void
EBGradDivFilter::
gradVel(EBCellFAB&             a_gradVel,
        const  EBCellFAB&      a_vel,
        const Box&             a_grid,
        const EBISBox&         a_ebisBox,
        bool a_lowOrderOneSide)
{
  CH_TIME("EBGradDivFilter::gradVel");
  CH_assert(a_gradVel.nComp() == SpaceDim*SpaceDim);
  CH_assert(a_vel.nComp() == SpaceDim);

  int iLowOrderOneSide = 0;
  if (a_lowOrderOneSide)
    {
      iLowOrderOneSide = 1;
    }

  for (int derivDir = 0; derivDir < SpaceDim; derivDir++)
    {
      Box loBox, hiBox, centerBox;
      int hasLo, hasHi;
      EBArith::loHiCenter(loBox, hasLo, hiBox, hasHi, centerBox, m_domainFine, a_grid, derivDir);
      for (int velDir = 0; velDir < SpaceDim; velDir++)
        {
          BaseFab<Real>&   regGradVel  = a_gradVel.getSingleValuedFAB();
          const BaseFab<Real>& regVel  =     a_vel.getSingleValuedFAB();
          int gradcomp = getGradComp(velDir, derivDir);

          FORT_EBGDFGRADVEL(CHF_FRA1(regGradVel, gradcomp),
                            CHF_CONST_FRA1(regVel, velDir),
                            CHF_BOX(loBox),
                            CHF_INT(hasLo),
                            CHF_BOX(hiBox),
                            CHF_INT(hasHi),
                            CHF_BOX(centerBox),
                            CHF_CONST_REAL(m_dxFine[derivDir]),
                            CHF_CONST_INT(derivDir),
                            CHF_CONST_INT(iLowOrderOneSide));

          IntVectSet ivsIrreg = a_ebisBox.getIrregIVS(a_grid);
          if (!a_lowOrderOneSide)
            {
              ivsIrreg.grow(1);
              ivsIrreg &= a_grid;
            }
          for (VoFIterator vofit(ivsIrreg, a_ebisBox.getEBGraph()); vofit.ok(); ++vofit)
            {
              const VolIndex& vof = vofit();
              bool hasHi, hasLo;
              VolIndex vofHi, vofLo;
              Vector<FaceIndex> facesHi = a_ebisBox.getFaces(vof, derivDir, Side::Hi);
              Vector<FaceIndex> facesLo = a_ebisBox.getFaces(vof, derivDir, Side::Lo);

              hasHi = (facesHi.size() == 1) && (!facesHi[0].isBoundary());
              hasLo = (facesLo.size() == 1) && (!facesLo[0].isBoundary());
              if (hasLo)
                {
                  vofLo = facesLo[0].getVoF(Side::Lo);
                }
              if (hasHi)
                {
                  vofHi = facesHi[0].getVoF(Side::Hi);
                }

              Real gradVal;
              if (hasHi && hasLo)
                {
                  gradVal = (a_vel(vofHi, velDir) - a_vel(vofLo, velDir))/(2.*m_dxFine[derivDir]);
                }
              else if (hasHi || hasLo)
                {
                  //do one-sided diff
                  CH_assert(!(hasHi && hasLo));
                  Side::LoHiSide side;
                  VolIndex vofNear;
                  if (hasLo)
                    {
                      side = Side::Lo;
                      vofNear = vofLo;
                    }
                  else
                    {
                      side = Side::Hi;
                      vofNear = vofHi;
                    }
                  int isign = sign(side);

                  Vector<FaceIndex> facesFar = a_ebisBox.getFaces(vofNear, derivDir, side);
                  bool hasVoFFar = (facesFar.size()==1) && (!facesFar[0].isBoundary());
                  Real valStart = a_vel(vof,     velDir);
                  Real valNear  = a_vel(vofNear, velDir);
                  if (hasVoFFar && !a_lowOrderOneSide)
                    {
                      VolIndex vofFar = facesFar[0].getVoF(side);
                      Real valFar = a_vel(vofFar, velDir);
                      gradVal = (4*(valNear - valStart)- (valFar-valStart))/(2.*isign*m_dxFine[derivDir]);
                    }
                  else
                    {
                      //do not have another point for stencil or specified low order one-sided.
                      //drop order of derivative
                      gradVal = (valNear - valStart)/(isign*m_dxFine[derivDir]);
                    }
                }
              else
                {
                  //only have one point, can only set gradient to zero
                  gradVal = 0.0;
                }

              a_gradVel(vof, gradcomp) = gradVal;
            }
        }
    }
}
Exemple #2
0
void
EBPlanarShockIBC::
setBndrySlopes(EBCellFAB&       a_deltaPrim,
               const EBCellFAB& a_primState,
               const EBISBox&   a_ebisBox,
               const Box&       a_box,
               const int&       a_dir)
{
  // don't want to deal with the periodic case
 CH_assert(!m_domain.isPeriodic(a_dir));
 CH_assert(m_isDefined);
 CH_assert(m_isFortranCommonSet);

