Exemple #1
0
Scope *Scope::createGlobal(Module *_module)
{
    Scope *sc = Scope::alloc();
    *sc = Scope();  // memset

    sc->aligndecl = NULL;
    sc->linkage = LINKd;
    sc->inlining = PINLINEdefault;
    sc->protection = Prot(PROTpublic);

    sc->_module = _module;

    sc->tinst = NULL;
    sc->minst = _module;

    sc->scopesym = new ScopeDsymbol();
    sc->scopesym->symtab = new DsymbolTable();

    // Add top level package as member of this global scope
    Dsymbol *m = _module;
    while (m->parent)
        m = m->parent;
    m->addMember(NULL, sc->scopesym);
    m->parent = NULL;                   // got changed by addMember()

    // Create the module scope underneath the global scope
    sc = sc->push(_module);
    sc->parent = _module;
    return sc;
}
Exemple #2
0
Scope *Scope::createGlobal(Module *module)
{
    Scope *sc = Scope::alloc();
    memset(sc, 0, sizeof(Scope));

    sc->structalign = STRUCTALIGN_DEFAULT;
    sc->linkage = LINKd;
    sc->inlining = PINLINEdefault;
    sc->protection = Prot(PROTpublic);

    sc->module = module;

    sc->tinst = NULL;
    sc->minst = module;

    sc->scopesym = new ScopeDsymbol();
    sc->scopesym->symtab = new DsymbolTable();

    // Add top level package as member of this global scope
    Dsymbol *m = module;
    while (m->parent)
        m = m->parent;
    m->addMember(NULL, sc->scopesym);
    m->parent = NULL;                   // got changed by addMember()

    // Create the module scope underneath the global scope
    sc = sc->push(module);
    sc->parent = module;
    return sc;
}
Exemple #3
0
void Nspace::addMember(Scope *sc, ScopeDsymbol *sds)
{
    if (mangleOnly)
        parent = sds;
    else
        ScopeDsymbol::addMember(sc, sds);
    if (members)
    {
        if (!symtab)
            symtab = new DsymbolTable();
        // The namespace becomes 'imported' into the enclosing scope
        for (Scope *sce = sc; 1; sce = sce->enclosing)
        {
            ScopeDsymbol *sds2 = sce->scopesym;
            if (sds2)
            {
                sds2->importScope(this, Prot(PROTpublic));
                break;
            }
        }
        assert(sc);
        sc = sc->push(this);
        sc->linkage = LINKcpp; // namespaces default to C++ linkage
        sc->parent = this;
        for (size_t i = 0; i < members->dim; i++)
        {
            Dsymbol *s = (*members)[i];
            //printf("add %s to scope %s\n", s->toChars(), toChars());
            s->addMember(sc, this);
        }
        sc->pop();
    }
}
Exemple #4
0
void Module::importAll(Scope *prevsc)
{
    //printf("+Module::importAll(this = %p, '%s'): parent = %p\n", this, toChars(), parent);

    if (scope)
        return;                 // already done

    /* Note that modules get their own scope, from scratch.
     * This is so regardless of where in the syntax a module
     * gets imported, it is unaffected by context.
     * Ignore prevsc.
     */
    Scope *sc = Scope::createGlobal(this);      // create root scope

    // Add import of "object" if this module isn't "object"
    if (ident != Id::object)
    {
        if (members->dim == 0 || ((Dsymbol *)members->data[0])->ident != Id::object)
        {
            Import *im = new Import(0, NULL, Id::object, NULL, 0);
            members->shift(im);
        }
    }

    if (!symtab)
    {
        // Add all symbols into module's symbol table
        symtab = new DsymbolTable();
        for (int i = 0; i < members->dim; i++)
        {
            Dsymbol *s = (Dsymbol *)members->data[i];
            s->addMember(NULL, sc->scopesym, 1);
        }
    }
    // anything else should be run after addMember, so version/debug symbols are defined

    /* Set scope for the symbols so that if we forward reference
     * a symbol, it can possibly be resolved on the spot.
     * If this works out well, it can be extended to all modules
     * before any semantic() on any of them.
     */
    setScope(sc);               // remember module scope for semantic
    for (int i = 0; i < members->dim; i++)
    {   Dsymbol *s = (Dsymbol *)members->data[i];
        s->setScope(sc);
    }

    for (int i = 0; i < members->dim; i++)
    {
        Dsymbol *s = (Dsymbol *)members->data[i];
        s->importAll(sc);
    }

    sc = sc->pop();
    sc->pop();          // 2 pops because Scope::createGlobal() created 2
}
Exemple #5
0
int AttribDeclaration::addMember(Scope *sc, ScopeDsymbol *sd, int memnum)
{
    int m = 0;
    Array *d = include(sc, sd);

    if (d)
    {
        for (unsigned i = 0; i < d->dim; i++)
        {   Dsymbol *s = (Dsymbol *)d->data[i];
            m |= s->addMember(sc, sd, m | memnum);
        }
    }
    return m;
}
Exemple #6
0
int AttribDeclaration::addMember(Scope *sc, ScopeDsymbol *sd, int memnum)
{
    int m = 0;
    Dsymbols *d = include(sc, sd);

    if (d)
    {
        for (size_t i = 0; i < d->dim; i++)
        {   Dsymbol *s = (*d)[i];
            //printf("\taddMember %s to %s\n", s->toChars(), sd->toChars());
            m |= s->addMember(sc, sd, m | memnum);
        }
    }
    return m;
}
Exemple #7
0
void AttribDeclaration::addMember(Scope *sc, ScopeDsymbol *sds)
{
    Dsymbols *d = include(sc, sds);

    if (d)
    {
        Scope *sc2 = newScope(sc);

        for (size_t i = 0; i < d->dim; i++)
        {
            Dsymbol *s = (*d)[i];
            //printf("\taddMember %s to %s\n", s->toChars(), sds->toChars());
            s->addMember(sc2, sds);
        }

        if (sc2 != sc)
            sc2->pop();
    }
}
Exemple #8
0
Scope *Scope::createGlobal(Module *module)
{
    Scope *sc;

    sc = new Scope();
    sc->module = module;
    sc->scopesym = new ScopeDsymbol();
    sc->scopesym->symtab = new DsymbolTable();

    // Add top level package as member of this global scope
    Dsymbol *m = module;
    while (m->parent)
        m = m->parent;
    m->addMember(NULL, sc->scopesym, 1);
    m->parent = NULL;                   // got changed by addMember()

    // Create the module scope underneath the global scope
    sc = sc->push(module);
    sc->parent = module;
    return sc;
}
Exemple #9
0
/****************************************
 * Different from other AttribDeclaration subclasses, include() call requires
 * the completion of addMember and setScope phases.
 */
Dsymbols *StaticIfDeclaration::include(Scope *sc, ScopeDsymbol *sds)
{
    //printf("StaticIfDeclaration::include(sc = %p) scope = %p\n", sc, scope);

    if (condition->inc == 0)
    {
        assert(scopesym);   // addMember is already done
        assert(scope);      // setScope is already done

        Dsymbols *d = ConditionalDeclaration::include(scope, scopesym);

        if (d && !addisdone)
        {
            // Add members lazily.
            for (size_t i = 0; i < d->dim; i++)
            {
                Dsymbol *s = (*d)[i];
                s->addMember(scope, scopesym);
            }

            // Set the member scopes lazily.
            for (size_t i = 0; i < d->dim; i++)
            {
                Dsymbol *s = (*d)[i];
                s->setScope(scope);
            }

            addisdone = 1;
        }
        return d;
    }
    else
    {
        return ConditionalDeclaration::include(sc, scopesym);
    }
}
Exemple #10
0
void ClassDeclaration::semantic(Scope *sc)
{
    //printf("ClassDeclaration::semantic(%s), type = %p, sizeok = %d, this = %p\n", toChars(), type, sizeok, this);
    //printf("\tparent = %p, '%s'\n", sc->parent, sc->parent ? sc->parent->toChars() : "");
    //printf("sc->stc = %x\n", sc->stc);

    //{ static int n;  if (++n == 20) *(char*)0=0; }

    if (!ident)         // if anonymous class
    {   const char *id = "__anonclass";

        ident = Identifier::generateId(id);
    }

    if (!sc)
        sc = scope;
    if (!parent && sc->parent && !sc->parent->isModule())
        parent = sc->parent;

    type = type->semantic(loc, sc);
    handle = type;

    if (!members)                       // if forward reference
    {   //printf("\tclass '%s' is forward referenced\n", toChars());
        return;
    }
    if (symtab)
    {   if (sizeok == SIZEOKdone || !scope)
        {   //printf("\tsemantic for '%s' is already completed\n", toChars());
            return;             // semantic() already completed
        }
    }
    else
        symtab = new DsymbolTable();

    Scope *scx = NULL;
    if (scope)
    {   sc = scope;
        scx = scope;            // save so we don't make redundant copies
        scope = NULL;
    }
    unsigned dprogress_save = Module::dprogress;
    int errors = global.gaggedErrors;

    if (sc->stc & STCdeprecated)
    {
        isdeprecated = true;
    }
    userAttributes = sc->userAttributes;

    if (sc->linkage == LINKcpp)
        error("cannot create C++ classes");

    // Expand any tuples in baseclasses[]
    for (size_t i = 0; i < baseclasses->dim; )
    {   BaseClass *b = (*baseclasses)[i];
        b->type = b->type->semantic(loc, sc);
        Type *tb = b->type->toBasetype();

        if (tb->ty == Ttuple)
        {   TypeTuple *tup = (TypeTuple *)tb;
            enum PROT protection = b->protection;
            baseclasses->remove(i);
            size_t dim = Parameter::dim(tup->arguments);
            for (size_t j = 0; j < dim; j++)
            {   Parameter *arg = Parameter::getNth(tup->arguments, j);
                b = new BaseClass(arg->type, protection);
                baseclasses->insert(i + j, b);
            }
        }
        else
            i++;
    }

    // See if there's a base class as first in baseclasses[]
    if (baseclasses->dim)
    {   TypeClass *tc;
        BaseClass *b;
        Type *tb;

        b = (*baseclasses)[0];
        //b->type = b->type->semantic(loc, sc);
        tb = b->type->toBasetype();
        if (tb->ty != Tclass)
        {   if (b->type != Type::terror)
                error("base type must be class or interface, not %s", b->type->toChars());
            baseclasses->remove(0);
        }
        else
        {
            tc = (TypeClass *)(tb);

            if (tc->sym->isDeprecated())
            {
                if (!isDeprecated())
                {
                    // Deriving from deprecated class makes this one deprecated too
                    isdeprecated = true;

                    tc->checkDeprecated(loc, sc);
                }
            }

            if (tc->sym->isInterfaceDeclaration())
                ;
            else
            {
                for (ClassDeclaration *cdb = tc->sym; cdb; cdb = cdb->baseClass)
                {
                    if (cdb == this)
                    {
                        error("circular inheritance");
                        baseclasses->remove(0);
                        goto L7;
                    }
                }
                if (!tc->sym->symtab || tc->sym->sizeok == SIZEOKnone)
                {   // Try to resolve forward reference
                    if (/*sc->mustsemantic &&*/ tc->sym->scope)
                        tc->sym->semantic(NULL);
                }
                if (!tc->sym->symtab || tc->sym->scope || tc->sym->sizeok == SIZEOKnone)
                {
                    //printf("%s: forward reference of base class %s\n", toChars(), tc->sym->toChars());
                    //error("forward reference of base class %s", baseClass->toChars());
                    // Forward reference of base class, try again later
                    //printf("\ttry later, forward reference of base class %s\n", tc->sym->toChars());
                    scope = scx ? scx : new Scope(*sc);
                    scope->setNoFree();
                    if (tc->sym->scope)
                        tc->sym->scope->module->addDeferredSemantic(tc->sym);
                    scope->module->addDeferredSemantic(this);
                    return;
                }
                else
                {   baseClass = tc->sym;
                    b->base = baseClass;
                }
             L7: ;
            }
        }
    }

    // Treat the remaining entries in baseclasses as interfaces
    // Check for errors, handle forward references
    for (size_t i = (baseClass ? 1 : 0); i < baseclasses->dim; )
    {   TypeClass *tc;
        BaseClass *b;
        Type *tb;

        b = (*baseclasses)[i];
        b->type = b->type->semantic(loc, sc);
        tb = b->type->toBasetype();
        if (tb->ty == Tclass)
            tc = (TypeClass *)tb;
        else
            tc = NULL;
        if (!tc || !tc->sym->isInterfaceDeclaration())
        {   if (b->type != Type::terror)
                error("base type must be interface, not %s", b->type->toChars());
            baseclasses->remove(i);
            continue;
        }
        else
        {
            if (tc->sym->isDeprecated())
            {
                if (!isDeprecated())
                {
                    // Deriving from deprecated class makes this one deprecated too
                    isdeprecated = true;

                    tc->checkDeprecated(loc, sc);
                }
            }

            // Check for duplicate interfaces
            for (size_t j = (baseClass ? 1 : 0); j < i; j++)
            {
                BaseClass *b2 = (*baseclasses)[j];
                if (b2->base == tc->sym)
                    error("inherits from duplicate interface %s", b2->base->toChars());
            }

            if (!tc->sym->symtab)
            {   // Try to resolve forward reference
                if (/*sc->mustsemantic &&*/ tc->sym->scope)
                    tc->sym->semantic(NULL);
            }

            b->base = tc->sym;
            if (!b->base->symtab || b->base->scope)
            {
                //error("forward reference of base class %s", baseClass->toChars());
                // Forward reference of base, try again later
                //printf("\ttry later, forward reference of base %s\n", baseClass->toChars());
                scope = scx ? scx : new Scope(*sc);
                scope->setNoFree();
                if (tc->sym->scope)
                    tc->sym->scope->module->addDeferredSemantic(tc->sym);
                scope->module->addDeferredSemantic(this);
                return;
            }
        }
        i++;
    }


    // If no base class, and this is not an Object, use Object as base class
    if (!baseClass && ident != Id::Object)
    {
        if (!object)
        {
            error("missing or corrupt object.d");
            fatal();
        }

        Type *t = object->type;
        t = t->semantic(loc, sc)->toBasetype();
        assert(t->ty == Tclass);
        TypeClass *tc = (TypeClass *)t;

        BaseClass *b = new BaseClass(tc, PROTpublic);
        baseclasses->shift(b);

        baseClass = tc->sym;
        assert(!baseClass->isInterfaceDeclaration());
        b->base = baseClass;
    }

    interfaces_dim = baseclasses->dim;
    interfaces = baseclasses->tdata();


    if (baseClass)
    {
        if (baseClass->storage_class & STCfinal)
            error("cannot inherit from final class %s", baseClass->toChars());

        interfaces_dim--;
        interfaces++;

        // Copy vtbl[] from base class
        vtbl.setDim(baseClass->vtbl.dim);
        memcpy(vtbl.tdata(), baseClass->vtbl.tdata(), sizeof(void *) * vtbl.dim);

        // Inherit properties from base class
        com = baseClass->isCOMclass();
        isscope = baseClass->isscope;
        vthis = baseClass->vthis;
        storage_class |= baseClass->storage_class & STC_TYPECTOR;
    }
    else
    {
        // No base class, so this is the root of the class hierarchy
        vtbl.setDim(0);
        vtbl.push(this);                // leave room for classinfo as first member
    }

    protection = sc->protection;
    storage_class |= sc->stc;

    if (sizeok == SIZEOKnone)
    {
        interfaceSemantic(sc);

        for (size_t i = 0; i < members->dim; i++)
        {
            Dsymbol *s = (*members)[i];
            s->addMember(sc, this, 1);
        }

        /* If this is a nested class, add the hidden 'this'
         * member which is a pointer to the enclosing scope.
         */
        if (vthis)              // if inheriting from nested class
        {   // Use the base class's 'this' member
            isnested = true;
            if (storage_class & STCstatic)
                error("static class cannot inherit from nested class %s", baseClass->toChars());
            if (toParent2() != baseClass->toParent2() &&
                (!toParent2() ||
                 !baseClass->toParent2()->getType() ||
                 !baseClass->toParent2()->getType()->isBaseOf(toParent2()->getType(), NULL)))
            {
                if (toParent2())
                {
                    error("is nested within %s, but super class %s is nested within %s",
                        toParent2()->toChars(),
                        baseClass->toChars(),
                        baseClass->toParent2()->toChars());
                }
                else
                {
                    error("is not nested, but super class %s is nested within %s",
                        baseClass->toChars(),
                        baseClass->toParent2()->toChars());
                }
                isnested = false;
            }
        }
        else if (!(storage_class & STCstatic))
        {   Dsymbol *s = toParent2();
            if (s)
            {
                AggregateDeclaration *ad = s->isClassDeclaration();
                FuncDeclaration *fd = s->isFuncDeclaration();


                if (ad || fd)
                {   isnested = true;
                    Type *t;
                    if (ad)
                        t = ad->handle;
                    else if (fd)
                    {   AggregateDeclaration *ad2 = fd->isMember2();
                        if (ad2)
                            t = ad2->handle;
                        else
                        {
                            t = Type::tvoidptr;
                        }
                    }
                    else
                        assert(0);
                    if (t->ty == Tstruct)       // ref to struct
                        t = Type::tvoidptr;
                    assert(!vthis);
                    vthis = new ThisDeclaration(loc, t);
                    members->push(vthis);
                }
            }
        }
    }

    if (storage_class & STCauto)
        error("storage class 'auto' is invalid when declaring a class, did you mean to use 'scope'?");
    if (storage_class & STCscope)
        isscope = 1;
    if (storage_class & STCabstract)
        isabstract = 1;

    sc = sc->push(this);
    //sc->stc &= ~(STCfinal | STCauto | STCscope | STCstatic | STCabstract | STCdeprecated | STC_TYPECTOR | STCtls | STCgshared);
    //sc->stc |= storage_class & STC_TYPECTOR;
    sc->stc &= STCsafe | STCtrusted | STCsystem;
    sc->parent = this;
    sc->inunion = 0;

    if (isCOMclass())
    {
#if IN_LLVM
        if (global.params.targetTriple.isOSWindows())
#else
        if (global.params.isWindows)
#endif
            sc->linkage = LINKwindows;
        else
            /* This enables us to use COM objects under Linux and
             * work with things like XPCOM
             */
            sc->linkage = LINKc;
    }
    sc->protection = PROTpublic;
    sc->explicitProtection = 0;
    sc->structalign = STRUCTALIGN_DEFAULT;
    if (baseClass)
    {   sc->offset = baseClass->structsize;
        alignsize = baseClass->alignsize;
//      if (isnested)
//          sc->offset += PTRSIZE;      // room for uplevel context pointer
    }
    else
    {   sc->offset = PTRSIZE * 2;       // allow room for __vptr and __monitor
        alignsize = PTRSIZE;
    }
    sc->userAttributes = NULL;
    structsize = sc->offset;
    Scope scsave = *sc;
    size_t members_dim = members->dim;
    sizeok = SIZEOKnone;

