void GraphicEnd::generateKeyFrame( Eigen::Isometry3d T ) { cout<<BOLDGREEN<<"GraphicEnd::generateKeyFrame"<<RESET<<endl; //把present中的数据存储到current中 _currKF.id ++; _currKF.planes = _present.planes; _currKF.frame_index = _index; _lastRGB = _currRGB.clone(); _kf_pos = _robot; cout<<"add key frame: "<<_currKF.id<<endl; //waitKey(0); _keyframes.push_back( _currKF ); //将current关键帧存储至全局优化器 SparseOptimizer& opt = _pSLAMEnd->globalOptimizer; //顶点 VertexSE3* v = new VertexSE3(); v->setId( _currKF.id ); //v->setEstimate( _robot ); if (_use_odometry) v->setEstimate( _odo_this ); //v->setEstimate( Eigen::Isometry3d::Identity() ); else v->setEstimate( Eigen::Isometry3d::Identity() ); opt.addVertex( v ); //边 EdgeSE3* edge = new EdgeSE3(); edge->vertices()[0] = opt.vertex( _currKF.id - 1 ); edge->vertices()[1] = opt.vertex( _currKF.id ); Eigen::Matrix<double, 6,6> information = Eigen::Matrix<double, 6, 6>::Identity(); information(0, 0) = information(2,2) = 100; information(1, 1) = 100; information(3,3) = information(4,4) = information(5,5) = 100; edge->setInformation( information ); edge->setMeasurement( T ); opt.addEdge( edge ); if (_use_odometry) { Eigen::Isometry3d To = _odo_last.inverse()*_odo_this; cout<<"odo last = "<<endl<<_odo_last.matrix()<<endl<<"odo this = "<<endl<<_odo_this.matrix()<<endl; cout<<"To = "<<endl<<To.matrix()<<endl; cout<<"Measurement = "<<endl<<T.matrix()<<endl; //waitKey( 0 ); EdgeSE3* edge = new EdgeSE3(); edge->vertices()[0] = opt.vertex( _currKF.id - 1 ); edge->vertices()[1] = opt.vertex( _currKF.id ); Eigen::Matrix<double, 6,6> information = Eigen::Matrix<double, 6, 6>::Identity(); information(0, 0) = information(1,1) = information(2,2) = information(3,3) = information(4,4) = information(5,5) = 1/(_error_odometry*_error_odometry); edge->setInformation( information ); edge->setMeasurement( To ); opt.addEdge( edge ); _odo_last = _odo_this; } }
void GraphicEnd::generateKeyframe(Eigen::Isometry3d& T) { cout<<"generating keyframes..."<<endl; currKF.id++; currKF.frame_index=index; currKF.frame.rgb=present.frame.rgb.clone(); currKF.frame.dep=present.frame.dep.clone(); //currKF.frame.cloud=present.frame.cloud; pcl::copyPointCloud(*(present.frame.cloud),*(currKF.frame.cloud)); currKF.fullpose=present.fullpose; //keyframes.reserve(100); keyframes.push_back(currKF); //cout<<"keyframes capacity is: "<<keyframes.capacity()<<endl; SparseOptimizer& opt = _pSLAMEnd->globalOptimizer; VertexSE3* v = new VertexSE3(); v->setId( currKF.id ); v->setEstimate( Eigen::Isometry3d::Identity() ); opt.addVertex( v ); cout<<"add vertex success!!!"<<endl; //edge EdgeSE3* edge = new EdgeSE3(); edge->vertices()[0] = opt.vertex( currKF.id - 1 ); edge->vertices()[1] = opt.vertex( currKF.id ); Eigen::Matrix<double, 6,6> information = Eigen::Matrix<double, 6, 6>::Identity(); information(0, 0) = information(2,2) = 100; information(1, 1) = 100; information(3,3) = information(4,4) = information(5,5) = 100; edge->setInformation( information ); edge->setMeasurement( T ); opt.addEdge( edge ); cout<<"add edge success!!!"<<endl; }
