Exemple #1
0
  HyperGraphElementAction* EdgeSE2DrawAction::operator()(HyperGraph::HyperGraphElement* element, 
               HyperGraphElementAction::Parameters* params_){
    if (typeid(*element).name()!=_typeName)
      return 0;

    refreshPropertyPtrs(params_);
    if (! _previousParams)
      return this;
    
    if (_show && !_show->value())
      return this;

    EdgeSE2* e =  static_cast<EdgeSE2*>(element);
    VertexSE2* from = static_cast<VertexSE2*>(e->vertex(0));
    VertexSE2* to   = static_cast<VertexSE2*>(e->vertex(1));
    if (! from && ! to)
      return this;
    SE2 fromTransform;
    SE2 toTransform;
    glPushAttrib(GL_ENABLE_BIT | GL_LIGHTING | GL_COLOR);
    glDisable(GL_LIGHTING);
    if (! from) {
      glColor3f(POSE_EDGE_GHOST_COLOR);
      toTransform = to->estimate();
      fromTransform = to->estimate()*e->measurement().inverse();
      // DRAW THE FROM EDGE AS AN ARROW
      glPushMatrix();
      glTranslatef((float)fromTransform.translation().x(), (float)fromTransform.translation().y(),0.f);
      glRotatef((float)RAD2DEG(fromTransform.rotation().angle()),0.f,0.f,1.f);
      opengl::drawArrow2D((float)_triangleX->value(), (float)_triangleY->value(), (float)_triangleX->value()*.3f);
      glPopMatrix();
    } else if (! to){
      glColor3f(POSE_EDGE_GHOST_COLOR);
      fromTransform = from->estimate();
      toTransform = from->estimate()*e->measurement();
      // DRAW THE TO EDGE AS AN ARROW
      glPushMatrix();
      glTranslatef(toTransform.translation().x(),toTransform.translation().y(),0.f);
      glRotatef((float)RAD2DEG(toTransform.rotation().angle()),0.f,0.f,1.f);
      opengl::drawArrow2D((float)_triangleX->value(), (float)_triangleY->value(), (float)_triangleX->value()*.3f);
      glPopMatrix();
    } else {
      glColor3f(POSE_EDGE_COLOR);
      fromTransform = from->estimate();
      toTransform = to->estimate();
    }
    glBegin(GL_LINES);
    glVertex3f((float)fromTransform.translation().x(),(float)fromTransform.translation().y(),0.f);
    glVertex3f((float)toTransform.translation().x(),(float)toTransform.translation().y(),0.f);
    glEnd();
    glPopAttrib();
    return this;
  }
Exemple #2
0
 virtual double perform(HyperGraph::Vertex* v, HyperGraph::Vertex* vParent, HyperGraph::Edge* e)
 {
   if (! vParent)
     return 0.;
   EdgeSE2* odom    = static_cast<EdgeSE2*>(e);
   VertexSE2* from  = static_cast<VertexSE2*>(vParent);
   VertexSE2* to    = static_cast<VertexSE2*>(v);
   assert(to->hessianIndex() >= 0);
   double fromTheta = from->hessianIndex() < 0 ? 0. : _thetaGuess[from->hessianIndex()];
   bool direct      = odom->vertices()[0] == from;
   if (direct) 
     _thetaGuess[to->hessianIndex()] = fromTheta + odom->measurement().rotation().angle();
   else
     _thetaGuess[to->hessianIndex()] = fromTheta - odom->measurement().rotation().angle();
   return 1.;
 }
Exemple #3
0
  bool SolverSLAM2DLinear::solveOrientation()
  {
    assert(_optimizer->indexMapping().size() + 1 == _optimizer->vertices().size() && "Needs to operate on full graph");
    assert(_optimizer->vertex(0)->fixed() && "Graph is not fixed by vertex 0");
    VectorXD b, x; // will be used for theta and x/y update
    b.setZero(_optimizer->indexMapping().size());
    x.setZero(_optimizer->indexMapping().size());

    typedef Eigen::Matrix<double, 1, 1, Eigen::ColMajor> ScalarMatrix;

    ScopedArray<int> blockIndeces(new int[_optimizer->indexMapping().size()]);
    for (size_t i = 0; i < _optimizer->indexMapping().size(); ++i)
      blockIndeces[i] = i+1;

    SparseBlockMatrix<ScalarMatrix> H(blockIndeces.get(), blockIndeces.get(), _optimizer->indexMapping().size(), _optimizer->indexMapping().size());

    // building the structure, diagonal for each active vertex
    for (size_t i = 0; i < _optimizer->indexMapping().size(); ++i) {
      OptimizableGraph::Vertex* v = _optimizer->indexMapping()[i];
      int poseIdx = v->hessianIndex();
      ScalarMatrix* m = H.block(poseIdx, poseIdx, true);
      m->setZero();
    }