  Box loBox,hiBox,centerBox,domain;
  int hasLo,hasHi;
  Box slopeBox = a_deltaPrim.getRegion()&m_domain;
  int numSlop = a_deltaPrim.nComp();
  // Generate the domain boundary boxes, loBox and hiBox, if there are
  // domain boundarys there
  eblohicenter(loBox,hasLo,hiBox,hasHi,centerBox,domain,
             slopeBox,m_domain,a_dir);

  // Set the boundary slopes if necessary
  if ((hasLo != 0) || (hasHi != 0))
    {
      BaseFab<Real>& regDeltaPrim = a_deltaPrim.getSingleValuedFAB();
      const BaseFab<Real>& regPrimState = a_primState.getSingleValuedFAB();
      /**/
      FORT_SLOPEBCS(CHF_FRA(regDeltaPrim),
                    CHF_CONST_FRA(regPrimState),
                    CHF_CONST_REAL(m_dx),
                    CHF_CONST_INT(a_dir),
                    CHF_BOX(loBox),
                    CHF_CONST_INT(hasLo),
                    CHF_BOX(hiBox),
                    CHF_CONST_INT(hasHi));
      /**/
    }
  for(SideIterator sit; sit.ok(); ++sit)
    {
      bool doThisSide;
      Box thisBox;
      if(sit() == Side::Lo)
        {
          doThisSide = (hasLo != 0);
          thisBox = loBox;
        }
      else
        {
          doThisSide = (hasHi != 0);
          thisBox = hiBox;
        }
      if(doThisSide)
        {

          // the cells for which the regular calculation
          //are incorrect are the grown set of the multivalued
          //cells intersected with the appropriate bndry box
          //and added to the irregular cells on the boundary.
          Box boxGrown = thisBox;
          boxGrown.grow(a_dir, 1);
          boxGrown &= m_domain;
          IntVectSet ivs = a_ebisBox.getMultiCells(boxGrown);
          ivs &= loBox;
          IntVectSet ivsIrreg = a_ebisBox.getIrregIVS(thisBox);
          ivs |= ivsIrreg;
          for(VoFIterator vofit(ivs, a_ebisBox.getEBGraph()); vofit.ok(); ++vofit)
            {
              const VolIndex& vof = vofit();
              //all slopes at boundary get set to zero
              //except normal velocity.  just following the
              //fortran here
              int inormVelVar = a_dir + QVELX;
              for(int ivar = 0; ivar < numSlop; ivar++)
                {
                  if(ivar != inormVelVar)
                    {
                      a_deltaPrim(vof, ivar) = 0.0;
                    }
                }

              //for normal velocity
              //do strangely limited slope
              //just lifted from the fortran.
              Side::LoHiSide otherSide = flip(sit());
              Vector<FaceIndex> faces =
                a_ebisBox.getFaces(vof, a_dir, otherSide);

              Real thisVel = a_primState(vof, inormVelVar);
              Real otherVel = 0.;
              for(int iface = 0; iface < faces.size(); iface++)
                {
                  VolIndex otherVoF = faces[iface].getVoF(otherSide);
                  otherVel += a_primState(otherVoF,inormVelVar);
                }
              if(faces.size() > 0)
                {
                  otherVel /= Real(faces.size());
                  Real slope;
                  if(sit() == Side::Lo)
                    {
                      slope = otherVel - thisVel;
                    }
                  else
                    {
                      slope = thisVel  - otherVel;
                    }
                  //trick to make sure state will not change sign
                  if(slope*thisVel < 0)
                    {
                      a_deltaPrim(vof, inormVelVar) = 0.0;
                    }
                  else
                    { //slope and vel same sign
                      Real rsign = 1.0;
                      if(thisVel < 0.0)
                        rsign = -1.0;
                      //told you this was odd.
                      Real dvmin = Min(Abs(slope), Abs((Real)2.*thisVel));
                      a_deltaPrim(vof, inormVelVar) = rsign*dvmin;
                    }
                }
              else //no faces on high side of low boundary vof
                {
                  a_deltaPrim(vof, inormVelVar) = 0.0;
                }
            } //end loop over irregular vofs at boundary
        }
    } //end loop over boundary sides
}
void
EBGradDivFilter::
faceDivergence(EBFaceFAB&             a_divVel,
               const EBCellFAB&       a_gradVel,
               const EBCellFAB&       a_vel,
               const EBFluxFAB&       a_fluxVel,
               const Box&             a_grid,
               const EBISBox&         a_ebisBox,
               const int&             a_faceDir)
{
  CH_TIME("EBGradDivFilter::faceDivergence");
  CH_assert(a_divVel.nComp() == 1);
  CH_assert(a_vel.nComp() == SpaceDim);