    /* Set scope so if there are forward references, we still might be able to
     * resolve individual members like enums.
     */
    for (size_t i = 0; i < members_dim; i++)
    {   Dsymbol *s = (*members)[i];
        /* There are problems doing this in the general case because
         * Scope keeps track of things like 'offset'
         */
        if (s->isEnumDeclaration() ||
            (s->isAggregateDeclaration() && s->ident) ||
            s->isTemplateMixin() ||
            s->isAttribDeclaration() ||
            s->isAliasDeclaration())
        {
            //printf("[%d] setScope %s %s, sc = %p\n", i, s->kind(), s->toChars(), sc);
            s->setScope(sc);
        }
    }

    for (size_t i = 0; i < members_dim; i++)
    {   Dsymbol *s = (*members)[i];
        s->semantic(sc);
    }

    // Set the offsets of the fields and determine the size of the class

    unsigned offset = structsize;
    bool isunion = isUnionDeclaration() != NULL;
    for (size_t i = 0; i < members->dim; i++)
    {   Dsymbol *s = (*members)[i];
        s->setFieldOffset(this, &offset, false);
    }
    sc->offset = structsize;

    if (global.gag && global.gaggedErrors != errors)
    {   // The type is no good, yet the error messages were gagged.
        type = Type::terror;
    }

    if (sizeok == SIZEOKfwd)            // failed due to forward references
    {   // semantic() failed due to forward references
        // Unwind what we did, and defer it for later

        for (size_t i = 0; i < fields.dim; i++)
        {   Dsymbol *s = fields[i];
            VarDeclaration *vd = s->isVarDeclaration();
            if (vd)
                vd->offset = 0;
        }
        fields.setDim(0);
        structsize = 0;
        alignsize = 0;
//        structalign = 0;

        sc = sc->pop();

        scope = scx ? scx : new Scope(*sc);
        scope->setNoFree();
        scope->module->addDeferredSemantic(this);

        Module::dprogress = dprogress_save;

        //printf("\tsemantic('%s') failed due to forward references\n", toChars());
        return;
    }

    //printf("\tsemantic('%s') successful\n", toChars());

    //members->print();

    /* Look for special member functions.
     * They must be in this class, not in a base class.
     */
    ctor = search(0, Id::ctor, 0);
#if DMDV1
    if (ctor && (ctor->toParent() != this || !ctor->isCtorDeclaration()))
        ctor = NULL;
#else
    if (ctor && (ctor->toParent() != this || !(ctor->isCtorDeclaration() || ctor->isTemplateDeclaration())))
        ctor = NULL;    // search() looks through ancestor classes
#endif

//    dtor = (DtorDeclaration *)search(Id::dtor, 0);
//    if (dtor && dtor->toParent() != this)
//      dtor = NULL;

//    inv = (InvariantDeclaration *)search(Id::classInvariant, 0);
//    if (inv && inv->toParent() != this)
//      inv = NULL;

    // Can be in base class
    aggNew    = (NewDeclaration *)search(0, Id::classNew, 0);
    aggDelete = (DeleteDeclaration *)search(0, Id::classDelete, 0);

    // If this class has no constructor, but base class does, create
    // a constructor:
    //    this() { }
    if (!ctor && baseClass && baseClass->ctor)
    {
        //printf("Creating default this(){} for class %s\n", toChars());
        Type *tf = new TypeFunction(NULL, NULL, 0, LINKd, 0);
        CtorDeclaration *ctor = new CtorDeclaration(loc, 0, 0, tf);
        ctor->isImplicit = true;
        ctor->fbody = new CompoundStatement(0, new Statements());
        members->push(ctor);
        ctor->addMember(sc, this, 1);
        *sc = scsave;   // why? What about sc->nofree?
        ctor->semantic(sc);
        this->ctor = ctor;
        defaultCtor = ctor;
    }

#if 0
    if (baseClass)
    {   if (!aggDelete)
            aggDelete = baseClass->aggDelete;
        if (!aggNew)
            aggNew = baseClass->aggNew;
    }
#endif

    // Allocate instance of each new interface
    sc->offset = structsize;
    for (size_t i = 0; i < vtblInterfaces->dim; i++)
    {
        BaseClass *b = (*vtblInterfaces)[i];
        unsigned thissize = PTRSIZE;

        alignmember(STRUCTALIGN_DEFAULT, thissize, &sc->offset);
        assert(b->offset == 0);
        b->offset = sc->offset;

        // Take care of single inheritance offsets
        while (b->baseInterfaces_dim)
        {
            b = &b->baseInterfaces[0];
            b->offset = sc->offset;
        }

        sc->offset += thissize;
        if (alignsize < thissize)
            alignsize = thissize;
    }
    structsize = sc->offset;
#if IN_LLVM
    if (sc->structalign == STRUCTALIGN_DEFAULT)
        structsize = (structsize + alignsize - 1) & ~(alignsize - 1);
    else
        structsize = (structsize + sc->structalign - 1) & ~(sc->structalign - 1);
#endif

    sizeok = SIZEOKdone;
    Module::dprogress++;

    dtor = buildDtor(sc);
    if (Dsymbol *assign = search_function(this, Id::assign))
    {
        if (FuncDeclaration *f = hasIdentityOpAssign(sc, assign))
        {
            if (!(f->storage_class & STCdisable))
                error("identity assignment operator overload is illegal");
        }
    }
    sc->pop();

#if 0 // Do not call until toObjfile() because of forward references
    // Fill in base class vtbl[]s
    for (i = 0; i < vtblInterfaces->dim; i++)
    {
        BaseClass *b = (*vtblInterfaces)[i];

        //b->fillVtbl(this, &b->vtbl, 1);
    }
#endif
    //printf("-ClassDeclaration::semantic(%s), type = %p\n", toChars(), type);

    if (deferred && !global.gag)
    {
        deferred->semantic2(sc);
        deferred->semantic3(sc);
    }
}
Exemple #11
0
void InterfaceDeclaration::semantic(Scope *sc)
{
    //printf("InterfaceDeclaration::semantic(%s), type = %p\n", toChars(), type);
    if (inuse)
        return;

    if (!sc)
        sc = scope;
    if (!parent && sc->parent && !sc->parent->isModule())
        parent = sc->parent;

    type = type->semantic(loc, sc);
    handle = type;

    if (!members)                       // if forward reference
    {   //printf("\tinterface '%s' is forward referenced\n", toChars());
        return;
    }
    if (symtab)                 // if already done
    {   if (!scope)
            return;
    }
    else
        symtab = new DsymbolTable();

    Scope *scx = NULL;
    if (scope)
    {   sc = scope;
        scx = scope;            // save so we don't make redundant copies
        scope = NULL;
    }

#if IN_GCC
    if (attributes)
        attributes->append(sc->attributes);
    else
        attributes = sc->attributes;
#endif

    if (sc->stc & STCdeprecated)
    {
        isdeprecated = 1;
    }

    // Expand any tuples in baseclasses[]
    for (size_t i = 0; i < baseclasses->dim; )
    {   BaseClass *b = baseclasses->tdata()[0];
        b->type = b->type->semantic(loc, sc);
        Type *tb = b->type->toBasetype();

        if (tb->ty == Ttuple)
        {   TypeTuple *tup = (TypeTuple *)tb;
            enum PROT protection = b->protection;
            baseclasses->remove(i);
            size_t dim = Parameter::dim(tup->arguments);
            for (size_t j = 0; j < dim; j++)
            {   Parameter *arg = Parameter::getNth(tup->arguments, j);
                b = new BaseClass(arg->type, protection);
                baseclasses->insert(i + j, b);
            }
        }
        else
            i++;
    }

    if (!baseclasses->dim && sc->linkage == LINKcpp)
        cpp = 1;

    // Check for errors, handle forward references
    for (size_t i = 0; i < baseclasses->dim; )
    {   TypeClass *tc;
        BaseClass *b;
        Type *tb;

        b = baseclasses->tdata()[i];
        b->type = b->type->semantic(loc, sc);
        tb = b->type->toBasetype();
        if (tb->ty == Tclass)
            tc = (TypeClass *)tb;
        else
            tc = NULL;
        if (!tc || !tc->sym->isInterfaceDeclaration())
        {
            error("base type must be interface, not %s", b->type->toChars());
            baseclasses->remove(i);
            continue;
        }
        else
        {
            // Check for duplicate interfaces
            for (size_t j = 0; j < i; j++)
            {
                BaseClass *b2 = baseclasses->tdata()[j];
                if (b2->base == tc->sym)
                    error("inherits from duplicate interface %s", b2->base->toChars());
            }

            b->base = tc->sym;
            if (b->base == this || isBaseOf2(b->base))
            {
                error("circular inheritance of interface");
                baseclasses->remove(i);
                continue;
            }
            if (!b->base->symtab)
            {   // Try to resolve forward reference
                if (sc->mustsemantic && b->base->scope)
                    b->base->semantic(NULL);
            }
            if (!b->base->symtab || b->base->scope || b->base->inuse)
            {
                //error("forward reference of base class %s", baseClass->toChars());
                // Forward reference of base, try again later
                //printf("\ttry later, forward reference of base %s\n", b->base->toChars());
                scope = scx ? scx : new Scope(*sc);
                scope->setNoFree();
                scope->module->addDeferredSemantic(this);
                return;
            }
        }
#if 0
        // Inherit const/invariant from base class
        storage_class |= b->base->storage_class & STC_TYPECTOR;
#endif
        i++;
    }

    interfaces_dim = baseclasses->dim;
    interfaces = baseclasses->tdata();

    interfaceSemantic(sc);

    if (vtblOffset())
        vtbl.push(this);                // leave room at vtbl[0] for classinfo

    // Cat together the vtbl[]'s from base interfaces
    for (size_t i = 0; i < interfaces_dim; i++)
    {   BaseClass *b = interfaces[i];

        // Skip if b has already appeared
        for (int k = 0; k < i; k++)
        {
            if (b == interfaces[k])
                goto Lcontinue;
        }

        // Copy vtbl[] from base class
        if (b->base->vtblOffset())
        {   int d = b->base->vtbl.dim;
            if (d > 1)
            {
                vtbl.reserve(d - 1);
                for (int j = 1; j < d; j++)
                    vtbl.push(b->base->vtbl.tdata()[j]);
            }
        }
        else
        {
            vtbl.append(&b->base->vtbl);
        }

      Lcontinue:
        ;
    }

    protection = sc->protection;
    storage_class |= sc->stc & STC_TYPECTOR;

    for (size_t i = 0; i < members->dim; i++)
    {
        Dsymbol *s = members->tdata()[i];
        s->addMember(sc, this, 1);
    }

    sc = sc->push(this);
    sc->stc &= ~(STCfinal | STCauto | STCscope | STCstatic |
                 STCabstract | STCdeprecated | STC_TYPECTOR | STCtls | STCgshared);
    sc->stc |= storage_class & STC_TYPECTOR;
#if IN_GCC
    sc->attributes = NULL;
#endif
    sc->parent = this;
    if (isCOMinterface())
        sc->linkage = LINKwindows;
    else if (isCPPinterface())
        sc->linkage = LINKcpp;
    sc->structalign = 8;
    structalign = sc->structalign;
    sc->offset = PTRSIZE * 2;
    inuse++;
    for (size_t i = 0; i < members->dim; i++)
    {
        Dsymbol *s = members->tdata()[i];
        s->semantic(sc);
    }
    inuse--;
    //members->print();
    sc->pop();
    //printf("-InterfaceDeclaration::semantic(%s), type = %p\n", toChars(), type);
}
Exemple #12
0
int IftypeCondition::include(Scope *sc, ScopeDsymbol *sd)
{
    //printf("IftypeCondition::include()\n");
    if (inc == 0)
    {
        if (!sc)
        {
            error(loc, "iftype conditional cannot be at global scope");
            inc = 2;
            return 0;
        }
        Type *t = targ->trySemantic(loc, sc);
        if (t)
            targ = t;
        else
            inc = 2;                    // condition is false

        if (!t)
        {
        }
        else if (id && tspec)
        {
            /* Evaluate to TRUE if targ matches tspec.
             * If TRUE, declare id as an alias for the specialized type.
             */

            MATCH m;
            TemplateTypeParameter tp(loc, id, NULL, NULL);

            TemplateParameters parameters;
            parameters.setDim(1);
            parameters[0] = &tp;

            Objects dedtypes;
            dedtypes.setDim(1);

            m = targ->deduceType(sc, tspec, &parameters, &dedtypes);
            if (m == MATCHnomatch ||
                (m != MATCHexact && tok == TOKequal))
                inc = 2;
            else
            {
                inc = 1;
                Type *tded = (Type *)dedtypes[0];
                if (!tded)
                    tded = targ;
                Dsymbol *s = new AliasDeclaration(loc, id, tded);
                s->semantic(sc);
                sc->insert(s);
                if (sd)
                    s->addMember(sc, sd, 1);
            }
        }
        else if (id)
        {
            /* Declare id as an alias for type targ. Evaluate to TRUE
             */
            Dsymbol *s = new AliasDeclaration(loc, id, targ);
            s->semantic(sc);
            sc->insert(s);
            if (sd)
                s->addMember(sc, sd, 1);
            inc = 1;
        }
        else if (tspec)
        {
            /* Evaluate to TRUE if targ matches tspec
             */
            tspec = tspec->semantic(loc, sc);
            //printf("targ  = %s\n", targ->toChars());
            //printf("tspec = %s\n", tspec->toChars());
            if (tok == TOKcolon)
            {   if (targ->implicitConvTo(tspec))
                    inc = 1;
                else
                    inc = 2;
            }
            else /* == */
            {   if (targ->equals(tspec))
                    inc = 1;
                else
                    inc = 2;
            }
        }
        else
             inc = 1;
        //printf("inc = %d\n", inc);
    }
    return (inc == 1);
}
Exemple #13
0
void ClassDeclaration::semantic(Scope *sc)
{
    //printf("ClassDeclaration::semantic(%s), type = %p, sizeok = %d, this = %p\n", toChars(), type, sizeok, this);
    //printf("\tparent = %p, '%s'\n", sc->parent, sc->parent ? sc->parent->toChars() : "");
    //printf("sc->stc = %x\n", sc->stc);

    //{ static int n;  if (++n == 20) *(char*)0=0; }

    if (!ident)         // if anonymous class
    {   const char *id = "__anonclass";

        ident = Identifier::generateId(id);
    }

    if (!sc)
        sc = scope;
    if (!parent && sc->parent && !sc->parent->isModule())
        parent = sc->parent;

    type = type->semantic(loc, sc);
    handle = type;

    if (!members)                       // if forward reference
    {   //printf("\tclass '%s' is forward referenced\n", toChars());
        return;
    }
    if (symtab)
    {   if (sizeok == 1 || !scope)
        {   //printf("\tsemantic for '%s' is already completed\n", toChars());
            return;             // semantic() already completed
        }
    }
    else
        symtab = new DsymbolTable();

    Scope *scx = NULL;
    if (scope)
    {   sc = scope;
        scx = scope;            // save so we don't make redundant copies
        scope = NULL;
    }
    unsigned dprogress_save = Module::dprogress;
#ifdef IN_GCC
    if (attributes)
        attributes->append(sc->attributes);
    else
        attributes = sc->attributes;

    methods.setDim(0);
#endif

    if (sc->stc & STCdeprecated)
    {
        isdeprecated = 1;
    }

    // Expand any tuples in baseclasses[]
    for (size_t i = 0; i < baseclasses->dim; )
    {   BaseClass *b = (BaseClass *)baseclasses->data[i];
        b->type = b->type->semantic(loc, sc);
        Type *tb = b->type->toBasetype();

        if (tb->ty == Ttuple)
        {   TypeTuple *tup = (TypeTuple *)tb;
            enum PROT protection = b->protection;
            baseclasses->remove(i);
            size_t dim = Parameter::dim(tup->arguments);
            for (size_t j = 0; j < dim; j++)
            {   Parameter *arg = Parameter::getNth(tup->arguments, j);
                b = new BaseClass(arg->type, protection);
                baseclasses->insert(i + j, b);
            }
        }
        else
            i++;
    }