    HyperGraph::VertexSet fixedSet;

    // off diagonal for each edge
    for (SparseOptimizer::EdgeContainer::const_iterator it = _optimizer->activeEdges().begin(); it != _optimizer->activeEdges().end(); ++it) {
#    ifndef NDEBUG
      EdgeSE2* e = dynamic_cast<EdgeSE2*>(*it);
      assert(e && "Active edges contain non-odometry edge"); //
#    else
      EdgeSE2* e = static_cast<EdgeSE2*>(*it);
#    endif
      OptimizableGraph::Vertex* from = static_cast<OptimizableGraph::Vertex*>(e->vertices()[0]);
      OptimizableGraph::Vertex* to   = static_cast<OptimizableGraph::Vertex*>(e->vertices()[1]);

      int ind1 = from->hessianIndex();
      int ind2 = to->hessianIndex();
      if (ind1 == -1 || ind2 == -1) {
        if (ind1 == -1) fixedSet.insert(from); // collect the fixed vertices
        if (ind2 == -1) fixedSet.insert(to);
        continue;
      }

      bool transposedBlock = ind1 > ind2;
      if (transposedBlock){ // make sure, we allocate the upper triangle block
        std::swap(ind1, ind2);
      }

      ScalarMatrix* m = H.block(ind1, ind2, true);
      m->setZero();
    }

    // walk along the Minimal Spanning Tree to compute the guess for the robot orientation
    assert(fixedSet.size() == 1);
    VertexSE2* root = static_cast<VertexSE2*>(*fixedSet.begin());
    VectorXD thetaGuess;
    thetaGuess.setZero(_optimizer->indexMapping().size());
    UniformCostFunction uniformCost;
    HyperDijkstra hyperDijkstra(_optimizer);
    hyperDijkstra.shortestPaths(root, &uniformCost);

    HyperDijkstra::computeTree(hyperDijkstra.adjacencyMap());
    ThetaTreeAction thetaTreeAction(thetaGuess.data());
    HyperDijkstra::visitAdjacencyMap(hyperDijkstra.adjacencyMap(), &thetaTreeAction);

    // construct for the orientation
    for (SparseOptimizer::EdgeContainer::const_iterator it = _optimizer->activeEdges().begin(); it != _optimizer->activeEdges().end(); ++it) {
      EdgeSE2* e = static_cast<EdgeSE2*>(*it);
      VertexSE2* from = static_cast<VertexSE2*>(e->vertices()[0]);
      VertexSE2* to   = static_cast<VertexSE2*>(e->vertices()[1]);

      double omega = e->information()(2,2);

      double fromThetaGuess = from->hessianIndex() < 0 ? 0. : thetaGuess[from->hessianIndex()];
      double toThetaGuess   = to->hessianIndex() < 0 ? 0. : thetaGuess[to->hessianIndex()];
      double error          = normalize_theta(-e->measurement().rotation().angle() + toThetaGuess - fromThetaGuess);

      bool fromNotFixed = !(from->fixed());
      bool toNotFixed   = !(to->fixed());

      if (fromNotFixed || toNotFixed) {
        double omega_r = - omega * error;
        if (fromNotFixed) {
          b(from->hessianIndex()) -= omega_r;
          (*H.block(from->hessianIndex(), from->hessianIndex()))(0,0) += omega;
          if (toNotFixed) {
            if (from->hessianIndex() > to->hessianIndex())
              (*H.block(to->hessianIndex(), from->hessianIndex()))(0,0) -= omega;
            else
              (*H.block(from->hessianIndex(), to->hessianIndex()))(0,0) -= omega;
          }
        } 
        if (toNotFixed ) {
          b(to->hessianIndex()) += omega_r;
          (*H.block(to->hessianIndex(), to->hessianIndex()))(0,0) += omega;
        }
      }
    }

    // solve orientation
    typedef LinearSolverCSparse<ScalarMatrix> SystemSolver;
    SystemSolver linearSystemSolver;
    linearSystemSolver.init();
    bool ok = linearSystemSolver.solve(H, x.data(), b.data());
    if (!ok) {
      cerr << __PRETTY_FUNCTION__ << "Failure while solving linear system" << endl;
      return false;
    }

    // update the orientation of the 2D poses and set translation to 0, GN shall solve that
    root->setToOrigin();
    for (size_t i = 0; i < _optimizer->indexMapping().size(); ++i) {
      VertexSE2* v = static_cast<VertexSE2*>(_optimizer->indexMapping()[i]);
      int poseIdx = v->hessianIndex();
      SE2 poseUpdate(0, 0, normalize_theta(thetaGuess(poseIdx) + x(poseIdx)));
      v->setEstimate(poseUpdate);
    }

    return true;
  }