void GraphicEnd::checkLoopClosure() { cout<<"**************************************************"<<endl; cout<<"checking loop closure!!!"<<endl; cout<<"**************************************************"<<endl; SparseOptimizer& opt = _pSLAMEnd->globalOptimizer; //first extract currKF desp and keys vector<cv::KeyPoint> keys; vector<vector<float> > descrip; loadFeatures(currKF.frame.rgb,descrip,keys); //add currKF into database db.add(descrip); //query, first is the image itself QueryResults ret; db.query(descrip,ret,10);//only get 3 highest score frame; //ransac check for(int j=1;j<ret.size();++j) { //extract chose image feature vector<cv::KeyPoint> keypoint; vector<vector<float> > descriptor; loadFeatures(keyframes[ret[ j ].Id].frame.rgb,descriptor,keypoint); bool ransacResult=checkFundumental(keys,descrip,keypoint,descriptor); //if pass the ransac check if(ransacResult) { Eigen::Matrix4f H; bool validTrans=calcTrans2(keyframes[ ret[ j ].Id ],currKF,H); loop_fout<<currKF.frame_index<<" and "<<keyframes[ret[ j ].Id].frame_index<<" : "<<validTrans<<endl; if(!validTrans || H==Eigen::Matrix4f::Identity()) continue; Eigen::Isometry3d T(H.cast<double>()); T = T.inverse(); EdgeSE3* edge = new EdgeSE3(); edge->vertices() [0] = opt.vertex( keyframes[ret[ j ].Id].id ); edge->vertices() [1] = opt.vertex( currKF.id ); Matrix<double, 6,6> information = Matrix<double, 6, 6>::Identity(); information(0, 0) = information(2,2) = 100; information(1,1) = 100; information(3,3) = information(4,4) = information(5,5) = 100; edge->setInformation( information ); edge->setMeasurement( T ); edge->setRobustKernel( _pSLAMEnd->robustKernel ); opt.addEdge( edge ); } } }
//bow loopclosure void GraphicEnd::Bowloopclosure() { SparseOptimizer& opt = _pSLAMEnd->globalOptimizer; vector<cv::KeyPoint> keys; vector<FSurf64::TDescriptor> descrip; DetectionResult result; bow_extractor(currKF.frame.rgb,keys,descrip); bow_detector.detectLoop(keys,descrip,result); if(result.detection()) { cout<<"Loop found with image "<<result.match<<"!"<<endl; /******write loop into file*******/ //ofstream loop_fout("/home/lc/workspace/paper_related/Appolo/test/result/loop.txt"); /********************************/ Eigen::Matrix4f H; bool validTrans=calcTrans(keyframes[ result.match ],currKF,H,true); loop_fout<<currKF.frame_index<<" and "<<keyframes[result.match].frame_index<<" : "<<validTrans<<endl; if(!validTrans) return; Eigen::Isometry3d T(H.cast<double>()); //T = T.inverse(); EdgeSE3* edge = new EdgeSE3(); edge->vertices() [0] = opt.vertex( keyframes[result.match].id ); edge->vertices() [1] = opt.vertex( currKF.id ); Matrix<double, 6,6> information = Matrix<double, 6, 6>::Identity(); information(0, 0) = information(2,2) = 100; information(1,1) = 100; information(3,3) = information(4,4) = information(5,5) = 100; edge->setInformation( information ); edge->setMeasurement( T ); edge->setRobustKernel( _pSLAMEnd->robustKernel ); opt.addEdge( edge ); } }