    // See if there's a base class as first in baseclasses[]
    if (baseclasses->dim)
    {   TypeClass *tc;
        BaseClass *b;
        Type *tb;

        b = (BaseClass *)baseclasses->data[0];
        //b->type = b->type->semantic(loc, sc);
        tb = b->type->toBasetype();
        if (tb->ty != Tclass)
        {   error("base type must be class or interface, not %s", b->type->toChars());
            baseclasses->remove(0);
        }
        else
        {
            tc = (TypeClass *)(tb);

            if (tc->sym->isDeprecated())
            {
                if (!isDeprecated())
                {
                    // Deriving from deprecated class makes this one deprecated too
                    isdeprecated = 1;

                    tc->checkDeprecated(loc, sc);
                }
            }

            if (tc->sym->isInterfaceDeclaration())
                ;
            else
            {
                for (ClassDeclaration *cdb = tc->sym; cdb; cdb = cdb->baseClass)
                {
                    if (cdb == this)
                    {
                        error("circular inheritance");
                        baseclasses->remove(0);
                        goto L7;
                    }
                }
                if (!tc->sym->symtab || tc->sym->sizeok == 0)
                {   // Try to resolve forward reference
                    if (/*sc->mustsemantic &&*/ tc->sym->scope)
                        tc->sym->semantic(NULL);
                }
                if (!tc->sym->symtab || tc->sym->scope || tc->sym->sizeok == 0)
                {
                    //printf("%s: forward reference of base class %s\n", toChars(), tc->sym->toChars());
                    //error("forward reference of base class %s", baseClass->toChars());
                    // Forward reference of base class, try again later
                    //printf("\ttry later, forward reference of base class %s\n", tc->sym->toChars());
                    scope = scx ? scx : new Scope(*sc);
                    scope->setNoFree();
                    if (tc->sym->scope)
                        tc->sym->scope->module->addDeferredSemantic(tc->sym);
                    scope->module->addDeferredSemantic(this);
                    return;
                }
                else
                {   baseClass = tc->sym;
                    b->base = baseClass;
                }
             L7: ;
            }
        }
    }

    // Treat the remaining entries in baseclasses as interfaces
    // Check for errors, handle forward references
    for (size_t i = (baseClass ? 1 : 0); i < baseclasses->dim; )
    {   TypeClass *tc;
        BaseClass *b;
        Type *tb;

        b = (BaseClass *)baseclasses->data[i];
        b->type = b->type->semantic(loc, sc);
        tb = b->type->toBasetype();
        if (tb->ty == Tclass)
            tc = (TypeClass *)tb;
        else
            tc = NULL;
        if (!tc || !tc->sym->isInterfaceDeclaration())
        {
            error("base type must be interface, not %s", b->type->toChars());
            baseclasses->remove(i);
            continue;
        }
        else
        {
            if (tc->sym->isDeprecated())
            {
                if (!isDeprecated())
                {
                    // Deriving from deprecated class makes this one deprecated too
                    isdeprecated = 1;

                    tc->checkDeprecated(loc, sc);
                }
            }

            // Check for duplicate interfaces
            for (size_t j = (baseClass ? 1 : 0); j < i; j++)
            {
                BaseClass *b2 = (BaseClass *)baseclasses->data[j];
                if (b2->base == tc->sym)
                    error("inherits from duplicate interface %s", b2->base->toChars());
            }

            if (!tc->sym->symtab)
            {   // Try to resolve forward reference
                if (/*sc->mustsemantic &&*/ tc->sym->scope)
                    tc->sym->semantic(NULL);
            }

            b->base = tc->sym;
            if (!b->base->symtab || b->base->scope)
            {
                //error("forward reference of base class %s", baseClass->toChars());
                // Forward reference of base, try again later
                //printf("\ttry later, forward reference of base %s\n", baseClass->toChars());
                scope = scx ? scx : new Scope(*sc);
                scope->setNoFree();
                if (tc->sym->scope)
                    tc->sym->scope->module->addDeferredSemantic(tc->sym);
                scope->module->addDeferredSemantic(this);
                return;
            }
        }
        i++;
    }


    // If no base class, and this is not an Object, use Object as base class
    if (!baseClass && ident != Id::Object)
    {
        // BUG: what if Object is redefined in an inner scope?
        Type *tbase = new TypeIdentifier(0, Id::Object);
        BaseClass *b;
        TypeClass *tc;
        Type *bt;

        if (!object)
        {
            error("missing or corrupt object.d");
            fatal();
        }
        bt = tbase->semantic(loc, sc)->toBasetype();
        b = new BaseClass(bt, PROTpublic);
        baseclasses->shift(b);
        assert(b->type->ty == Tclass);
        tc = (TypeClass *)(b->type);
        baseClass = tc->sym;
        assert(!baseClass->isInterfaceDeclaration());
        b->base = baseClass;
    }

    interfaces_dim = baseclasses->dim;
    interfaces = (BaseClass **)baseclasses->data;


    if (baseClass)
    {
        if (baseClass->storage_class & STCfinal)
            error("cannot inherit from final class %s", baseClass->toChars());

        interfaces_dim--;
        interfaces++;

        // Copy vtbl[] from base class
        vtbl.setDim(baseClass->vtbl.dim);
        memcpy(vtbl.data, baseClass->vtbl.data, sizeof(void *) * vtbl.dim);

        // Inherit properties from base class
        com = baseClass->isCOMclass();
        isscope = baseClass->isscope;
        vthis = baseClass->vthis;
    }
    else
    {
        // No base class, so this is the root of the class hierarchy
        vtbl.setDim(0);
        vtbl.push(this);                // leave room for classinfo as first member
    }

    protection = sc->protection;
    storage_class |= sc->stc;

    if (sizeok == 0)
    {
        interfaceSemantic(sc);

        for (size_t i = 0; i < members->dim; i++)
        {
            Dsymbol *s = (Dsymbol *)members->data[i];
            s->addMember(sc, this, 1);
        }

        /* If this is a nested class, add the hidden 'this'
         * member which is a pointer to the enclosing scope.
         */
        if (vthis)              // if inheriting from nested class
        {   // Use the base class's 'this' member
            isnested = 1;
            if (storage_class & STCstatic)
                error("static class cannot inherit from nested class %s", baseClass->toChars());
            if (toParent2() != baseClass->toParent2())
            {
                if (toParent2())
                {
                    error("is nested within %s, but super class %s is nested within %s",
                        toParent2()->toChars(),
                        baseClass->toChars(),
                        baseClass->toParent2()->toChars());
                }
                else
                {
                    error("is not nested, but super class %s is nested within %s",
                        baseClass->toChars(),
                        baseClass->toParent2()->toChars());
                }
                isnested = 0;
            }
        }
        else if (!(storage_class & STCstatic))
        {   Dsymbol *s = toParent2();
            if (s)
            {
                AggregateDeclaration *ad = s->isClassDeclaration();
                FuncDeclaration *fd = s->isFuncDeclaration();


                if (ad || fd)
                {   isnested = 1;
                    Type *t;
                    if (ad)
                        t = ad->handle;
                    else if (fd)
                    {   AggregateDeclaration *ad2 = fd->isMember2();
                        if (ad2)
                            t = ad2->handle;
                        else
                        {
                            t = new TypePointer(Type::tvoid);
                            t = t->semantic(0, sc);
                        }
                    }
                    else
                        assert(0);
                    assert(!vthis);
                    vthis = new ThisDeclaration(loc, t);
                    members->push(vthis);
                }
            }
        }
    }

    if (storage_class & STCauto)
        error("storage class 'auto' is invalid when declaring a class, did you mean to use 'scope'?");
    if (storage_class & STCscope)
        isscope = 1;
    if (storage_class & STCabstract)
        isabstract = 1;

    sc = sc->push(this);
    sc->stc &= STCsafe | STCtrusted | STCsystem;
#if IN_GCC
    sc->attributes = NULL;
#endif
    sc->parent = this;
    sc->inunion = 0;

    if (isCOMclass())
    {
#if _WIN32
        sc->linkage = LINKwindows;
#else
        /* This enables us to use COM objects under Linux and
         * work with things like XPCOM
         */
        sc->linkage = LINKc;
#endif
    }
    sc->protection = PROTpublic;
    sc->explicitProtection = 0;
    sc->structalign = 8;
    structalign = sc->structalign;
    if (baseClass)
    {   sc->offset = baseClass->structsize;
        alignsize = baseClass->alignsize;
//      if (isnested)
//          sc->offset += PTRSIZE;      // room for uplevel context pointer
    }
    else
    {   sc->offset = PTRSIZE * 2;       // allow room for __vptr and __monitor
        alignsize = PTRSIZE;
    }
    structsize = sc->offset;
    Scope scsave = *sc;
    size_t members_dim = members->dim;
    sizeok = 0;

    /* Set scope so if there are forward references, we still might be able to
     * resolve individual members like enums.
     */
    for (size_t i = 0; i < members_dim; i++)
    {   Dsymbol *s = (Dsymbol *)members->data[i];
        /* There are problems doing this in the general case because
         * Scope keeps track of things like 'offset'
         */
        if (s->isEnumDeclaration() || (s->isAggregateDeclaration() && s->ident))
        {
            //printf("setScope %s %s\n", s->kind(), s->toChars());
            s->setScope(sc);
        }
    }

    for (size_t i = 0; i < members_dim; i++)
    {   Dsymbol *s = (Dsymbol *)members->data[i];
        s->semantic(sc);
    }

    if (sizeok == 2)
    {   // semantic() failed because of forward references.
        // Unwind what we did, and defer it for later
        fields.setDim(0);
        structsize = 0;
        alignsize = 0;
        structalign = 0;

        sc = sc->pop();

        scope = scx ? scx : new Scope(*sc);
        scope->setNoFree();
        scope->module->addDeferredSemantic(this);

        Module::dprogress = dprogress_save;

        //printf("\tsemantic('%s') failed due to forward references\n", toChars());
        return;
    }

    //printf("\tsemantic('%s') successful\n", toChars());

    structsize = sc->offset;
    //members->print();

    /* Look for special member functions.
     * They must be in this class, not in a base class.
     */
    ctor = (CtorDeclaration *)search(0, Id::ctor, 0);
    if (ctor && (ctor->toParent() != this || !ctor->isCtorDeclaration()))
        ctor = NULL;

//    dtor = (DtorDeclaration *)search(Id::dtor, 0);
//    if (dtor && dtor->toParent() != this)
//      dtor = NULL;

//    inv = (InvariantDeclaration *)search(Id::classInvariant, 0);
//    if (inv && inv->toParent() != this)
//      inv = NULL;

    // Can be in base class
    aggNew    = (NewDeclaration *)search(0, Id::classNew, 0);
    aggDelete = (DeleteDeclaration *)search(0, Id::classDelete, 0);

    // If this class has no constructor, but base class does, create
    // a constructor:
    //    this() { }
    if (!ctor && baseClass && baseClass->ctor)
    {
        //printf("Creating default this(){} for class %s\n", toChars());
        CtorDeclaration *ctor = new CtorDeclaration(loc, 0, NULL, 0);
        ctor->fbody = new CompoundStatement(0, new Statements());
        members->push(ctor);
        ctor->addMember(sc, this, 1);
        *sc = scsave;   // why? What about sc->nofree?
        sc->offset = structsize;
        ctor->semantic(sc);
        this->ctor = ctor;
        defaultCtor = ctor;
    }

#if 0
    if (baseClass)
    {   if (!aggDelete)
            aggDelete = baseClass->aggDelete;
        if (!aggNew)
            aggNew = baseClass->aggNew;
    }
#endif

    // Allocate instance of each new interface
    for (size_t i = 0; i < vtblInterfaces->dim; i++)
    {
        BaseClass *b = (BaseClass *)vtblInterfaces->data[i];
        unsigned thissize = PTRSIZE;

        alignmember(structalign, thissize, &sc->offset);
        assert(b->offset == 0);
        b->offset = sc->offset;

        // Take care of single inheritance offsets
        while (b->baseInterfaces_dim)
        {
            b = &b->baseInterfaces[0];
            b->offset = sc->offset;
        }

        sc->offset += thissize;
        if (alignsize < thissize)
            alignsize = thissize;
    }
    structsize = sc->offset;
    sizeok = 1;
    Module::dprogress++;

    dtor = buildDtor(sc);

    sc->pop();

#if 0 // Do not call until toObjfile() because of forward references
    // Fill in base class vtbl[]s
    for (i = 0; i < vtblInterfaces->dim; i++)
    {
        BaseClass *b = (BaseClass *)vtblInterfaces->data[i];

        //b->fillVtbl(this, &b->vtbl, 1);
    }
#endif
    //printf("-ClassDeclaration::semantic(%s), type = %p\n", toChars(), type);
}
Exemple #14
0
void ClassDeclaration::semantic(Scope *sc)
{
    //printf("ClassDeclaration::semantic(%s), type = %p, sizeok = %d, this = %p\n", toChars(), type, sizeok, this);
    //printf("\tparent = %p, '%s'\n", sc->parent, sc->parent ? sc->parent->toChars() : "");
    //printf("sc->stc = %x\n", sc->stc);

    //{ static int n;  if (++n == 20) *(char*)0=0; }

    if (!ident)         // if anonymous class
    {   const char *id = "__anonclass";

        ident = Identifier::generateId(id);
    }

    if (!sc)
        sc = scope;
    if (!parent && sc->parent && !sc->parent->isModule())
        parent = sc->parent;

    type = type->semantic(loc, sc);

    if (type->ty == Tclass && ((TypeClass *)type)->sym != this)
    {
        TemplateInstance *ti = ((TypeClass *)type)->sym->isInstantiated();
        if (ti && ti->errors)
            ((TypeClass *)type)->sym = this;
    }

    if (!members)               // if opaque declaration
    {   //printf("\tclass '%s' is forward referenced\n", toChars());
        return;
    }
    if (symtab)
    {   if (sizeok == SIZEOKdone || !scope)
        {   //printf("\tsemantic for '%s' is already completed\n", toChars());
            return;             // semantic() already completed
        }
    }
    else
        symtab = new DsymbolTable();

    Scope *scx = NULL;
    if (scope)
    {
        sc = scope;
        scx = scope;            // save so we don't make redundant copies
        scope = NULL;
    }
    unsigned dprogress_save = Module::dprogress;
    int errors = global.errors;

    if (sc->stc & STCdeprecated)
    {
        isdeprecated = true;
    }
    userAttribDecl = sc->userAttribDecl;

    if (sc->linkage == LINKcpp)
        cpp = 1;

    // Expand any tuples in baseclasses[]
    for (size_t i = 0; i < baseclasses->dim; )
    {
        // Ungag errors when not speculative
        Ungag ungag = ungagSpeculative();

        BaseClass *b = (*baseclasses)[i];
        b->type = b->type->semantic(loc, sc);

        Type *tb = b->type->toBasetype();
        if (tb->ty == Ttuple)
        {   TypeTuple *tup = (TypeTuple *)tb;
            PROT protection = b->protection;
            baseclasses->remove(i);
            size_t dim = Parameter::dim(tup->arguments);
            for (size_t j = 0; j < dim; j++)
            {   Parameter *arg = Parameter::getNth(tup->arguments, j);
                b = new BaseClass(arg->type, protection);
                baseclasses->insert(i + j, b);
            }
        }
        else
            i++;
    }

    // See if there's a base class as first in baseclasses[]
    if (baseclasses->dim)
    {
        // Ungag errors when not speculative
        Ungag ungag = ungagSpeculative();

        BaseClass *b = (*baseclasses)[0];
        //b->type = b->type->semantic(loc, sc);

        Type *tb = b->type->toBasetype();
        if (tb->ty != Tclass)
        {
            if (b->type != Type::terror)
                error("base type must be class or interface, not %s", b->type->toChars());
            baseclasses->remove(0);
        }
        else
        {
            TypeClass *tc = (TypeClass *)(tb);

            if (tc->sym->isDeprecated())
            {
                if (!isDeprecated())
                {
                    // Deriving from deprecated class makes this one deprecated too
                    isdeprecated = true;

                    tc->checkDeprecated(loc, sc);
                }
            }

            if (tc->sym->isInterfaceDeclaration())
                ;
            else
            {
                for (ClassDeclaration *cdb = tc->sym; cdb; cdb = cdb->baseClass)
                {
                    if (cdb == this)
                    {
                        error("circular inheritance");
                        baseclasses->remove(0);
                        goto L7;
                    }
                }
                if (tc->sym->scope)
                {
                    // Try to resolve forward reference
                    tc->sym->semantic(NULL);
                }

                if (tc->sym->symtab && tc->sym->scope == NULL)
                {
                    /* Bugzilla 11034: Essentailly, class inheritance hierarchy
                     * and instance size of each classes are orthogonal information.
                     * Therefore, even if tc->sym->sizeof == SIZEOKnone,
                     * we need to set baseClass field for class covariance check.
                     */
                    baseClass = tc->sym;
                    b->base = baseClass;
                }
                if (!tc->sym->symtab || tc->sym->scope || tc->sym->sizeok == SIZEOKnone)
                {
                    //printf("%s: forward reference of base class %s\n", toChars(), tc->sym->toChars());
                    //error("forward reference of base class %s", baseClass->toChars());
                    // Forward reference of base class, try again later
                    //printf("\ttry later, forward reference of base class %s\n", tc->sym->toChars());
                    scope = scx ? scx : sc->copy();
                    scope->setNoFree();
                    if (tc->sym->scope)
                        tc->sym->scope->module->addDeferredSemantic(tc->sym);
                    scope->module->addDeferredSemantic(this);
                    return;
                }
             L7: ;
            }
        }
    }