  a_divVel.setVal(0.0);
  BaseFab<Real>& regDivVel       =  a_divVel.getSingleValuedFAB();
  const BaseFab<Real>& regVel    =     a_vel.getSingleValuedFAB();
  const BaseFab<Real>& regGradVel= a_gradVel.getSingleValuedFAB();

  Box interiorFaceBox = a_grid;
  interiorFaceBox.grow(a_faceDir, 1);
  interiorFaceBox &= m_domainFine;
  interiorFaceBox.grow(a_faceDir, -1);
  interiorFaceBox.surroundingNodes(a_faceDir);

  for (int divDir = 0; divDir < SpaceDim; divDir++)
    {
      FORT_EBGDFFACEDIVINCR(CHF_FRA1(regDivVel, 0),
                            CHF_FRA(regVel),
                            CHF_FRA(regGradVel),
                            CHF_BOX(interiorFaceBox),
                            CHF_REAL(m_dxFine[divDir]),
                            CHF_INT(a_faceDir),
                            CHF_INT(divDir));
    }

  IntVectSet irregIVS = a_ebisBox.getIrregIVS(a_grid);
  FaceStop::WhichFaces stopCrit;
  if (m_domainFine.isPeriodic(a_faceDir))
    {
      stopCrit = FaceStop::SurroundingWithBoundary;
    }
  else
    {
      stopCrit = FaceStop::SurroundingNoBoundary;
    }
  for (FaceIterator faceit(irregIVS, a_ebisBox.getEBGraph(), a_faceDir,
                          stopCrit);
      faceit.ok(); ++faceit)
    {
      Real divVal = 0.0;
      for (int divDir=0; divDir<SpaceDim; divDir++)
        {
          if (divDir == a_faceDir)
            {
              divVal += (a_vel(faceit().getVoF(Side::Hi), a_faceDir) -
                         a_vel(faceit().getVoF(Side::Lo), a_faceDir))/m_dxFine[divDir];
            }
          else
            {
              // take average of cell-centered tangential derivatives
              // and increment div
              //so this is partial (vel_divdir)/partial (x_divdir)
              int velcomp = divDir;
              int gradcomp = getGradComp(velcomp, divDir);

              divVal += 0.5*(a_gradVel(faceit().getVoF(Side::Hi), gradcomp) +
                             a_gradVel(faceit().getVoF(Side::Lo), gradcomp));
            }
        }

      a_divVel(faceit(), 0) = divVal;
    } // end loop over interior irregular faces

  if (!m_domainFine.isPeriodic(a_faceDir))
    {
      //set the boundary face divergence to an extrapolation of the neighboring face divergences
      for (SideIterator sit; sit.ok(); ++sit)
        {
          Box bndryBox = adjCellBox(a_grid, a_faceDir, sit(), 1);
          int ishift = -sign(sit());
          bndryBox.shift(a_faceDir, ishift);
          IntVectSet bndryIVS(bndryBox);
          for (FaceIterator faceit(bndryIVS, a_ebisBox.getEBGraph(), a_faceDir,
                                  FaceStop::AllBoundaryOnly);
              faceit.ok(); ++faceit)
            {
              Real faceDiv = getDomainDivergence(a_gradVel,
                                                 a_vel,
                                                 a_fluxVel,
                                                 a_grid,
                                                 a_ebisBox,
                                                 a_faceDir,
                                                 faceit(),
                                                 sit());
              a_divVel(faceit(), 0) = faceDiv;
            }
        }
    }
}