void GraphicEnd::lostRecovery() { //以present作为新的关键帧 cout<<BOLDYELLOW<<"Lost Recovery..."<<RESET<<endl; //把present中的数据存储到current中 _currKF.id ++; _currKF.planes = _present.planes; _currKF.frame_index = _index; _lastRGB = _currRGB.clone(); _kf_pos = _robot; //waitKey(0); _keyframes.push_back( _currKF ); //将current关键帧存储至全局优化器 SparseOptimizer& opt = _pSLAMEnd->globalOptimizer; //顶点 VertexSE3* v = new VertexSE3(); v->setId( _currKF.id ); if (_use_odometry) v->setEstimate( _odo_this ); else v->setEstimate( Eigen::Isometry3d::Identity() ); opt.addVertex( v ); //由于当前位置不知道,所以不添加与上一帧相关的边 if (_use_odometry) { Eigen::Isometry3d To = _odo_last.inverse()*_odo_this; EdgeSE3* edge = new EdgeSE3(); edge->vertices()[0] = opt.vertex( _currKF.id - 1 ); edge->vertices()[1] = opt.vertex( _currKF.id ); Eigen::Matrix<double, 6,6> information = Eigen::Matrix<double, 6, 6>::Identity(); information(0, 0) = information(2,2) = information(1, 1) = information(3,3) = information(4,4) = information(5,5) = 1/(_error_odometry*_error_odometry); edge->setInformation( information ); edge->setMeasurement( To ); opt.addEdge( edge ); _odo_last = _odo_this; _lost = 0; return; } //check loop closure for (int i=0; i<_keyframes.size() - 1; i++) { vector<PLANE>& p1 = _keyframes[ i ].planes; Eigen::Isometry3d T = multiPnP( p1, _currKF.planes ).T; if (T.matrix() == Eigen::Isometry3d::Identity().matrix()) //匹配不上 continue; T = T.inverse(); //若匹配上,则在两个帧之间加一条边 EdgeSE3* edge = new EdgeSE3(); edge->vertices() [0] = opt.vertex( _keyframes[i].id ); edge->vertices() [1] = opt.vertex( _currKF.id ); Eigen::Matrix<double, 6,6> information = Eigen::Matrix<double, 6, 6>::Identity(); information(0, 0) = information(1,1) = information(2,2) = 100; information(3,3) = information(4,4) = information(5,5) = 100; edge->setInformation( information ); edge->setMeasurement( T ); edge->setRobustKernel( _pSLAMEnd->_robustKernel ); opt.addEdge( edge ); } }
//回环检测:在过去的帧中随机取_loopclosure_frames那么多帧进行两两比较 void GraphicEnd::loopClosure() { if (_keyframes.size() <= 3 ) //小于3时,回环没有意义 return; cout<<"Checking loop closure."<<endl; waitKey(10); vector<int> checked; SparseOptimizer& opt = _pSLAMEnd->globalOptimizer; //相邻帧 for (int i=-3; i>-5; i--) { int n = _keyframes.size() + i; if (n>=0) { vector<PLANE>& p1 = _keyframes[n].planes; Eigen::Isometry3d T = multiPnP( p1, _currKF.planes ).T; if (T.matrix() == Eigen::Isometry3d::Identity().matrix()) //匹配不上 continue; T = T.inverse(); //若匹配上,则在两个帧之间加一条边 EdgeSE3* edge = new EdgeSE3(); edge->vertices() [0] = opt.vertex( _keyframes[n].id ); edge->vertices() [1] = opt.vertex( _currKF.id ); Eigen::Matrix<double, 6,6> information = Eigen::Matrix<double, 6, 6>::Identity(); information(0, 0) = information(2,2) = 100; information(1,1) = 100; information(3,3) = information(4,4) = information(5,5) = 100; edge->setInformation( information ); edge->setMeasurement( T ); edge->setRobustKernel( _pSLAMEnd->_robustKernel ); opt.addEdge( edge ); } else break; } //搜索种子帧 cout<<"checking seeds, seed.size()"<<_seed.size()<<endl; vector<int> newseed; for (size_t i=0; i<_seed.size(); i++) { vector<PLANE>& p1 = _keyframes[_seed[i]].planes; Eigen::Isometry3d T = multiPnP( p1, _currKF.planes ).T; if (T.matrix() == Eigen::Isometry3d::Identity().matrix()) //匹配不上 continue; T = T.inverse(); //若匹配上,则在两个帧之间加一条边 