    // Treat the remaining entries in baseclasses as interfaces
    // Check for errors, handle forward references
    for (size_t i = (baseClass ? 1 : 0); i < baseclasses->dim; )
    {
        // Ungag errors when not speculative
        Ungag ungag = ungagSpeculative();

        BaseClass *b = (*baseclasses)[i];
        b->type = b->type->semantic(loc, sc);

        Type *tb = b->type->toBasetype();
        TypeClass *tc = (tb->ty == Tclass) ? (TypeClass *)tb : NULL;
        if (!tc || !tc->sym->isInterfaceDeclaration())
        {
            if (b->type != Type::terror)
                error("base type must be interface, not %s", b->type->toChars());
            baseclasses->remove(i);
            continue;
        }
        else
        {
            if (tc->sym->isDeprecated())
            {
                if (!isDeprecated())
                {
                    // Deriving from deprecated class makes this one deprecated too
                    isdeprecated = true;

                    tc->checkDeprecated(loc, sc);
                }
            }

            // Check for duplicate interfaces
            for (size_t j = (baseClass ? 1 : 0); j < i; j++)
            {
                BaseClass *b2 = (*baseclasses)[j];
                if (b2->base == tc->sym)
                    error("inherits from duplicate interface %s", b2->base->toChars());
            }

            if (tc->sym->scope)
            {
                // Try to resolve forward reference
                tc->sym->semantic(NULL);
            }

            b->base = tc->sym;
            if (!b->base->symtab || b->base->scope)
            {
                //error("forward reference of base class %s", baseClass->toChars());
                // Forward reference of base, try again later
                //printf("\ttry later, forward reference of base %s\n", baseClass->toChars());
                scope = scx ? scx : sc->copy();
                scope->setNoFree();
                if (tc->sym->scope)
                    tc->sym->scope->module->addDeferredSemantic(tc->sym);
                scope->module->addDeferredSemantic(this);
                return;
            }
        }
        i++;
    }
    if (doAncestorsSemantic == SemanticIn)
        doAncestorsSemantic = SemanticDone;


    if (sizeok == SIZEOKnone)
    {
        // If no base class, and this is not an Object, use Object as base class
        if (!baseClass && ident != Id::Object && !cpp)
        {
            if (!object)
            {
                error("missing or corrupt object.d");
                fatal();
            }

            Type *t = object->type;
            t = t->semantic(loc, sc)->toBasetype();
            assert(t->ty == Tclass);
            TypeClass *tc = (TypeClass *)t;

            BaseClass *b = new BaseClass(tc, PROTpublic);
            baseclasses->shift(b);

            baseClass = tc->sym;
            assert(!baseClass->isInterfaceDeclaration());
            b->base = baseClass;
        }

        interfaces_dim = baseclasses->dim;
        interfaces = baseclasses->tdata();

        if (baseClass)
        {
            if (baseClass->storage_class & STCfinal)
                error("cannot inherit from final class %s", baseClass->toChars());

            interfaces_dim--;
            interfaces++;

            // Copy vtbl[] from base class
            vtbl.setDim(baseClass->vtbl.dim);
            memcpy(vtbl.tdata(), baseClass->vtbl.tdata(), sizeof(void *) * vtbl.dim);

            // Inherit properties from base class
            com = baseClass->isCOMclass();
            if (baseClass->isCPPclass())
                cpp = 1;
            isscope = baseClass->isscope;
            vthis = baseClass->vthis;
            enclosing = baseClass->enclosing;
            storage_class |= baseClass->storage_class & STC_TYPECTOR;
        }
        else
        {
            // No base class, so this is the root of the class hierarchy
            vtbl.setDim(0);
            if (vtblOffset())
                vtbl.push(this);            // leave room for classinfo as first member
        }

        protection = sc->protection;
        storage_class |= sc->stc;

        interfaceSemantic(sc);

        for (size_t i = 0; i < members->dim; i++)
        {
            Dsymbol *s = (*members)[i];
            s->addMember(sc, this, 1);
        }

        /* If this is a nested class, add the hidden 'this'
         * member which is a pointer to the enclosing scope.
         */
        if (vthis)              // if inheriting from nested class
        {
            // Use the base class's 'this' member
            if (storage_class & STCstatic)
                error("static class cannot inherit from nested class %s", baseClass->toChars());
            if (toParent2() != baseClass->toParent2() &&
                (!toParent2() ||
                 !baseClass->toParent2()->getType() ||
                 !baseClass->toParent2()->getType()->isBaseOf(toParent2()->getType(), NULL)))
            {
                if (toParent2())
                {
                    error("is nested within %s, but super class %s is nested within %s",
                        toParent2()->toChars(),
                        baseClass->toChars(),
                        baseClass->toParent2()->toChars());
                }
                else
                {
                    error("is not nested, but super class %s is nested within %s",
                        baseClass->toChars(),
                        baseClass->toParent2()->toChars());
                }
                enclosing = NULL;
            }
        }
        else
            makeNested();

        if (storage_class & STCauto)
            error("storage class 'auto' is invalid when declaring a class, did you mean to use 'scope'?");
        if (storage_class & STCscope)
            isscope = true;
        if (storage_class & STCabstract)
            isabstract = 1;
    }

    sc = sc->push(this);
    //sc->stc &= ~(STCfinal | STCauto | STCscope | STCstatic | STCabstract | STCdeprecated | STC_TYPECTOR | STCtls | STCgshared);
    //sc->stc |= storage_class & STC_TYPECTOR;
    sc->stc &= STCsafe | STCtrusted | STCsystem;
    sc->parent = this;
    sc->inunion = 0;
    if (isCOMclass())
    {
        if (global.params.isWindows)
            sc->linkage = LINKwindows;
        else
            /* This enables us to use COM objects under Linux and
             * work with things like XPCOM
             */
            sc->linkage = LINKc;
    }
    sc->protection = PROTpublic;
    sc->explicitProtection = 0;
    sc->structalign = STRUCTALIGN_DEFAULT;
    if (baseClass)
    {
        sc->offset = baseClass->structsize;
        alignsize = baseClass->alignsize;
        sc->offset = (sc->offset + alignsize - 1) & ~(alignsize - 1);
//      if (enclosing)
//          sc->offset += Target::ptrsize;      // room for uplevel context pointer
    }
    else
    {
        if (cpp)
            sc->offset = Target::ptrsize;       // allow room for __vptr
        else
            sc->offset = Target::ptrsize * 2;   // allow room for __vptr and __monitor
        alignsize = Target::ptrsize;
    }
    sc->userAttribDecl = NULL;
    structsize = sc->offset;
    Scope scsave = *sc;
    size_t members_dim = members->dim;
    sizeok = SIZEOKnone;

    /* Set scope so if there are forward references, we still might be able to
     * resolve individual members like enums.
     */
    for (size_t i = 0; i < members_dim; i++)
    {
        Dsymbol *s = (*members)[i];
        //printf("[%d] setScope %s %s, sc = %p\n", i, s->kind(), s->toChars(), sc);
        s->setScope(sc);
    }

    for (size_t i = 0; i < members->dim; i++)
    {
        Dsymbol *s = (*members)[i];
        s->importAll(sc);
    }

    for (size_t i = 0; i < members_dim; i++)
    {
        Dsymbol *s = (*members)[i];

        // Ungag errors when not speculative
        Ungag ungag = ungagSpeculative();
        s->semantic(sc);
    }

    // Set the offsets of the fields and determine the size of the class

    unsigned offset = structsize;
    for (size_t i = 0; i < members->dim; i++)
    {
        Dsymbol *s = (*members)[i];
        s->setFieldOffset(this, &offset, false);
    }
    sc->offset = structsize;

    if (global.errors != errors)
    {
        // The type is no good.
        type = Type::terror;
    }

    if (sizeok == SIZEOKfwd)            // failed due to forward references
    {
        // semantic() failed due to forward references
        // Unwind what we did, and defer it for later
        for (size_t i = 0; i < fields.dim; i++)
        {
            VarDeclaration *v = fields[i];
            v->offset = 0;
        }
        fields.setDim(0);
        structsize = 0;
        alignsize = 0;
//        structalign = 0;

        sc = sc->pop();

        scope = scx ? scx : sc->copy();
        scope->setNoFree();
        scope->module->addDeferredSemantic(this);

        Module::dprogress = dprogress_save;

        //printf("\tsemantic('%s') failed due to forward references\n", toChars());
        return;
    }

    //printf("\tsemantic('%s') successful\n", toChars());

    //members->print();

    /* Look for special member functions.
     * They must be in this class, not in a base class.
     */
    searchCtor();
    if (ctor && (ctor->toParent() != this || !(ctor->isCtorDeclaration() || ctor->isTemplateDeclaration())))
        ctor = NULL;    // search() looks through ancestor classes
    if (!ctor && noDefaultCtor)
    {
        // A class object is always created by constructor, so this check is legitimate.
        for (size_t i = 0; i < fields.dim; i++)
        {
            VarDeclaration *v = fields[i];
            if (v->storage_class & STCnodefaultctor)
                ::error(v->loc, "field %s must be initialized in constructor", v->toChars());
        }
    }

    inv = buildInv(this, sc);

    // Can be in base class
    aggNew    =    (NewDeclaration *)search(Loc(), Id::classNew);
    aggDelete = (DeleteDeclaration *)search(Loc(), Id::classDelete);

    // If this class has no constructor, but base class has a default
    // ctor, create a constructor:
    //    this() { }
    if (!ctor && baseClass && baseClass->ctor)
    {
        FuncDeclaration *fd = resolveFuncCall(loc, sc, baseClass->ctor, NULL, NULL, NULL, 1);
        if (fd && !fd->errors)
        {
            //printf("Creating default this(){} for class %s\n", toChars());
            TypeFunction *btf = (TypeFunction *)fd->type;
            TypeFunction *tf = new TypeFunction(NULL, NULL, 0, LINKd, fd->storage_class);
            tf->purity = btf->purity;
            tf->isnothrow = btf->isnothrow;
            tf->trust = btf->trust;
            CtorDeclaration *ctor = new CtorDeclaration(loc, Loc(), 0, tf);
            ctor->fbody = new CompoundStatement(Loc(), new Statements());
            members->push(ctor);
            ctor->addMember(sc, this, 1);
            *sc = scsave;   // why? What about sc->nofree?
            ctor->semantic(sc);
            this->ctor = ctor;
            defaultCtor = ctor;
        }
        else
        {
            error("Cannot implicitly generate a default ctor when base class %s is missing a default ctor", baseClass->toPrettyChars());
        }
    }

#if 0
    if (baseClass)
    {   if (!aggDelete)
            aggDelete = baseClass->aggDelete;
        if (!aggNew)
            aggNew = baseClass->aggNew;
    }
#endif

    // Allocate instance of each new interface
    sc->offset = structsize;
    for (size_t i = 0; i < vtblInterfaces->dim; i++)
    {
        BaseClass *b = (*vtblInterfaces)[i];
        unsigned thissize = Target::ptrsize;

        alignmember(STRUCTALIGN_DEFAULT, thissize, &sc->offset);
        assert(b->offset == 0);
        b->offset = sc->offset;

        // Take care of single inheritance offsets
        while (b->baseInterfaces_dim)
        {
            b = &b->baseInterfaces[0];
            b->offset = sc->offset;
        }

        sc->offset += thissize;
        if (alignsize < thissize)
            alignsize = thissize;
    }
    structsize = sc->offset;
    sizeok = SIZEOKdone;
    Module::dprogress++;

    dtor = buildDtor(this, sc);
    if (FuncDeclaration *f = hasIdentityOpAssign(this, sc))
    {
        if (!(f->storage_class & STCdisable))
            error(f->loc, "identity assignment operator overload is illegal");
    }
    sc->pop();

#if 0 // Do not call until toObjfile() because of forward references
    // Fill in base class vtbl[]s
    for (i = 0; i < vtblInterfaces->dim; i++)
    {
        BaseClass *b = (*vtblInterfaces)[i];

        //b->fillVtbl(this, &b->vtbl, 1);
    }
#endif
    //printf("-ClassDeclaration::semantic(%s), type = %p\n", toChars(), type);

    if (deferred && !global.gag)
    {
        deferred->semantic2(sc);
        deferred->semantic3(sc);
    }

#if 0
    if (type->ty == Tclass && ((TypeClass *)type)->sym != this)
    {
        printf("this = %p %s\n", this, this->toChars());
        printf("type = %d sym = %p\n", type->ty, ((TypeClass *)type)->sym);
      }
#endif
    assert(type->ty != Tclass || ((TypeClass *)type)->sym == this);
}
Exemple #15
0
FuncDeclaration *StructDeclaration::buildOpAssign(Scope *sc)
{
    if (FuncDeclaration *f = hasIdentityOpAssign(sc))
    {
        hasIdentityAssign = 1;
        return f;
    }
    // Even if non-identity opAssign is defined, built-in identity opAssign
    // will be defined.

    if (!needOpAssign())
        return NULL;

    //printf("StructDeclaration::buildOpAssign() %s\n", toChars());
    StorageClass stc = STCsafe | STCnothrow | STCpure;
    Loc declLoc = this->loc;
    Loc loc = Loc();    // internal code should have no loc to prevent coverage

    if (dtor || postblit)
    {
        if (dtor)
            stc = mergeFuncAttrs(stc, dtor->storage_class);
    }
    else
    {
        for (size_t i = 0; i < fields.dim; i++)
        {
            Dsymbol *s = fields[i];
            VarDeclaration *v = s->isVarDeclaration();
            assert(v && v->isField());
            if (v->storage_class & STCref)
                continue;
            Type *tv = v->type->toBasetype();
            while (tv->ty == Tsarray)
            {   TypeSArray *ta = (TypeSArray *)tv;
                tv = tv->nextOf()->toBasetype();
            }
            if (tv->ty == Tstruct)
            {   TypeStruct *ts = (TypeStruct *)tv;
                StructDeclaration *sd = ts->sym;
                if (FuncDeclaration *f = sd->hasIdentityOpAssign(sc))
                    stc = mergeFuncAttrs(stc, f->storage_class);
            }
        }
    }

    Parameters *fparams = new Parameters;
    fparams->push(new Parameter(STCnodtor, type, Id::p, NULL));
    Type *tf = new TypeFunction(fparams, handle, 0, LINKd, stc | STCref);

    FuncDeclaration *fop = new FuncDeclaration(declLoc, Loc(), Id::assign, stc, tf);

    Expression *e = NULL;
    if (stc & STCdisable)
    {
    }
    else if (dtor || postblit)
    {
        /* Do swap this and rhs
         *    tmp = this; this = s; tmp.dtor();
         */
        //printf("\tswap copy\n");
        Identifier *idtmp = Lexer::uniqueId("__tmp");
        VarDeclaration *tmp;
        AssignExp *ec = NULL;
        if (dtor)
        {
            tmp = new VarDeclaration(loc, type, idtmp, new VoidInitializer(loc));
            tmp->noscope = 1;
            tmp->storage_class |= STCctfe;
            e = new DeclarationExp(loc, tmp);
            ec = new AssignExp(loc,
                new VarExp(loc, tmp),
                new ThisExp(loc)
                );
            ec->op = TOKblit;
            e = Expression::combine(e, ec);
        }
        ec = new AssignExp(loc,
                new ThisExp(loc),
                new IdentifierExp(loc, Id::p));
        ec->op = TOKblit;
        e = Expression::combine(e, ec);
        if (dtor)
        {
            /* Instead of running the destructor on s, run it
             * on tmp. This avoids needing to copy tmp back in to s.
             */
            Expression *ec2 = new DotVarExp(loc, new VarExp(loc, tmp), dtor, 0);
            ec2 = new CallExp(loc, ec2);
            e = Expression::combine(e, ec2);
        }
    }
    else
    {
        /* Do memberwise copy
         */
        //printf("\tmemberwise copy\n");
        for (size_t i = 0; i < fields.dim; i++)
        {
            Dsymbol *s = fields[i];
            VarDeclaration *v = s->isVarDeclaration();
            assert(v && v->isField());
            // this.v = s.v;
            AssignExp *ec = new AssignExp(loc,
                new DotVarExp(loc, new ThisExp(loc), v, 0),
                new DotVarExp(loc, new IdentifierExp(loc, Id::p), v, 0));
            e = Expression::combine(e, ec);
        }
    }
    if (e)
    {
        Statement *s1 = new ExpStatement(loc, e);

