void Data2D::subtractInterpolated(Data2D& source) { for (int n=0; n<x_.nItems(); ++n) addY(n, -source.interpolated(x_.value(n))); }