checked.push_back( _seed[i] ); newseed.push_back( _seed[i] ); EdgeSE3* edge = new EdgeSE3(); edge->vertices() [0] = opt.vertex( _keyframes[_seed[i]].id ); edge->vertices() [1] = opt.vertex( _currKF.id ); Eigen::Matrix<double, 6,6> information = Eigen::Matrix<double, 6, 6>::Identity(); information(0, 0) = information(2,2) = 100; information(1,1) = 100; information(3,3) = information(4,4) = information(5,5) = 100; edge->setInformation( information ); edge->setMeasurement( T ); edge->setRobustKernel( _pSLAMEnd->_robustKernel ); opt.addEdge( edge ); } //随机搜索 cout<<"checking random frames"<<endl; for (int i=0; i<_loopclosure_frames; i++) { int frame = rand() % (_keyframes.size() -3 ); //随机在过去的帧中取一帧 if ( find(checked.begin(), checked.end(), frame) != checked.end() ) //之前已检查过 continue; checked.push_back( frame ); vector<PLANE>& p1 = _keyframes[frame].planes; RESULT_OF_MULTIPNP result = multiPnP( p1, _currKF.planes, true, _keyframes[frame].frame_index, 20 ); Eigen::Isometry3d T = result.T; if (T.matrix() == Eigen::Isometry3d::Identity().matrix()) //匹配不上 continue; T = T.inverse(); displayLC( _keyframes[frame].frame_index, _currKF.frame_index, result.norm); newseed.push_back( frame ); //若匹配上,则在两个帧之间加一条边 cout<<BOLDBLUE<<"find a loop closure between kf "<<_currKF.id<<" and kf "<<frame<<RESET<<endl; EdgeSE3* edge = new EdgeSE3(); edge->vertices() [0] = opt.vertex( _keyframes[frame].id ); edge->vertices() [1] = opt.vertex( _currKF.id ); Eigen::Matrix<double, 6,6> information = Eigen::Matrix<double, 6, 6>::Identity(); information(0, 0) = information(2,2) = 100; information(1,1) = 100; information(3,3) = information(4,4) = information(5,5) = 100; edge->setInformation( information ); edge->setMeasurement( T ); edge->setRobustKernel( _pSLAMEnd->_robustKernel ); opt.addEdge( edge ); } waitKey(10); _seed = newseed; }
void Optimizer::optimizeUseG2O() { // create the linear solver BlockSolverX::LinearSolverType * linearSolver = new LinearSolverCSparse<BlockSolverX::PoseMatrixType>(); // create the block solver on top of the linear solver BlockSolverX* blockSolver = new BlockSolverX(linearSolver); // create the algorithm to carry out the optimization //OptimizationAlgorithmGaussNewton* optimizationAlgorithm = new OptimizationAlgorithmGaussNewton(blockSolver); OptimizationAlgorithmLevenberg* optimizationAlgorithm = new OptimizationAlgorithmLevenberg(blockSolver); // NOTE: We skip to fix a variable here, either this is stored in the file // itself or Levenberg will handle it. // create the optimizer to load the data and carry out the optimization SparseOptimizer optimizer; SparseOptimizer::initMultiThreading(); optimizer.setVerbose(true); optimizer.setAlgorithm(optimizationAlgorithm); { pcl::ScopeTime time("G2O setup Graph vertices"); for (size_t cloud_count = 0; cloud_count < m_pointClouds.size(); ++cloud_count) { VertexSE3 *vertex = new VertexSE3; vertex->setId(cloud_count); Isometry3D affine = Isometry3D::Identity(); affine.linear() = m_pointClouds[cloud_count]->sensor_orientation_.toRotationMatrix().cast<Isometry3D::Scalar>(); affine.translation() = m_pointClouds[cloud_count]->sensor_origin_.block<3, 