        /* Add:
         *   return this;
         */
        e = new ThisExp(loc);
        Statement *s2 = new ReturnStatement(loc, e);

        fop->fbody = new CompoundStatement(loc, s1, s2);
    }

    Dsymbol *s = fop;
#if 1   // workaround until fixing issue 1528
    Dsymbol *assign = search_function(this, Id::assign);
    if (assign && assign->isTemplateDeclaration())
    {
        // Wrap a template around the function declaration
        TemplateParameters *tpl = new TemplateParameters();
        Dsymbols *decldefs = new Dsymbols();
        decldefs->push(s);
        TemplateDeclaration *tempdecl =
            new TemplateDeclaration(assign->loc, fop->ident, tpl, NULL, decldefs, 0);
        s = tempdecl;
    }
#endif
    members->push(s);
    s->addMember(sc, this, 1);
    this->hasIdentityAssign = 1;        // temporary mark identity assignable

    unsigned errors = global.startGagging();    // Do not report errors, even if the
    unsigned oldspec = global.speculativeGag;   // template opAssign fbody makes it.
    global.speculativeGag = global.gag;
    Scope *sc2 = sc->push();
    sc2->stc = 0;
    sc2->linkage = LINKd;
    sc2->speculative = true;

    s->semantic(sc2);
    s->semantic2(sc2);
    s->semantic3(sc2);

    sc2->pop();
    global.speculativeGag = oldspec;
    if (global.endGagging(errors))    // if errors happened
    {   // Disable generated opAssign, because some members forbid identity assignment.
        fop->storage_class |= STCdisable;
        fop->fbody = NULL;  // remove fbody which contains the error
    }

    //printf("-StructDeclaration::buildOpAssign() %s %s, errors = %d\n", toChars(), s->kind(), (fop->storage_class & STCdisable) != 0);

    return fop;
}
Exemple #16
0
void Nspace::semantic(Scope *sc)
{
    if (semanticRun >= PASSsemantic)
        return;
    semanticRun = PASSsemantic;
#if LOG
    printf("+Nspace::semantic('%s')\n", toChars());
#endif
    if (scope)
    {
        sc = scope;
        scope = NULL;
    }
    parent = sc->parent;
    if (members)
    {
        if (!symtab)
            symtab = new DsymbolTable();

        // The namespace becomes 'imported' into the enclosing scope
        for (Scope *sce = sc; 1; sce = sce->enclosing)
        {
            ScopeDsymbol *sds = (ScopeDsymbol *)sce->scopesym;
            if (sds)
            {
                sds->importScope(this, Prot(PROTpublic));
                break;
            }
        }

        assert(sc);
        sc = sc->push(this);
        sc->linkage = LINKcpp;          // note that namespaces imply C++ linkage
        sc->parent = this;

        for (size_t i = 0; i < members->dim; i++)
        {
            Dsymbol *s = (*members)[i];
            //printf("add %s to scope %s\n", s->toChars(), toChars());
            s->addMember(sc, this);
        }

        for (size_t i = 0; i < members->dim; i++)
        {
            Dsymbol *s = (*members)[i];
            s->setScope(sc);
        }

        for (size_t i = 0; i < members->dim; i++)
        {
            Dsymbol *s = (*members)[i];
            s->importAll(sc);
        }

        for (size_t i = 0; i < members->dim; i++)
        {
            Dsymbol *s = (*members)[i];
#if LOG
            printf("\tmember '%s', kind = '%s'\n", s->toChars(), s->kind());
#endif
            s->semantic(sc);
        }
        sc->pop();
    }
#if LOG
    printf("-Nspace::semantic('%s')\n", toChars());
#endif
}
Exemple #17
0
void StructDeclaration::semantic(Scope *sc)
{   int i;
    Scope *sc2;

    //printf("+StructDeclaration::semantic(this=%p, '%s')\n", this, toChars());

    //static int count; if (++count == 20) *(char*)0=0;

    assert(type);
    if (!members)			// if forward reference
	return;

    if (symtab)
    {   if (!scope)
            return;             // semantic() already completed
    }
    else
        symtab = new DsymbolTable();

    Scope *scx = NULL;
    if (scope)
    {   sc = scope;
        scx = scope;            // save so we don't make redundant copies
        scope = NULL;
    }

    parent = sc->parent;
    handle = type->pointerTo();
    structalign = sc->structalign;
    protection = sc->protection;
    storage_class |= sc->stc;
    assert(!isAnonymous());
    if (sc->stc & STCabstract)
	error("structs, unions cannot be abstract");
    if (storage_class & STCinvariant)
        type = type->invariantOf();
    else if (storage_class & STCconst)
        type = type->constOf();

    if (sizeok == 0)		// if not already done the addMember step
    {
	for (i = 0; i < members->dim; i++)
	{
	    Dsymbol *s = (Dsymbol *)members->data[i];
	    //printf("adding member '%s' to '%s'\n", s->toChars(), this->toChars());
	    s->addMember(sc, this, 1);
	}
    }

    sizeok = 0;
    sc2 = sc->push(this);
    sc2->stc &= storage_class & (STCconst | STCinvariant);
    sc2->parent = this;
    if (isUnionDeclaration())
	sc2->inunion = 1;
    sc2->protection = PROTpublic;
    sc2->explicitProtection = 0;

    int members_dim = members->dim;
    for (i = 0; i < members_dim; i++)
    {
	Dsymbol *s = (Dsymbol *)members->data[i];
	s->semantic(sc2);
	if (isUnionDeclaration())
	    sc2->offset = 0;
#if 0
	if (sizeok == 2)
	{   //printf("forward reference\n");
	    break;
	}
#endif
    }

    /* The TypeInfo_Struct is expecting an opEquals and opCmp with
     * a parameter that is a pointer to the struct. But if there
     * isn't one, but is an opEquals or opCmp with a value, write
     * another that is a shell around the value:
     *	int opCmp(struct *p) { return opCmp(*p); }
     */

    TypeFunction *tfeqptr;
    {
	Arguments *arguments = new Arguments;
	Argument *arg = new Argument(STCin, handle, Id::p, NULL);

	arguments->push(arg);
	tfeqptr = new TypeFunction(arguments, Type::tint32, 0, LINKd);
	tfeqptr = (TypeFunction *)tfeqptr->semantic(0, sc);
    }

    TypeFunction *tfeq;
    {
	Arguments *arguments = new Arguments;
	Argument *arg = new Argument(STCin, type, NULL, NULL);

	arguments->push(arg);
	tfeq = new TypeFunction(arguments, Type::tint32, 0, LINKd);
	tfeq = (TypeFunction *)tfeq->semantic(0, sc);
    }

    Identifier *id = Id::eq;
    for (int i = 0; i < 2; i++)
    {
	Dsymbol *s = search_function(this, id);
	FuncDeclaration *fdx = s ? s->isFuncDeclaration() : NULL;
	if (fdx)
	{   FuncDeclaration *fd = fdx->overloadExactMatch(tfeqptr);
	    if (!fd)
	    {	fd = fdx->overloadExactMatch(tfeq);
		if (fd)
		{   // Create the thunk, fdptr
		    FuncDeclaration *fdptr = new FuncDeclaration(loc, loc, fdx->ident, STCundefined, tfeqptr);
		    Expression *e = new IdentifierExp(loc, Id::p);
		    e = new PtrExp(loc, e);
		    Expressions *args = new Expressions();
		    args->push(e);
		    e = new IdentifierExp(loc, id);
		    e = new CallExp(loc, e, args);
		    fdptr->fbody = new ReturnStatement(loc, e);
		    ScopeDsymbol *s = fdx->parent->isScopeDsymbol();
		    assert(s);
		    s->members->push(fdptr);
		    fdptr->addMember(sc, s, 1);
		    fdptr->semantic(sc2);
		}
	    }
	}

	id = Id::cmp;
    }

    dtor = buildDtor(sc2);
    postblit = buildPostBlit(sc2);
    cpctor = buildCpCtor(sc2);
    buildOpAssign(sc2);

    sc2->pop();

    if (sizeok == 2)
    {	// semantic() failed because of forward references.
	// Unwind what we did, and defer it for later
	fields.setDim(0);
	structsize = 0;
	alignsize = 0;
	structalign = 0;

	scope = scx ? scx : new Scope(*sc);
	scope->setNoFree();
	scope->module->addDeferredSemantic(this);
	//printf("\tdeferring %s\n", toChars());
	return;
    }

    // 0 sized struct's are set to 1 byte
    if (structsize == 0)
    {
	structsize = 1;
	alignsize = 1;
    }

    // Round struct size up to next alignsize boundary.
    // This will ensure that arrays of structs will get their internals
    // aligned properly.
    structsize = (structsize + alignsize - 1) & ~(alignsize - 1);

    sizeok = 1;
    Module::dprogress++;

    //printf("-StructDeclaration::semantic(this=%p, '%s')\n", this, toChars());

    // Determine if struct is all zeros or not
    zeroInit = 1;
    for (i = 0; i < fields.dim; i++)
    {
	Dsymbol *s = (Dsymbol *)fields.data[i];
	VarDeclaration *vd = s->isVarDeclaration();
	if (vd && !vd->isDataseg())
	{
	    if (vd->init)
	    {
		// Should examine init to see if it is really all 0's
		zeroInit = 0;
		break;
	    }
	    else
	    {
		if (!vd->type->isZeroInit())
		{
		    zeroInit = 0;
		    break;
		}
	    }
	}
    }

    /* Look for special member functions.
     */
    inv =    (InvariantDeclaration *)search(0, Id::classInvariant, 0);
    aggNew =       (NewDeclaration *)search(0, Id::classNew,       0);
    aggDelete = (DeleteDeclaration *)search(0, Id::classDelete,    0);

    if (sc->func)
    {
	semantic2(sc);
	semantic3(sc);
    }
}
Exemple #18
0
FuncDeclaration *buildOpAssign(StructDeclaration *sd, Scope *sc)
{
    if (FuncDeclaration *f = hasIdentityOpAssign(sd, sc))
    {
        sd->hasIdentityAssign = true;
        return f;
    }
    // Even if non-identity opAssign is defined, built-in identity opAssign
    // will be defined.

    if (!needOpAssign(sd))
        return NULL;

    //printf("StructDeclaration::buildOpAssign() %s\n", toChars());
    StorageClass stc = STCsafe | STCnothrow | STCpure | STCnogc;
    Loc declLoc = sd->loc;
    Loc loc = Loc();    // internal code should have no loc to prevent coverage

    if (sd->dtor || sd->postblit)
    {
        if (sd->dtor)
        {
            stc = mergeFuncAttrs(stc, sd->dtor);
            if (stc & STCsafe)
                stc = (stc & ~STCsafe) | STCtrusted;
        }
    }
    else
    {
        for (size_t i = 0; i < sd->fields.dim; i++)
        {
            VarDeclaration *v = sd->fields[i];
            if (v->storage_class & STCref)
                continue;
            Type *tv = v->type->baseElemOf();
            if (tv->ty == Tstruct)
            {
                TypeStruct *ts = (TypeStruct *)tv;
                if (FuncDeclaration *f = hasIdentityOpAssign(ts->sym, sc))
                    stc = mergeFuncAttrs(stc, f);
            }
        }
    }

    Parameters *fparams = new Parameters;
    fparams->push(new Parameter(STCnodtor, sd->type, Id::p, NULL));
    Type *tf = new TypeFunction(fparams, sd->handleType(), 0, LINKd, stc | STCref);

    FuncDeclaration *fop = new FuncDeclaration(declLoc, Loc(), Id::assign, stc, tf);

    Expression *e = NULL;
    if (stc & STCdisable)
    {
    }
    else if (sd->dtor || sd->postblit)
    {
        /* Do swap this and rhs
         *    tmp = this; this = s; tmp.dtor();
         */
        //printf("\tswap copy\n");
        Identifier *idtmp = Lexer::uniqueId("__tmp");
        VarDeclaration *tmp = NULL;
        AssignExp *ec = NULL;
        if (sd->dtor)
        {
            tmp = new VarDeclaration(loc, sd->type, idtmp, new VoidInitializer(loc));
            tmp->noscope = 1;
            tmp->storage_class |= STCtemp | STCctfe;
            e = new DeclarationExp(loc, tmp);
            ec = new BlitExp(loc, new VarExp(loc, tmp), new ThisExp(loc));
            e = Expression::combine(e, ec);
        }
        ec = new BlitExp(loc, new ThisExp(loc), new IdentifierExp(loc, Id::p));
        e = Expression::combine(e, ec);
        if (sd->dtor)
        {
            /* Instead of running the destructor on s, run it
             * on tmp. This avoids needing to copy tmp back in to s.
             */
            Expression *ec2 = new DotVarExp(loc, new VarExp(loc, tmp), sd->dtor, 0);
            ec2 = new CallExp(loc, ec2);
            e = Expression::combine(e, ec2);
        }
    }
    else
    {
        /* Do memberwise copy
         */
        //printf("\tmemberwise copy\n");
        for (size_t i = 0; i < sd->fields.dim; i++)
        {
            VarDeclaration *v = sd->fields[i];
            // this.v = s.v;
            AssignExp *ec = new AssignExp(loc,
                new DotVarExp(loc, new ThisExp(loc), v, 0),
                new DotVarExp(loc, new IdentifierExp(loc, Id::p), v, 0));
            e = Expression::combine(e, ec);
        }
    }
    if (e)
    {
        Statement *s1 = new ExpStatement(loc, e);

        /* Add:
         *   return this;
         */
        e = new ThisExp(loc);
        Statement *s2 = new ReturnStatement(loc, e);

        fop->fbody = new CompoundStatement(loc, s1, s2);
    }

    Dsymbol *s = fop;
    sd->members->push(s);
    s->addMember(sc, sd, 1);
    sd->hasIdentityAssign = true;        // temporary mark identity assignable

    unsigned errors = global.startGagging();    // Do not report errors, even if the
    unsigned oldspec = global.speculativeGag;   // template opAssign fbody makes it.
    global.speculativeGag = global.gag;
    Scope *sc2 = sc->push();
    sc2->stc = 0;
    sc2->linkage = LINKd;
    sc2->speculative = true;

    s->semantic(sc2);
    s->semantic2(sc2);
    s->semantic3(sc2);

    sc2->pop();
    global.speculativeGag = oldspec;
    if (global.endGagging(errors))    // if errors happened
    {
        // Disable generated opAssign, because some members forbid identity assignment.
        fop->storage_class |= STCdisable;
        fop->fbody = NULL;  // remove fbody which contains the error
    }

    //printf("-StructDeclaration::buildOpAssign() %s %s, errors = %d\n", toChars(), s->kind(), (fop->storage_class & STCdisable) != 0);

    return fop;
}
Exemple #19
0
void Module::semantic(Scope *unused_sc)
{
    if (semanticstarted)
        return;

    //printf("+Module::semantic(this = %p, '%s'): parent = %p\n", this, toChars(), parent);
    semanticstarted = 1;

    // Note that modules get their own scope, from scratch.
    // This is so regardless of where in the syntax a module
    // gets imported, it is unaffected by context.
    Scope *sc = scope;                  // see if already got one from importAll()
    if (!sc)
    {   printf("test2\n");
        Scope::createGlobal(this);      // create root scope
    }

    //printf("Module = %p, linkage = %d\n", sc->scopesym, sc->linkage);

#if 0
    // Add import of "object" if this module isn't "object"
    if (ident != Id::object)
    {
        Import *im = new Import(0, NULL, Id::object, NULL, 0);
        members->shift(im);
    }

    // Add all symbols into module's symbol table
    symtab = new DsymbolTable();
    for (int i = 0; i < members->dim; i++)
    {   Dsymbol *s = (Dsymbol *)members->data[i];
        s->addMember(NULL, sc->scopesym, 1);
    }

    /* Set scope for the symbols so that if we forward reference
     * a symbol, it can possibly be resolved on the spot.
     * If this works out well, it can be extended to all modules
     * before any semantic() on any of them.
     */
    for (int i = 0; i < members->dim; i++)
    {   Dsymbol *s = (Dsymbol *)members->data[i];
        s->setScope(sc);
    }
#endif

    // Do semantic() on members that don't depend on others
    for (int i = 0; i < members->dim; i++)
    {   Dsymbol *s = (Dsymbol *)members->data[i];

        //printf("\tModule('%s'): '%s'.semantic0()\n", toChars(), s->toChars());
        s->semantic0(sc);
    }

    // Pass 1 semantic routines: do public side of the definition
    for (int i = 0; i < members->dim; i++)
    {   Dsymbol *s = (Dsymbol *)members->data[i];

        //printf("\tModule('%s'): '%s'.semantic()\n", toChars(), s->toChars());
        s->semantic(sc);
        runDeferredSemantic();
    }

    if (!scope)
    {   sc = sc->pop();
        sc->pop();              // 2 pops because Scope::createGlobal() created 2
    }
    semanticRun = semanticstarted;
    //printf("-Module::semantic(this = %p, '%s'): parent = %p\n", this, toChars(), parent);
}
Exemple #20
0
void InterfaceDeclaration::semantic(Scope *sc)
{
    //printf("InterfaceDeclaration::semantic(%s), type = %p\n", toChars(), type);
    if (inuse)
        return;

    if (!sc)
        sc = scope;
    if (!parent && sc->parent && !sc->parent->isModule())
        parent = sc->parent;

    type = type->semantic(loc, sc);

    if (type->ty == Tclass && ((TypeClass *)type)->sym != this)
    {
        TemplateInstance *ti = ((TypeClass *)type)->sym->isInstantiated();
        if (ti && ti->errors)
            ((TypeClass *)type)->sym = this;
    }

    if (!members)                       // if forward reference
    {   //printf("\tinterface '%s' is forward referenced\n", toChars());
        return;
    }
    if (symtab)                 // if already done
    {   if (!scope)
            return;
    }
    else
        symtab = new DsymbolTable();