1>(0, 0).cast<Isometry3D::Scalar>(); vertex->setEstimate(affine); optimizer.addVertex(vertex); } optimizer.vertex(0)->setFixed(true); } { pcl::ScopeTime time("G2O setup Graph edges"); double trans_noise = 0.5, rot_noise = 0.5235; EdgeSE3::InformationType infomation = EdgeSE3::InformationType::Zero(); infomation.block<3, 3>(0, 0) << trans_noise * trans_noise, 0, 0, 0, trans_noise * trans_noise, 0, 0, 0, trans_noise * trans_noise; infomation.block<3, 3>(3, 3) << rot_noise * rot_noise, 0, 0, 0, rot_noise * rot_noise, 0, 0, 0, rot_noise * rot_noise; for (size_t pair_count = 0; pair_count < m_cloudPairs.size(); ++pair_count) { CloudPair pair = m_cloudPairs[pair_count]; int from = pair.corresIdx.first; int to = pair.corresIdx.second; EdgeSE3 *edge = new EdgeSE3; edge->vertices()[0] = optimizer.vertex(from); edge->vertices()[1] = optimizer.vertex(to); Eigen::Matrix<double, 6, 6> ATA = Eigen::Matrix<double, 6, 6>::Zero(); Eigen::Matrix<double, 6, 1> ATb = Eigen::Matrix<double, 6, 1>::Zero(); #pragma unroll 8 for (size_t point_count = 0; point_count < pair.corresPointIdx.size(); ++point_count) { int point_p = pair.corresPointIdx[point_count].first; int point_q = pair.corresPointIdx[point_count].second; PointType P = m_pointClouds[from]->points[point_p]; PointType Q = m_pointClouds[to]->points[point_q]; Eigen::Vector3d p = P.getVector3fMap().cast<double>(); Eigen::Vector3d q = Q.getVector3fMap().cast<double>(); Eigen::Vector3d Np = P.getNormalVector3fMap().cast<double>(); double b = (p - q).dot(Np); Eigen::Matrix<double, 6, 1> A_p; A_p.block<3, 1>(0, 0) = p.cross(Np); A_p.block<3, 1>(3, 0) = Np; ATA += A_p * A_p.transpose(); ATb += A_p * b; } Eigen::Matrix<double, 6, 1> X = ATA.ldlt().solve(ATb); Isometry3D measure = Isometry3D::Identity(); float beta = X[0]; float gammar = X[1]; float alpha = X[2]; measure.linear() = (Eigen::Matrix3d)Eigen::AngleAxisd(alpha, Eigen::Vector3d::UnitZ()) * Eigen::AngleAxisd(gammar, Eigen::Vector3d::UnitY()) * Eigen::AngleAxisd(beta, Eigen::Vector3d::UnitX()); measure.translation() = X.block<3, 1>(3, 0); edge->setMeasurement(measure); edge->setInformation(infomation); optimizer.addEdge(edge); } } optimizer.save("debug_preOpt.g2o"); { pcl::ScopeTime time("g2o optimizing"); optimizer.initializeOptimization(); optimizer.optimize(30); } optimizer.save("debug_postOpt.g2o"); for (size_t cloud_count = 0; cloud_count < m_pointClouds.size(); ++cloud_count) { CloudTypePtr tmp(new CloudType); Isometry3D trans = ((VertexSE3 *)optimizer.vertices()[cloud_count])->estimate(); Eigen::Affine3d affine; affine.linear() = trans.rotation(); affine.translation() = trans.translation(); pcl::transformPointCloudWithNormals(*m_pointClouds[cloud_count], *tmp, affine.cast<float>()); pcl::copyPointCloud(*tmp, *m_pointClouds[cloud_count]); } PCL_WARN("Opitimization DONE!!!!\n"); if (m_params.saveDirectory.length()) { if (boost::filesystem::exists(m_params.saveDirectory) && !boost::filesystem::is_directory(m_params.saveDirectory)) { boost::filesystem::remove(m_params.saveDirectory); } boost::filesystem::create_directories(m_params.saveDirectory); char filename[1024] = { 0 }; for (size_t i = 0; i < m_pointClouds.size(); ++i) { sprintf(filename, "%s/cloud_%d.ply", m_params.saveDirectory.c_str(), i); pcl::io::savePLYFileBinary(filename, *m_pointClouds[i]); } } }