    Scope *scx = NULL;
    if (scope)
    {
        sc = scope;
        scx = scope;            // save so we don't make redundant copies
        scope = NULL;
    }

    int errors = global.errors;

    if (sc->stc & STCdeprecated)
    {
        isdeprecated = true;
    }
    userAttribDecl = sc->userAttribDecl;

    // Expand any tuples in baseclasses[]
    for (size_t i = 0; i < baseclasses->dim; )
    {
        // Ungag errors when not speculative
        Ungag ungag = ungagSpeculative();

        BaseClass *b = (*baseclasses)[i];
        b->type = b->type->semantic(loc, sc);

        Type *tb = b->type->toBasetype();
        if (tb->ty == Ttuple)
        {   TypeTuple *tup = (TypeTuple *)tb;
            PROT protection = b->protection;
            baseclasses->remove(i);
            size_t dim = Parameter::dim(tup->arguments);
            for (size_t j = 0; j < dim; j++)
            {   Parameter *arg = Parameter::getNth(tup->arguments, j);
                b = new BaseClass(arg->type, protection);
                baseclasses->insert(i + j, b);
            }
        }
        else
            i++;
    }

    if (!baseclasses->dim && sc->linkage == LINKcpp)
        cpp = 1;

    // Check for errors, handle forward references
    for (size_t i = 0; i < baseclasses->dim; )
    {
        // Ungag errors when not speculative
        Ungag ungag = ungagSpeculative();

        BaseClass *b = (*baseclasses)[i];
        b->type = b->type->semantic(loc, sc);

        Type *tb = b->type->toBasetype();
        TypeClass *tc = (tb->ty == Tclass) ? (TypeClass *)tb : NULL;
        if (!tc || !tc->sym->isInterfaceDeclaration())
        {
            if (b->type != Type::terror)
                error("base type must be interface, not %s", b->type->toChars());
            baseclasses->remove(i);
            continue;
        }
        else
        {
            // Check for duplicate interfaces
            for (size_t j = 0; j < i; j++)
            {
                BaseClass *b2 = (*baseclasses)[j];
                if (b2->base == tc->sym)
                    error("inherits from duplicate interface %s", b2->base->toChars());
            }

            b->base = tc->sym;
            if (b->base == this || isBaseOf2(b->base))
            {
                error("circular inheritance of interface");
                baseclasses->remove(i);
                continue;
            }
            if (b->base->scope)
            {
                // Try to resolve forward reference
                b->base->semantic(NULL);
            }
            if (!b->base->symtab || b->base->scope || b->base->inuse)
            {
                //error("forward reference of base class %s", baseClass->toChars());
                // Forward reference of base, try again later
                //printf("\ttry later, forward reference of base %s\n", b->base->toChars());
                scope = scx ? scx : sc->copy();
                scope->setNoFree();
                scope->module->addDeferredSemantic(this);
                return;
            }
        }
#if 0
        // Inherit const/invariant from base class
        storage_class |= b->base->storage_class & STC_TYPECTOR;
#endif
        i++;
    }
    if (doAncestorsSemantic == SemanticIn)
        doAncestorsSemantic = SemanticDone;

    interfaces_dim = baseclasses->dim;
    interfaces = baseclasses->tdata();

    interfaceSemantic(sc);

    if (vtblOffset())
        vtbl.push(this);                // leave room at vtbl[0] for classinfo

    // Cat together the vtbl[]'s from base interfaces
    for (size_t i = 0; i < interfaces_dim; i++)
    {   BaseClass *b = interfaces[i];

        // Skip if b has already appeared
        for (size_t k = 0; k < i; k++)
        {
            if (b == interfaces[k])
                goto Lcontinue;
        }

        // Copy vtbl[] from base class
        if (b->base->vtblOffset())
        {   size_t d = b->base->vtbl.dim;
            if (d > 1)
            {
                vtbl.reserve(d - 1);
                for (size_t j = 1; j < d; j++)
                    vtbl.push(b->base->vtbl[j]);
            }
        }
        else
        {
            vtbl.append(&b->base->vtbl);
        }

      Lcontinue:
        ;
    }

    protection = sc->protection;
    storage_class |= sc->stc & STC_TYPECTOR;

    for (size_t i = 0; i < members->dim; i++)
    {
        Dsymbol *s = (*members)[i];
        s->addMember(sc, this, 1);
    }

    sc = sc->push(this);
    sc->stc &= STCsafe | STCtrusted | STCsystem;
    sc->parent = this;
    if (com)
        sc->linkage = LINKwindows;
    else if (cpp)
        sc->linkage = LINKcpp;
    sc->structalign = STRUCTALIGN_DEFAULT;
    sc->protection = PROTpublic;
    sc->explicitProtection = 0;
//    structalign = sc->structalign;
    sc->offset = Target::ptrsize * 2;
    sc->userAttribDecl = NULL;
    structsize = sc->offset;
    inuse++;

    /* Set scope so if there are forward references, we still might be able to
     * resolve individual members like enums.
     */
    for (size_t i = 0; i < members->dim; i++)
    {   Dsymbol *s = (*members)[i];
        /* There are problems doing this in the general case because
         * Scope keeps track of things like 'offset'
         */
        if (s->isEnumDeclaration() || (s->isAggregateDeclaration() && s->ident))
        {
            //printf("setScope %s %s\n", s->kind(), s->toChars());
            s->setScope(sc);
        }
    }

    for (size_t i = 0; i < members->dim; i++)
    {
        Dsymbol *s = (*members)[i];
        s->importAll(sc);
    }

    for (size_t i = 0; i < members->dim; i++)
    {
        Dsymbol *s = (*members)[i];

        // Ungag errors when not speculative
        Ungag ungag = ungagSpeculative();
        s->semantic(sc);
    }

    if (global.errors != errors)
    {   // The type is no good.
        type = Type::terror;
    }

    inuse--;
    //members->print();
    sc->pop();
    //printf("-InterfaceDeclaration::semantic(%s), type = %p\n", toChars(), type);

#if 0
    if (type->ty == Tclass && ((TypeClass *)type)->sym != this)
    {
        printf("this = %p %s\n", this, this->toChars());
        printf("type = %d sym = %p\n", type->ty, ((TypeClass *)type)->sym);
      }
#endif
    assert(type->ty != Tclass || ((TypeClass *)type)->sym == this);
}
Exemple #21
0
void StructDeclaration::semantic(Scope *sc)
{
    //printf("+StructDeclaration::semantic(this=%p, %s '%s', sizeok = %d)\n", this, parent->toChars(), toChars(), sizeok);

    //static int count; if (++count == 20) halt();

    if (semanticRun >= PASSsemanticdone)
        return;
    unsigned dprogress_save = Module::dprogress;
    int errors = global.errors;

    Scope *scx = NULL;
    if (scope)
    {
        sc = scope;
        scx = scope;            // save so we don't make redundant copies
        scope = NULL;
    }

    if (!parent)
    {
        assert(sc->parent && sc->func);
        parent = sc->parent;
    }
    assert(parent && !isAnonymous());
    type = type->semantic(loc, sc);

    if (type->ty == Tstruct && ((TypeStruct *)type)->sym != this)
    {
        TemplateInstance *ti = ((TypeStruct *)type)->sym->isInstantiated();
        if (ti && isError(ti))
            ((TypeStruct *)type)->sym = this;
    }

    // Ungag errors when not speculative
    Ungag ungag = ungagSpeculative();

    if (semanticRun == PASSinit)
    {
        protection = sc->protection;

        alignment = sc->structalign;

        storage_class |= sc->stc;
        if (storage_class & STCdeprecated)
            isdeprecated = true;
        if (storage_class & STCabstract)
            error("structs, unions cannot be abstract");
        userAttribDecl = sc->userAttribDecl;
    }
    else if (symtab)
    {
        if (sizeok == SIZEOKdone || !scx)
        {
            semanticRun = PASSsemanticdone;
            return;
        }
    }
    semanticRun = PASSsemantic;

    if (!members)               // if opaque declaration
    {
        semanticRun = PASSsemanticdone;
        return;
    }
    if (!symtab)
        symtab = new DsymbolTable();

    if (sizeok == SIZEOKnone)            // if not already done the addMember step
    {
        for (size_t i = 0; i < members->dim; i++)
        {
            Dsymbol *s = (*members)[i];
            //printf("adding member '%s' to '%s'\n", s->toChars(), this->toChars());
            s->addMember(sc, this, 1);
        }
    }

    sizeok = SIZEOKnone;
    Scope *sc2 = sc->push(this);
    sc2->stc &= STCsafe | STCtrusted | STCsystem;
    sc2->parent = this;
    if (isUnionDeclaration())
        sc2->inunion = 1;
    sc2->protection = Prot(PROTpublic);
    sc2->explicitProtection = 0;
    sc2->structalign = STRUCTALIGN_DEFAULT;
    sc2->userAttribDecl = NULL;

    /* Set scope so if there are forward references, we still might be able to
     * resolve individual members like enums.
     */
    for (size_t i = 0; i < members->dim; i++)
    {
        Dsymbol *s = (*members)[i];
        //printf("struct: setScope %s %s\n", s->kind(), s->toChars());
        s->setScope(sc2);
    }

    for (size_t i = 0; i < members->dim; i++)
    {
        Dsymbol *s = (*members)[i];
        s->importAll(sc2);
    }

    for (size_t i = 0; i < members->dim; i++)
    {
        Dsymbol *s = (*members)[i];

        /* If this is the last member, see if we can finish setting the size.
         * This could be much better - finish setting the size after the last
         * field was processed. The problem is the chicken-and-egg determination
         * of when that is. See Bugzilla 7426 for more info.
         */
        if (i + 1 == members->dim)
        {
            if (sizeok == SIZEOKnone && s->isAliasDeclaration())
                finalizeSize(sc2);
        }
        s->semantic(sc2);
    }
    finalizeSize(sc2);

    if (sizeok == SIZEOKfwd)
    {
        // semantic() failed because of forward references.
        // Unwind what we did, and defer it for later
        for (size_t i = 0; i < fields.dim; i++)
        {
            VarDeclaration *vd = fields[i];
            vd->offset = 0;
        }
        fields.setDim(0);
        structsize = 0;
        alignsize = 0;

        scope = scx ? scx : sc->copy();
        scope->setNoFree();
        scope->module->addDeferredSemantic(this);

        Module::dprogress = dprogress_save;
        //printf("\tdeferring %s\n", toChars());
        return;
    }

    Module::dprogress++;
    semanticRun = PASSsemanticdone;

    //printf("-StructDeclaration::semantic(this=%p, '%s')\n", this, toChars());

    // Determine if struct is all zeros or not
    zeroInit = 1;
    for (size_t i = 0; i < fields.dim; i++)
    {
        VarDeclaration *vd = fields[i];
        if (!vd->isDataseg())
        {
            if (vd->init)
            {
                // Should examine init to see if it is really all 0's
                zeroInit = 0;
                break;
            }
            else
            {
                if (!vd->type->isZeroInit(loc))
                {
                    zeroInit = 0;
                    break;
                }
            }
        }
    }

    dtor = buildDtor(this, sc2);
    postblit = buildPostBlit(this, sc2);
    cpctor = buildCpCtor(this, sc2);

    buildOpAssign(this, sc2);
    buildOpEquals(this, sc2);

    xeq = buildXopEquals(this, sc2);
    xcmp = buildXopCmp(this, sc2);
    xhash = buildXtoHash(this, sc2);

    /* Even if the struct is merely imported and its semantic3 is not run,
     * the TypeInfo object would be speculatively stored in each object
     * files. To set correct function pointer, run semantic3 for xeq and xcmp.
     */
    //if ((xeq && xeq != xerreq || xcmp && xcmp != xerrcmp) && isImportedSym(this))
    //    Module::addDeferredSemantic3(this);
    /* Defer requesting semantic3 until TypeInfo generation is actually invoked.
     * See semanticTypeInfo().
     */
    inv = buildInv(this, sc2);

    sc2->pop();

    /* Look for special member functions.
     */
    ctor = searchCtor();
    aggNew =       (NewDeclaration *)search(Loc(), Id::classNew);
    aggDelete = (DeleteDeclaration *)search(Loc(), Id::classDelete);

    if (ctor)
    {
        Dsymbol *scall = search(Loc(), Id::call);
        if (scall)
        {
            unsigned xerrors = global.startGagging();
            sc = sc->push();
            sc->speculative = true;
            FuncDeclaration *fcall = resolveFuncCall(loc, sc, scall, NULL, NULL, NULL, 1);
            sc = sc->pop();
            global.endGagging(xerrors);

            if (fcall && fcall->isStatic())
            {
                error(fcall->loc, "static opCall is hidden by constructors and can never be called");
                errorSupplemental(fcall->loc, "Please use a factory method instead, or replace all constructors with static opCall.");
            }
        }
    }

    TypeTuple *tup = toArgTypes(type);
    size_t dim = tup->arguments->dim;
    if (dim >= 1)
    {
        assert(dim <= 2);
        arg1type = (*tup->arguments)[0]->type;
        if (dim == 2)
            arg2type = (*tup->arguments)[1]->type;
    }

    if (sc->func)
        semantic2(sc);

    if (global.errors != errors)
    {
        // The type is no good.
        type = Type::terror;
        this->errors = true;
        if (deferred)
            deferred->errors = true;
    }

    if (deferred && !global.gag)
    {
        deferred->semantic2(sc);
        deferred->semantic3(sc);
    }

#if 0
    if (type->ty == Tstruct && ((TypeStruct *)type)->sym != this)
    {
        printf("this = %p %s\n", this, this->toChars());
        printf("type = %d sym = %p\n", type->ty, ((TypeStruct *)type)->sym);
    }
#endif
    assert(type->ty != Tstruct || ((TypeStruct *)type)->sym == this);
}
Exemple #22
0
FuncDeclaration *StructDeclaration::buildOpAssign(Scope *sc)
{
    Dsymbol *assign = search_function(this, Id::assign);
    if (assign)
    {
        if (FuncDeclaration *f = hasIdentityOpAssign(sc, assign))
            return f;
        // Even if non-identity opAssign is defined, built-in identity opAssign
        // will be defined. (Is this an exception of operator overloading rule?)
    }

    if (!needOpAssign())
        return NULL;

    //printf("StructDeclaration::buildOpAssign() %s\n", toChars());

    Parameters *fparams = new Parameters;
    fparams->push(new Parameter(STCnodtor, type, Id::p, NULL));
    Type *ftype = new TypeFunction(fparams, handle, FALSE, LINKd);
    ((TypeFunction *)ftype)->isref = 1;

    FuncDeclaration *fop = new FuncDeclaration(loc, 0, Id::assign, STCundefined, ftype);

    Expression *e = NULL;
    if (postblit)
    {   /* Swap:
         *    tmp = *this; *this = s; tmp.dtor();
         */
        //printf("\tswap copy\n");
        Identifier *idtmp = Lexer::uniqueId("__tmp");
        VarDeclaration *tmp;
        AssignExp *ec = NULL;
        if (dtor)
        {
            tmp = new VarDeclaration(0, type, idtmp, new VoidInitializer(0));
            tmp->noscope = 1;
            tmp->storage_class |= STCctfe;
            e = new DeclarationExp(0, tmp);
            ec = new AssignExp(0,
                new VarExp(0, tmp),
                new ThisExp(0)
                );
            ec->op = TOKblit;
            e = Expression::combine(e, ec);
        }
        ec = new AssignExp(0,
                new ThisExp(0),
                new IdentifierExp(0, Id::p));
        ec->op = TOKblit;
        e = Expression::combine(e, ec);
        if (dtor)
        {
            /* Instead of running the destructor on s, run it
             * on tmp. This avoids needing to copy tmp back in to s.
             */
            Expression *ec2 = new DotVarExp(0, new VarExp(0, tmp), dtor, 0);
            ec2 = new CallExp(0, ec2);
            e = Expression::combine(e, ec2);
        }
    }
    else
    {   /* Do memberwise copy
         */
        //printf("\tmemberwise copy\n");
        for (size_t i = 0; i < fields.dim; i++)
        {
            Dsymbol *s = fields[i];
            VarDeclaration *v = s->isVarDeclaration();
            assert(v && v->isField());
            // this.v = s.v;
            AssignExp *ec = new AssignExp(0,
                new DotVarExp(0, new ThisExp(0), v, 0),
                new DotVarExp(0, new IdentifierExp(0, Id::p), v, 0));
            e = Expression::combine(e, ec);
        }
    }
    Statement *s1 = new ExpStatement(0, e);

    /* Add:
     *   return this;
     */
    e = new ThisExp(0);
    Statement *s2 = new ReturnStatement(0, e);

    fop->fbody = new CompoundStatement(0, s1, s2);

    Dsymbol *s = fop;
    if (assign && assign->isTemplateDeclaration())
    {
        // Wrap a template around the function declaration
        TemplateParameters *tpl = new TemplateParameters();
        Dsymbols *decldefs = new Dsymbols();
        decldefs->push(s);
        TemplateDeclaration *tempdecl =
            new TemplateDeclaration(assign->loc, fop->ident, tpl, NULL, decldefs, 0);
        s = tempdecl;
    }
    members->push(s);
    s->addMember(sc, this, 1);
    this->hasIdentityAssign = 1;        // temporary mark identity assignable

    unsigned errors = global.startGagging();    // Do not report errors, even if the
    unsigned oldspec = global.speculativeGag;   // template opAssign fbody makes it.
    global.speculativeGag = global.gag;
    Scope *sc2 = sc->push();
    sc2->stc = 0;
    sc2->linkage = LINKd;
    sc2->speculative = true;

    s->semantic(sc2);
    s->semantic2(sc2);
    s->semantic3(sc2);

    sc2->pop();
    global.speculativeGag = oldspec;
    if (global.endGagging(errors))    // if errors happened
    {   // Disable generated opAssign, because some members forbid identity assignment.
        fop->storage_class |= STCdisable;
        fop->fbody = NULL;  // remove fbody which contains the error
    }

    //printf("-StructDeclaration::buildOpAssign() %s %s, errors = %d\n", toChars(), s->kind(), (fop->storage_class & STCdisable) != 0);

    return fop;
}
Exemple #23
0
void Module::importAll(Scope *prevsc)
{
    //printf("+Module::importAll(this = %p, '%s'): parent = %p\n", this, toChars(), parent);

    if (scope)
        return;                 // already done

    if (isDocFile)
    {
        error("is a Ddoc file, cannot import it");
        return;
    }

    /* Note that modules get their own scope, from scratch.
     * This is so regardless of where in the syntax a module
     * gets imported, it is unaffected by context.
     * Ignore prevsc.
     */
    Scope *sc = Scope::createGlobal(this);      // create root scope

    // Add import of "object", even for the "object" module.
    // If it isn't there, some compiler rewrites, like
    //    classinst == classinst -> .object.opEquals(classinst, classinst)
    // would fail inside object.d.
    if (members->dim == 0 || ((*members)[0])->ident != Id::object)
    {
        Import *im = new Import(Loc(), NULL, Id::object, NULL, 0);
        members->shift(im);
    }

    if (!symtab)
    {
        // Add all symbols into module's symbol table
        symtab = new DsymbolTable();
        for (size_t i = 0; i < members->dim; i++)
        {
            Dsymbol *s = (*members)[i];
            s->addMember(NULL, sc->scopesym, 1);
        }
    }
    // anything else should be run after addMember, so version/debug symbols are defined

    /* Set scope for the symbols so that if we forward reference
     * a symbol, it can possibly be resolved on the spot.
     * If this works out well, it can be extended to all modules
     * before any semantic() on any of them.
     */
    setScope(sc);               // remember module scope for semantic
    for (size_t i = 0; i < members->dim; i++)
    {
        Dsymbol *s = (*members)[i];
        s->setScope(sc);
    }

    for (size_t i = 0; i < members->dim; i++)
    {
        Dsymbol *s = (*members)[i];
        s->importAll(sc);
    }

    sc = sc->pop();
    sc->pop();          // 2 pops because Scope::createGlobal() created 2
}
Exemple #24
0
void StructDeclaration::semantic(Scope *sc)
{
    Scope *sc2;

    //printf("+StructDeclaration::semantic(this=%p, '%s', sizeok = %d)\n", this, toChars(), sizeok);

    //static int count; if (++count == 20) halt();

    assert(type);
    if (!members)                       // if forward reference
        return;

    if (symtab)
    {   if (sizeok == 1 || !scope)
        {   //printf("already completed\n");
            scope = NULL;
            return;             // semantic() already completed
        }
    }
    else
        symtab = new DsymbolTable();

    Scope *scx = NULL;
    if (scope)
    {   sc = scope;
        scx = scope;            // save so we don't make redundant copies
        scope = NULL;
    }

    unsigned dprogress_save = Module::dprogress;
#ifdef IN_GCC
    methods.setDim(0);
#endif

    parent = sc->parent;
    type = type->semantic(loc, sc);
#if STRUCTTHISREF
    handle = type;
#else
    handle = type->pointerTo();
#endif
    structalign = sc->structalign;
    protection = sc->protection;
    if (sc->stc & STCdeprecated)
        isdeprecated = 1;
    assert(!isAnonymous());
    if (sc->stc & STCabstract)
        error("structs, unions cannot be abstract");
#if DMDV2
    if (storage_class & STCimmutable)
        type = type->invariantOf();
    else if (storage_class & STCconst)
        type = type->constOf();
#endif
#if IN_GCC
    if (attributes)
        attributes->append(sc->attributes);
    else
        attributes = sc->attributes;
#endif

    if (sizeok == 0)            // if not already done the addMember step
    {
        for (size_t i = 0; i < members->dim; i++)
        {
            Dsymbol *s = (Dsymbol *)members->data[i];
            //printf("adding member '%s' to '%s'\n", s->toChars(), this->toChars());
            s->addMember(sc, this, 1);
        }
    }

    sizeok = 0;
    sc2 = sc->push(this);
    sc2->stc = 0;
#if IN_GCC
    sc2->attributes = NULL;
#endif
    sc2->parent = this;
    if (isUnionDeclaration())
        sc2->inunion = 1;
    sc2->protection = PROTpublic;
    sc2->explicitProtection = 0;

    size_t members_dim = members->dim;

    /* Set scope so if there are forward references, we still might be able to
     * resolve individual members like enums.
     */
    for (size_t i = 0; i < members_dim; i++)
    {   Dsymbol *s = (Dsymbol *)members->data[i];
        /* There are problems doing this in the general case because
         * Scope keeps track of things like 'offset'
         */
        if (s->isEnumDeclaration() || (s->isAggregateDeclaration() && s->ident))
        {
            //printf("setScope %s %s\n", s->kind(), s->toChars());
            s->setScope(sc2);
        }
    }

    for (size_t i = 0; i < members_dim; i++)
    {
        Dsymbol *s = (Dsymbol *)members->data[i];
        s->semantic(sc2);
#if 0
        if (sizeok == 2)
        {   //printf("forward reference\n");
            break;
        }
#endif
    }

#if DMDV1
    /* This doesn't work for DMDV2 because (ref S) and (S) parameter
     * lists will overload the same.
     */
    /* The TypeInfo_Struct is expecting an opEquals and opCmp with
     * a parameter that is a pointer to the struct. But if there
     * isn't one, but is an opEquals or opCmp with a value, write
     * another that is a shell around the value:
     *  int opCmp(struct *p) { return opCmp(*p); }
     */

    TypeFunction *tfeqptr;
    {
        Parameters *arguments = new Parameters;
        Parameter *arg = new Parameter(STCin, handle, Id::p, NULL);

        arguments->push(arg);
        tfeqptr = new TypeFunction(arguments, Type::tint32, 0, LINKd);
        tfeqptr = (TypeFunction *)tfeqptr->semantic(0, sc);
    }

    TypeFunction *tfeq;
    {
        Parameters *arguments = new Parameters;
        Parameter *arg = new Parameter(STCin, type, NULL, NULL);

        arguments->push(arg);
        tfeq = new TypeFunction(arguments, Type::tint32, 0, LINKd);
        tfeq = (TypeFunction *)tfeq->semantic(0, sc);
    }

    Identifier *id = Id::eq;
    for (int i = 0; i < 2; i++)
    {
        Dsymbol *s = search_function(this, id);
        FuncDeclaration *fdx = s ? s->isFuncDeclaration() : NULL;
        if (fdx)
        {   FuncDeclaration *fd = fdx->overloadExactMatch(tfeqptr);
            if (!fd)
            {   fd = fdx->overloadExactMatch(tfeq);
                if (fd)
                {   // Create the thunk, fdptr
                    FuncDeclaration *fdptr = new FuncDeclaration(loc, loc, fdx->ident, STCundefined, tfeqptr);
                    Expression *e = new IdentifierExp(loc, Id::p);
                    e = new PtrExp(loc, e);
                    Expressions *args = new Expressions();
                    args->push(e);
                    e = new IdentifierExp(loc, id);
                    e = new CallExp(loc, e, args);
                    fdptr->fbody = new ReturnStatement(loc, e);
                    ScopeDsymbol *s = fdx->parent->isScopeDsymbol();
                    assert(s);
                    s->members->push(fdptr);
                    fdptr->addMember(sc, s, 1);
                    fdptr->semantic(sc2);
                }
            }
        }

        id = Id::cmp;
    }
#endif
#if DMDV2
    /* Try to find the opEquals function. Build it if necessary.
     */
    TypeFunction *tfeqptr;
    {   // bool opEquals(const T*) const;
        Parameters *parameters = new Parameters;
#if STRUCTTHISREF
        // bool opEquals(ref const T) const;
        Parameter *param = new Parameter(STCref, type->constOf(), NULL, NULL);
#else
        // bool opEquals(const T*) const;
        Parameter *param = new Parameter(STCin, type->pointerTo(), NULL, NULL);
#endif

        parameters->push(param);
        tfeqptr = new TypeFunction(parameters, Type::tbool, 0, LINKd);
        tfeqptr->mod = MODconst;
        tfeqptr = (TypeFunction *)tfeqptr->semantic(0, sc2);

        Dsymbol *s = search_function(this, Id::eq);
        FuncDeclaration *fdx = s ? s->isFuncDeclaration() : NULL;
        if (fdx)
        {
            eq = fdx->overloadExactMatch(tfeqptr);
            if (!eq)
                fdx->error("type signature should be %s not %s", tfeqptr->toChars(), fdx->type->toChars());
        }

        TemplateDeclaration *td = s ? s->isTemplateDeclaration() : NULL;
        // BUG: should also check that td is a function template, not just a template

        if (!eq && !td)
            eq = buildOpEquals(sc2);
    }

    dtor = buildDtor(sc2);
    postblit = buildPostBlit(sc2);
    cpctor = buildCpCtor(sc2);
    buildOpAssign(sc2);
#endif

    sc2->pop();

    if (sizeok == 2)
    {   // semantic() failed because of forward references.
        // Unwind what we did, and defer it for later
        fields.setDim(0);
        structsize = 0;
        alignsize = 0;
        structalign = 0;

        scope = scx ? scx : new Scope(*sc);
        scope->setNoFree();
        scope->module->addDeferredSemantic(this);

        Module::dprogress = dprogress_save;
        //printf("\tdeferring %s\n", toChars());
        return;
    }

    // 0 sized struct's are set to 1 byte
    if (structsize == 0)
    {
        structsize = 1;
        alignsize = 1;
    }

    // Round struct size up to next alignsize boundary.
    // This will ensure that arrays of structs will get their internals
    // aligned properly.
    structsize = (structsize + alignsize - 1) & ~(alignsize - 1);

    sizeok = 1;
    Module::dprogress++;

    //printf("-StructDeclaration::semantic(this=%p, '%s')\n", this, toChars());

    // Determine if struct is all zeros or not
    zeroInit = 1;
    for (size_t i = 0; i < fields.dim; i++)
    {
        Dsymbol *s = (Dsymbol *)fields.data[i];
        VarDeclaration *vd = s->isVarDeclaration();
        if (vd && !vd->isDataseg())
        {
            if (vd->init)
            {
                // Should examine init to see if it is really all 0's
                zeroInit = 0;
                break;
            }
            else
            {
                if (!vd->type->isZeroInit(loc))
                {
                    zeroInit = 0;
                    break;
                }
            }
        }
    }

    /* Look for special member functions.
     */
#if DMDV2
    ctor = search(0, Id::ctor, 0);
#endif
    inv =    (InvariantDeclaration *)search(0, Id::classInvariant, 0);
    aggNew =       (NewDeclaration *)search(0, Id::classNew,       0);
    aggDelete = (DeleteDeclaration *)search(0, Id::classDelete,    0);

    if (sc->func)
    {
        semantic2(sc);
        semantic3(sc);
    }
}
Exemple #25
0
void StructDeclaration::semantic(Scope *sc)
{
    Scope *sc2;

    //printf("+StructDeclaration::semantic(this=%p, %s '%s', sizeok = %d)\n", this, parent->toChars(), toChars(), sizeok);

    //static int count; if (++count == 20) halt();

    assert(type);
    if (!members)               // if opaque declaration
    {
        return;
    }

    if (symtab)
    {   if (sizeok == SIZEOKdone || !scope)
        {   //printf("already completed\n");
            scope = NULL;
            return;             // semantic() already completed
        }
    }
    else
        symtab = new DsymbolTable();

    Scope *scx = NULL;
    if (scope)
    {
        sc = scope;
        scx = scope;            // save so we don't make redundant copies
        scope = NULL;
    }
    unsigned dprogress_save = Module::dprogress;
    int errors = global.errors;

    parent = sc->parent;
    type = type->semantic(loc, sc);
    handle = type;
    protection = sc->protection;
    alignment = sc->structalign;
    storage_class |= sc->stc;
    if (sc->stc & STCdeprecated)
        isdeprecated = true;
    assert(!isAnonymous());
    if (sc->stc & STCabstract)
        error("structs, unions cannot be abstract");
    userAttributes = sc->userAttributes;

    if (sizeok == SIZEOKnone)            // if not already done the addMember step
    {
        for (size_t i = 0; i < members->dim; i++)
        {
            Dsymbol *s = (*members)[i];
            //printf("adding member '%s' to '%s'\n", s->toChars(), this->toChars());
            s->addMember(sc, this, 1);
        }
    }

    sizeok = SIZEOKnone;
    sc2 = sc->push(this);
    sc2->stc &= STCsafe | STCtrusted | STCsystem;
    sc2->parent = this;
    if (isUnionDeclaration())
        sc2->inunion = 1;
    sc2->protection = PROTpublic;
    sc2->explicitProtection = 0;
    sc2->structalign = STRUCTALIGN_DEFAULT;
    sc2->userAttributes = NULL;

    /* Set scope so if there are forward references, we still might be able to
     * resolve individual members like enums.
     */
    for (size_t i = 0; i < members->dim; i++)
    {
        Dsymbol *s = (*members)[i];
        //printf("struct: setScope %s %s\n", s->kind(), s->toChars());
        s->setScope(sc2);
    }

    for (size_t i = 0; i < members->dim; i++)
    {
        Dsymbol *s = (*members)[i];

        /* If this is the last member, see if we can finish setting the size.
         * This could be much better - finish setting the size after the last
         * field was processed. The problem is the chicken-and-egg determination
         * of when that is. See Bugzilla 7426 for more info.
         */
        if (i + 1 == members->dim)
        {
            if (sizeok == SIZEOKnone && s->isAliasDeclaration())
                finalizeSize(sc2);
        }

        // Ungag errors when not speculative
        Ungag ungag = ungagSpeculative();
        s->semantic(sc2);
    }
    finalizeSize(sc2);

    if (sizeok == SIZEOKfwd)
    {   // semantic() failed because of forward references.
        // Unwind what we did, and defer it for later
        for (size_t i = 0; i < fields.dim; i++)
        {   Dsymbol *s = fields[i];
            VarDeclaration *vd = s->isVarDeclaration();
            if (vd)
                vd->offset = 0;
        }
        fields.setDim(0);
        structsize = 0;
        alignsize = 0;
//        structalign = 0;

        scope = scx ? scx : new Scope(*sc);
        scope->setNoFree();
        scope->module->addDeferredSemantic(this);

        Module::dprogress = dprogress_save;
        //printf("\tdeferring %s\n", toChars());
        return;
    }

    Module::dprogress++;

    //printf("-StructDeclaration::semantic(this=%p, '%s')\n", this, toChars());

    // Determine if struct is all zeros or not
    zeroInit = calcZeroInit();

    dtor = buildDtor(sc2);
    postblit = buildPostBlit(sc2);
    cpctor = buildCpCtor(sc2);

    buildOpAssign(sc2);
    buildOpEquals(sc2);

    xeq = buildXopEquals(sc2);
    xcmp = buildXopCmp(sc2);

    /* Even if the struct is merely imported and its semantic3 is not run,
     * the TypeInfo object would be speculatively stored in each object
     * files. To set correct function pointer, run semantic3 for xeq and xcmp.
     */
    //if ((xeq && xeq != xerreq || xcmp && xcmp != xerrcmp) && isImportedSym(this))
    //    Module::addDeferredSemantic3(this);
    /* Defer requesting semantic3 until TypeInfo generation is actually invoked.
     * See Type::getTypeInfo().
     */
    inv = buildInv(sc2);

    sc2->pop();

    /* Look for special member functions.
     */
    searchCtor();
    aggNew =       (NewDeclaration *)search(Loc(), Id::classNew,       0);
    aggDelete = (DeleteDeclaration *)search(Loc(), Id::classDelete,    0);

    TypeTuple *tup = type->toArgTypes();
    size_t dim = tup->arguments->dim;
    if (dim >= 1)
    {   assert(dim <= 2);
        arg1type = (*tup->arguments)[0]->type;
        if (dim == 2)
            arg2type = (*tup->arguments)[1]->type;
    }

    if (sc->func)
    {
        semantic2(sc);
        semantic3(sc);
    }

#if 1
    {
        // build a literal now to initialize vtinfo of element types
        StructLiteralExp *sle = new StructLiteralExp(loc, this, NULL);
        Expression *e = sle->fill(true);
    }
#endif

    if (global.errors != errors)
    {   // The type is no good.
        type = Type::terror;
        this->errors = true;
    }

    if (deferred && !global.gag)
    {
        deferred->semantic2(sc);
        deferred->semantic3(sc);
    }

    if (type->ty == Tstruct && ((TypeStruct *)type)->sym != this)
    {
        error("failed semantic analysis");
        this->errors = true;
        type = Type::terror;
    }
}
Exemple #26
0
void StructDeclaration::semantic(Scope *sc)
{
    Scope *sc2;