void GraphicEnd::lostRecovery() { cout<<"Lost Recovery..."<<endl; // currKF.id++; currKF.frame.rgb=present.frame.rgb.clone(); currKF.frame.dep=present.frame.dep.clone(); //currKF.frame.cloud=present.frame.cloud; pcl::copyPointCloud(*(present.frame.cloud),*(currKF.frame.cloud)); currKF.frame_index = index; //waitKey(0); keyframes.push_back( currKF ); // SparseOptimizer& opt = _pSLAMEnd->globalOptimizer; // VertexSE3* v = new VertexSE3(); v->setId( currKF.id ); v->setEstimate( Eigen::Isometry3d::Identity() ); opt.addVertex( v ); /**************************************** //check bow loop //first extract currKF desp and keys vector<cv::KeyPoint> keys; vector<vector<float> > descrip; loadFeatures(currKF.frame.rgb,descrip,keys); //add currKF into database db.add(descrip); //query, first is the image itself QueryResults ret; db.query(descrip,ret,10);//only get 3 highest score frame; //ransac check for(int j=1;j<ret.size();++j) { //extract chose image feature vector<cv::KeyPoint> keypoint; vector<vector<float> > descriptor; loadFeatures(keyframes[ret[ j ].Id].frame.rgb,descriptor,keypoint); bool ransacResult=checkFundumental(keys,descrip,keypoint,descriptor); //if pass the ransac check if(ransacResult) { Eigen::Matrix4f H; bool validTrans=calcTrans2(keyframes[ ret[ j ].Id ],currKF,H); loop_fout<<"lost frame: "<<currKF.frame_index<<" and "<<keyframes[ret[ j ].Id].frame_index<<endl; cout<<"find loop between "<<currKF.frame_index<<" and "<<keyframes[ret[ j ].Id].frame_index<<endl; if(!validTrans || H==Eigen::Matrix4f::Identity()) continue; Eigen::Isometry3d T(H.cast<double>()); T = T.inverse(); EdgeSE3* edge = new EdgeSE3(); edge->vertices() [0] = opt.vertex( keyframes[ret[ j ].Id].id ); edge->vertices() [1] = opt.vertex( currKF.id ); Matrix<double, 6,6> information = Matrix<double, 6, 6>::Identity(); information(0, 0) = information(2,2) = 100; information(1,1) = 100; information(3,3) = information(4,4) = information(5,5) = 100; edge->setInformation( information ); edge->setMeasurement( T ); edge->setRobustKernel( _pSLAMEnd->robustKernel ); opt.addEdge( edge ); } } ****************************************/ //check loop closure for (int i=0; i<keyframes.size()-1; i++) { KEYFRAME& p1 = keyframes[ i ]; //Eigen::Isometry3d T = calcTrans( p1, currKF.frame ).T; Eigen::Matrix4f H; //bool validTrans=calcTrans(p1,currKF,H); bool validTrans=calcTrans2(p1,currKF,H); if(!validTrans) continue; Eigen::Isometry3d T(H.cast<double>()); T = T.inverse(); // EdgeSE3* edge = new EdgeSE3(); edge->vertices() [0] = opt.vertex( keyframes[i].id ); edge->vertices() [1] = opt.vertex( currKF.id ); Matrix<double, 6,6> information = Matrix<double, 6, 6>::Identity(); information(0, 0) = information(1,1) = information(2,2) = 100; information(3,3) = information(4,4) = information(5,5) = 100; edge->setInformation( information ); edge->setMeasurement( T ); edge->setRobustKernel( _pSLAMEnd->robustKernel ); opt.addEdge( edge ); } lost = 0; }
void GraphicEnd::loopClosure() { if (keyframes.size() >3 ) { cout<<"Checking loop closure."<<endl; waitKey(10); vector<int> checked; SparseOptimizer& opt = _pSLAMEnd->globalOptimizer; for (int i=-2; i>-5; i--) { int n = keyframes.size() + i; if (n>=0) { KEYFRAME& p1 = keyframes[n]; Eigen::Matrix4f H; //bool validTrans=calcTrans(p1,currKF,H); bool validTrans=calcTrans2(p1,currKF,H); if(!validTrans) continue; Eigen::Isometry3d T(H.cast<double>()); T = T.inverse(); // EdgeSE3* edge = new EdgeSE3(); edge->vertices() [0] = opt.vertex( keyframes[n].id ); edge->vertices() [1] = opt.vertex( currKF.id ); Matrix<double, 6,6> information = Matrix<double, 6, 6>::Identity(); information(0, 0) = information(2,2) = 100; information(1,1) = 100; information(3,3) = information(4,4) = information(5,5) = 100; edge->setInformation( information ); edge->setMeasurement( T ); edge->setRobustKernel( _pSLAMEnd->robustKernel ); opt.addEdge( edge ); } else break; } // cout<<"checking seeds, seed.size()"<<seed.size()<<endl; vector<int> newseed; for (size_t i=0; i<seed.size(); i++) { KEYFRAME& p1 = keyframes[seed[i]]; //Eigen::Isometry3d T = calcTrans( p1, currKF.frame ).T; Eigen::Matrix4f H; //bool validTrans=calcTrans(p1,currKF,H); bool validTrans=calcTrans2(p1,currKF,H); if(!validTrans) continue; Eigen::Isometry3d T(H.cast<double>()); T = T.inverse(); // checked.push_back( seed[i] ); newseed.push_back( seed[i] ); EdgeSE3* edge = new EdgeSE3(); edge->vertices() [0] = opt.vertex( keyframes[seed[i]].id ); edge->vertices() [1] = opt.vertex( currKF.id ); Matrix<double, 6,6> information = Matrix<double, 6, 6>::Identity(); information(0, 0) = information(2,2) = 100; information(1,1) = 100; information(3,3) = information(4,4) = information(5,5) = 100; edge->setInformation( information ); edge->setMeasurement( T ); edge->setRobustKernel( _pSLAMEnd->robustKernel ); opt.addEdge( edge ); } // cout<<"checking random frames"<<endl; for (int i=0; i<10; i++) { int frame = rand() % (keyframes.size() -3 ); // if ( find(checked.begin(), checked.end(), frame) != checked.end() ) // continue; checked.push_back( frame ); KEYFRAME& p1 = keyframes[frame]; //Eigen::Isometry3d T = calcTrans( p1, currKF.frame ).T; Eigen::Matrix4f H; //bool validTrans=calcTrans(p1,currKF,H); bool validTrans=calcTrans2(p1,currKF,H); if(!validTrans) continue; Eigen::Isometry3d T(H.cast<double>()); T = T.inverse(); newseed.push_back( frame ); // cout<<"find a loop closure between kf "<<currKF.id<<" and kf "<<frame<<endl; EdgeSE3* edge = new EdgeSE3(); edge->vertices() [0] = opt.vertex(keyframes[frame].id ); edge->vertices() [1] = opt.vertex( currKF.id ); Matrix<double, 6,6> information = Matrix<double, 6, 6>::Identity(); information(0, 0) = information(2,2) = 100; information(1,1) = 100; information(3,3) = information(4,4) = information(5,5) = 100; edge->setInformation( information ); edge->setMeasurement( T ); edge->setRobustKernel( _pSLAMEnd->robustKernel ); opt.addEdge( edge ); } waitKey(10); seed = newseed; } }