    //printf("+StructDeclaration::semantic(this=%p, %s '%s', sizeok = %d)\n", this, parent->toChars(), toChars(), sizeok);

    //static int count; if (++count == 20) halt();

    assert(type);
    if (!members)               // if opaque declaration
    {
        return;
    }

    if (symtab)
    {   if (sizeok == SIZEOKdone || !scope)
        {   //printf("already completed\n");
            scope = NULL;
            return;             // semantic() already completed
        }
    }
    else
        symtab = new DsymbolTable();

    Scope *scx = NULL;
    if (scope)
    {   sc = scope;
        scx = scope;            // save so we don't make redundant copies
        scope = NULL;
    }

    int errors = global.errors;

    unsigned dprogress_save = Module::dprogress;

    parent = sc->parent;
    type = type->semantic(loc, sc);
    handle = type;
    protection = sc->protection;
    alignment = sc->structalign;
    storage_class |= sc->stc;
    if (sc->stc & STCdeprecated)
        isdeprecated = true;
    assert(!isAnonymous());
    if (sc->stc & STCabstract)
        error("structs, unions cannot be abstract");
    userAttributes = sc->userAttributes;

    if (sizeok == SIZEOKnone)            // if not already done the addMember step
    {
        for (size_t i = 0; i < members->dim; i++)
        {
            Dsymbol *s = (*members)[i];
            //printf("adding member '%s' to '%s'\n", s->toChars(), this->toChars());
            s->addMember(sc, this, 1);
        }
    }

    sizeok = SIZEOKnone;
    sc2 = sc->push(this);
    sc2->stc &= STCsafe | STCtrusted | STCsystem;
    sc2->parent = this;
    if (isUnionDeclaration())
        sc2->inunion = 1;
    sc2->protection = PROTpublic;
    sc2->explicitProtection = 0;
    sc2->structalign = STRUCTALIGN_DEFAULT;
    sc2->userAttributes = NULL;

    /* Set scope so if there are forward references, we still might be able to
     * resolve individual members like enums.
     */
    for (size_t i = 0; i < members->dim; i++)
    {   Dsymbol *s = (*members)[i];
        /* There are problems doing this in the general case because
         * Scope keeps track of things like 'offset'
         */
        //if (s->isEnumDeclaration() || (s->isAggregateDeclaration() && s->ident))
        {
            //printf("struct: setScope %s %s\n", s->kind(), s->toChars());
            s->setScope(sc2);
        }
    }

    for (size_t i = 0; i < members->dim; i++)
    {
        Dsymbol *s = (*members)[i];

        /* If this is the last member, see if we can finish setting the size.
         * This could be much better - finish setting the size after the last
         * field was processed. The problem is the chicken-and-egg determination
         * of when that is. See Bugzilla 7426 for more info.
         */
        if (i + 1 == members->dim)
        {
            if (sizeok == SIZEOKnone && s->isAliasDeclaration())
                finalizeSize(sc2);
        }
        // Ungag errors when not speculative
        unsigned oldgag = global.gag;
        if (global.isSpeculativeGagging() && !isSpeculative())
        {
            global.gag = 0;
        }
        s->semantic(sc2);
        global.gag = oldgag;
    }
    finalizeSize(sc2);

    if (sizeok == SIZEOKfwd)
    {   // semantic() failed because of forward references.
        // Unwind what we did, and defer it for later
        for (size_t i = 0; i < fields.dim; i++)
        {   Dsymbol *s = fields[i];
            VarDeclaration *vd = s->isVarDeclaration();
            if (vd)
                vd->offset = 0;
        }
        fields.setDim(0);
        structsize = 0;
        alignsize = 0;
//        structalign = 0;

        scope = scx ? scx : new Scope(*sc);
        scope->setNoFree();
        scope->module->addDeferredSemantic(this);

        Module::dprogress = dprogress_save;
        //printf("\tdeferring %s\n", toChars());
        return;
    }

    Module::dprogress++;

    //printf("-StructDeclaration::semantic(this=%p, '%s')\n", this, toChars());

    // Determine if struct is all zeros or not
    zeroInit = 1;
    for (size_t i = 0; i < fields.dim; i++)
    {
        Dsymbol *s = fields[i];
        VarDeclaration *vd = s->isVarDeclaration();
        if (vd && !vd->isDataseg())
        {
            if (vd->init)
            {
                // Should examine init to see if it is really all 0's
                zeroInit = 0;
                break;
            }
            else
            {
                if (!vd->type->isZeroInit(loc))
                {
                    zeroInit = 0;
                    break;
                }
            }
        }
    }

#if DMDV1
    /* This doesn't work for DMDV2 because (ref S) and (S) parameter
     * lists will overload the same.
     */
    /* The TypeInfo_Struct is expecting an opEquals and opCmp with
     * a parameter that is a pointer to the struct. But if there
     * isn't one, but is an opEquals or opCmp with a value, write
     * another that is a shell around the value:
     *  int opCmp(struct *p) { return opCmp(*p); }
     */

    TypeFunction *tfeqptr;
    {
        Parameters *arguments = new Parameters;
        Parameter *arg = new Parameter(STCin, handle, Id::p, NULL);

        arguments->push(arg);
        tfeqptr = new TypeFunction(arguments, Type::tint32, 0, LINKd);
        tfeqptr = (TypeFunction *)tfeqptr->semantic(Loc(), sc);
    }

    TypeFunction *tfeq;
    {
        Parameters *arguments = new Parameters;
        Parameter *arg = new Parameter(STCin, type, NULL, NULL);

        arguments->push(arg);
        tfeq = new TypeFunction(arguments, Type::tint32, 0, LINKd);
        tfeq = (TypeFunction *)tfeq->semantic(Loc(), sc);
    }

    Identifier *id = Id::eq;
    for (int i = 0; i < 2; i++)
    {
        Dsymbol *s = search_function(this, id);
        FuncDeclaration *fdx = s ? s->isFuncDeclaration() : NULL;
        if (fdx)
        {   FuncDeclaration *fd = fdx->overloadExactMatch(tfeqptr);
            if (!fd)
            {   fd = fdx->overloadExactMatch(tfeq);
                if (fd)
                {   // Create the thunk, fdptr
                    FuncDeclaration *fdptr = new FuncDeclaration(loc, loc, fdx->ident, STCundefined, tfeqptr);
                    Expression *e = new IdentifierExp(loc, Id::p);
                    e = new PtrExp(loc, e);
                    Expressions *args = new Expressions();
                    args->push(e);
                    e = new IdentifierExp(loc, id);
                    e = new CallExp(loc, e, args);
                    fdptr->fbody = new ReturnStatement(loc, e);
                    ScopeDsymbol *s = fdx->parent->isScopeDsymbol();
                    assert(s);
                    s->members->push(fdptr);
                    fdptr->addMember(sc, s, 1);
                    fdptr->semantic(sc2);
                }
            }
        }

        id = Id::cmp;
    }
#endif
#if DMDV2
    dtor = buildDtor(sc2);
    postblit = buildPostBlit(sc2);
    cpctor = buildCpCtor(sc2);

    buildOpAssign(sc2);
    buildOpEquals(sc2);
#endif
    inv = buildInv(sc2);

    sc2->pop();

    /* Look for special member functions.
     */
#if DMDV2
    ctor = search(Loc(), Id::ctor, 0);
#endif
    aggNew =       (NewDeclaration *)search(Loc(), Id::classNew,       0);
    aggDelete = (DeleteDeclaration *)search(Loc(), Id::classDelete,    0);

    TypeTuple *tup = type->toArgTypes();
    size_t dim = tup->arguments->dim;
    if (dim >= 1)
    {   assert(dim <= 2);
        arg1type = (*tup->arguments)[0]->type;
        if (dim == 2)
            arg2type = (*tup->arguments)[1]->type;
    }

    if (sc->func)
    {
        semantic2(sc);
        semantic3(sc);
    }

    if (global.errors != errors)
    {   // The type is no good.
        type = Type::terror;
    }

    if (deferred && !global.gag)
    {
        deferred->semantic2(sc);
        deferred->semantic3(sc);
    }

#if 0
    if (type->ty == Tstruct && ((TypeStruct *)type)->sym != this)
    {
        printf("this = %p %s\n", this, this->toChars());
        printf("type = %d sym = %p\n", type->ty, ((TypeStruct *)type)->sym);
    }
#endif
    assert(type->ty != Tstruct || ((TypeStruct *)type)->sym == this);
}
Exemple #27
0
void StructDeclaration::semantic(Scope *sc)
{
    Scope *sc2;

    //printf("+StructDeclaration::semantic(this=%p, %s '%s', sizeok = %d)\n", this, parent->toChars(), toChars(), sizeok);

    //static int count; if (++count == 20) halt();

    assert(type);
    if (!members)                       // if forward reference
        return;

    if (symtab)
    {   if (sizeok == 1 || !scope)
        {   //printf("already completed\n");
            scope = NULL;
            return;             // semantic() already completed
        }
    }
    else
        symtab = new DsymbolTable();

    Scope *scx = NULL;
    if (scope)
    {   sc = scope;
        scx = scope;            // save so we don't make redundant copies
        scope = NULL;
    }

    int errors = global.gaggedErrors;

    unsigned dprogress_save = Module::dprogress;

    parent = sc->parent;
    type = type->semantic(loc, sc);
#if STRUCTTHISREF
    handle = type;
#else
    handle = type->pointerTo();
#endif
    structalign = sc->structalign;
    protection = sc->protection;
    storage_class |= sc->stc;
    if (sc->stc & STCdeprecated)
        isdeprecated = true;
    assert(!isAnonymous());
    if (sc->stc & STCabstract)
        error("structs, unions cannot be abstract");
#if DMDV2
    if (storage_class & STCimmutable)
        type = type->addMod(MODimmutable);
    if (storage_class & STCconst)
        type = type->addMod(MODconst);
    if (storage_class & STCshared)
        type = type->addMod(MODshared);
#endif

    if (sizeok == 0)            // if not already done the addMember step
    {
        int hasfunctions = 0;
        for (size_t i = 0; i < members->dim; i++)
        {
            Dsymbol *s = members->tdata()[i];
            //printf("adding member '%s' to '%s'\n", s->toChars(), this->toChars());
            s->addMember(sc, this, 1);
            if (s->isFuncDeclaration())
                hasfunctions = 1;
        }

        // If nested struct, add in hidden 'this' pointer to outer scope
        if (hasfunctions && !(storage_class & STCstatic))
        {   Dsymbol *s = toParent2();
            if (s)
            {
                AggregateDeclaration *ad = s->isAggregateDeclaration();
                FuncDeclaration *fd = s->isFuncDeclaration();

                TemplateInstance *ti;
                if (ad && (ti = ad->parent->isTemplateInstance()) != NULL && ti->isnested || fd)
                {   isnested = 1;
                    Type *t;
                    if (ad)
                        t = ad->handle;
                    else if (fd)
                    {   AggregateDeclaration *ad = fd->isMember2();
                        if (ad)
                            t = ad->handle;
                        else
                            t = Type::tvoidptr;
                    }
                    else
                        assert(0);
                    if (t->ty == Tstruct)
                        t = Type::tvoidptr;     // t should not be a ref type
                    assert(!vthis);
                    vthis = new ThisDeclaration(loc, t);
                    //vthis->storage_class |= STCref;
                    members->push(vthis);
                }
            }
        }
    }

    sizeok = 0;
    sc2 = sc->push(this);
    sc2->stc &= STCsafe | STCtrusted | STCsystem;
    sc2->parent = this;
    if (isUnionDeclaration())
        sc2->inunion = 1;
    sc2->protection = PROTpublic;
    sc2->explicitProtection = 0;

    size_t members_dim = members->dim;

    /* Set scope so if there are forward references, we still might be able to
     * resolve individual members like enums.
     */
    for (size_t i = 0; i < members_dim; i++)
    {   Dsymbol *s = (*members)[i];
        /* There are problems doing this in the general case because
         * Scope keeps track of things like 'offset'
         */
        if (s->isEnumDeclaration() || (s->isAggregateDeclaration() && s->ident))
        {
            //printf("setScope %s %s\n", s->kind(), s->toChars());
            s->setScope(sc2);
        }
    }

    for (size_t i = 0; i < members_dim; i++)
    {
        Dsymbol *s = (*members)[i];

        /* If this is the last member, see if we can finish setting the size.
         * This could be much better - finish setting the size after the last
         * field was processed. The problem is the chicken-and-egg determination
         * of when that is. See Bugzilla 7426 for more info.
         */
        if (i + 1 == members_dim)
        {
            if (sizeok == 0 && s->isAliasDeclaration())
                finalizeSize();
        }
        // Ungag errors when not speculative
        unsigned oldgag = global.gag;
        if (global.isSpeculativeGagging() && !isSpeculative())
            global.gag = 0;
        s->semantic(sc2);
        global.gag = oldgag;
    }

    if (sizeok == 2)
    {   // semantic() failed because of forward references.
        // Unwind what we did, and defer it for later
        fields.setDim(0);
        structsize = 0;
        alignsize = 0;
        structalign = 0;

        scope = scx ? scx : new Scope(*sc);
        scope->setNoFree();
        scope->module->addDeferredSemantic(this);

        Module::dprogress = dprogress_save;
        //printf("\tdeferring %s\n", toChars());
        return;
    }

    finalizeSize();
    Module::dprogress++;

    //printf("-StructDeclaration::semantic(this=%p, '%s')\n", this, toChars());

    // Determine if struct is all zeros or not
    zeroInit = 1;
    for (size_t i = 0; i < fields.dim; i++)
    {
        Dsymbol *s = fields.tdata()[i];
        VarDeclaration *vd = s->isVarDeclaration();
        if (vd && !vd->isDataseg())
        {
            if (vd->init)
            {
                // Should examine init to see if it is really all 0's
                zeroInit = 0;
                break;
            }
            else
            {
                if (!vd->type->isZeroInit(loc))
                {
                    zeroInit = 0;
                    break;
                }
            }
        }
    }

#if DMDV1
    /* This doesn't work for DMDV2 because (ref S) and (S) parameter
     * lists will overload the same.
     */
    /* The TypeInfo_Struct is expecting an opEquals and opCmp with
     * a parameter that is a pointer to the struct. But if there
     * isn't one, but is an opEquals or opCmp with a value, write
     * another that is a shell around the value:
     *  int opCmp(struct *p) { return opCmp(*p); }
     */

    TypeFunction *tfeqptr;
    {
        Parameters *arguments = new Parameters;
        Parameter *arg = new Parameter(STCin, handle, Id::p, NULL);

        arguments->push(arg);
        tfeqptr = new TypeFunction(arguments, Type::tint32, 0, LINKd);
        tfeqptr = (TypeFunction *)tfeqptr->semantic(0, sc);
    }

    TypeFunction *tfeq;
    {
        Parameters *arguments = new Parameters;
        Parameter *arg = new Parameter(STCin, type, NULL, NULL);

        arguments->push(arg);
        tfeq = new TypeFunction(arguments, Type::tint32, 0, LINKd);
        tfeq = (TypeFunction *)tfeq->semantic(0, sc);
    }

    Identifier *id = Id::eq;
    for (int i = 0; i < 2; i++)
    {
        Dsymbol *s = search_function(this, id);
        FuncDeclaration *fdx = s ? s->isFuncDeclaration() : NULL;
        if (fdx)
        {   FuncDeclaration *fd = fdx->overloadExactMatch(tfeqptr);
            if (!fd)
            {   fd = fdx->overloadExactMatch(tfeq);
                if (fd)
                {   // Create the thunk, fdptr
                    FuncDeclaration *fdptr = new FuncDeclaration(loc, loc, fdx->ident, STCundefined, tfeqptr);
                    Expression *e = new IdentifierExp(loc, Id::p);
                    e = new PtrExp(loc, e);
                    Expressions *args = new Expressions();
                    args->push(e);
                    e = new IdentifierExp(loc, id);
                    e = new CallExp(loc, e, args);
                    fdptr->fbody = new ReturnStatement(loc, e);
                    ScopeDsymbol *s = fdx->parent->isScopeDsymbol();
                    assert(s);
                    s->members->push(fdptr);
                    fdptr->addMember(sc, s, 1);
                    fdptr->semantic(sc2);
                }
            }
        }

        id = Id::cmp;
    }
#endif
#if DMDV2
    dtor = buildDtor(sc2);
    postblit = buildPostBlit(sc2);
    cpctor = buildCpCtor(sc2);

    buildOpAssign(sc2);
    hasIdentityEquals = (buildOpEquals(sc2) != NULL);

    xeq = buildXopEquals(sc2);
#endif

    sc2->pop();

    /* Look for special member functions.
     */
#if DMDV2
    ctor = search(0, Id::ctor, 0);
#endif
    inv =    (InvariantDeclaration *)search(0, Id::classInvariant, 0);
    aggNew =       (NewDeclaration *)search(0, Id::classNew,       0);
    aggDelete = (DeleteDeclaration *)search(0, Id::classDelete,    0);

    if (sc->func)
    {
        semantic2(sc);
        semantic3(sc);
    }

    if (global.gag && global.gaggedErrors != errors)
    {   // The type is no good, yet the error messages were gagged.
        type = Type::terror;
    }

    if (deferred && !global.gag)
    {
        deferred->semantic2(sc);
        deferred->semantic3(sc);
    }
}