// Count a nuber of polygons stored inside the vector of expolygons. // Useful for allocating space for polygons when converting expolygons to polygons. inline size_t number_polygons(const ExPolygons &expolys) { size_t n_polygons = 0; for (ExPolygons::const_iterator it = expolys.begin(); it != expolys.end(); ++ it) n_polygons += it->holes.size() + 1; return n_polygons; }
// merge all regions' slices to get islands void Layer::make_slices() { ExPolygons slices; if (m_regions.size() == 1) { // optimization: if we only have one region, take its slices slices = m_regions.front()->slices; } else { Polygons slices_p; for (LayerRegion *layerm : m_regions) polygons_append(slices_p, to_polygons(layerm->slices)); slices = union_ex(slices_p); } this->slices.expolygons.clear(); this->slices.expolygons.reserve(slices.size()); // prepare ordering points Points ordering_points; ordering_points.reserve(slices.size()); for (const ExPolygon &ex : slices) ordering_points.push_back(ex.contour.first_point()); // sort slices std::vector<Points::size_type> order; Slic3r::Geometry::chained_path(ordering_points, order); // populate slices vector for (size_t i : order) this->slices.expolygons.push_back(std::move(slices[i])); }
inline bool expolygons_contain(ExPolygons &expolys, const Point &pt) { for (ExPolygons::iterator p = expolys.begin(); p != expolys.end(); ++p) if (p->contains(pt)) return true; return false; }
inline ExPolygons to_expolygons(const SurfacesPtr &src) { ExPolygons expolygons; expolygons.reserve(src.size()); for (SurfacesPtr::const_iterator it = src.begin(); it != src.end(); ++it) expolygons.push_back((*it)->expolygon); return expolygons; }
inline void polygons_append(Polygons &dst, const ExPolygons &src) { dst.reserve(dst.size() + number_polygons(src)); for (ExPolygons::const_iterator it = src.begin(); it != src.end(); ++ it) { dst.push_back(it->contour); dst.insert(dst.end(), it->holes.begin(), it->holes.end()); } }
SurfaceCollection::operator ExPolygons() const { ExPolygons expp; expp.reserve(this->surfaces.size()); for (Surfaces::const_iterator surface = this->surfaces.begin(); surface != this->surfaces.end(); ++surface) { expp.push_back(surface->expolygon); } return expp; }
inline ExPolygons to_expolygons(Surfaces &&src) { ExPolygons expolygons; expolygons.reserve(src.size()); for (Surfaces::const_iterator it = src.begin(); it != src.end(); ++it) expolygons.emplace_back(ExPolygon(std::move(it->expolygon))); src.clear(); return expolygons; }
MotionPlanner::MotionPlanner(const ExPolygons &islands) : initialized(false) { ExPolygons expp; for (ExPolygons::const_iterator island = islands.begin(); island != islands.end(); ++island) island->simplify(SCALED_EPSILON, &expp); for (ExPolygons::const_iterator island = expp.begin(); island != expp.end(); ++island) this->islands.push_back(MotionPlannerEnv(*island)); }
inline Polygons to_polygons(const ExPolygons &src) { Polygons polygons; polygons.reserve(number_polygons(src)); for (ExPolygons::const_iterator it = src.begin(); it != src.end(); ++it) { polygons.push_back(it->contour); polygons.insert(polygons.end(), it->holes.begin(), it->holes.end()); } return polygons; }
void LayerRegion::merge_slices() { // without safety offset, artifacts are generated (GH #2494) ExPolygons expp = union_ex((Polygons)this->slices, true); this->slices.surfaces.clear(); this->slices.surfaces.reserve(expp.size()); for (ExPolygons::const_iterator expoly = expp.begin(); expoly != expp.end(); ++expoly) this->slices.surfaces.push_back(Surface(stInternal, *expoly)); }
void SLAPrint::_infill_layer(size_t i, const Fill* _fill) { Layer &layer = this->layers[i]; const float shell_thickness = this->config.get_abs_value("perimeter_extrusion_width", this->config.layer_height.value); // In order to detect what regions of this layer need to be solid, // perform an intersection with layers within the requested shell thickness. Polygons internal = layer.slices; for (size_t j = 0; j < this->layers.size(); ++j) { const Layer &other = this->layers[j]; if (abs(other.print_z - layer.print_z) > shell_thickness) continue; if (j == 0 || j == this->layers.size()-1) { internal.clear(); break; } else if (i != j) { internal = intersection(internal, other.slices); if (internal.empty()) break; } } // If we have no internal infill, just print the whole layer as a solid slice. if (internal.empty()) return; layer.solid = false; const Polygons infill = offset(layer.slices, -scale_(shell_thickness)); // Generate solid infill layer.solid_infill << diff_ex(infill, internal, true); // Generate internal infill { std::auto_ptr<Fill> fill(_fill->clone()); fill->layer_id = i; fill->z = layer.print_z; ExtrusionPath templ(erInternalInfill); templ.width = fill->spacing; const ExPolygons internal_ex = intersection_ex(infill, internal); for (ExPolygons::const_iterator it = internal_ex.begin(); it != internal_ex.end(); ++it) { Polylines polylines = fill->fill_surface(Surface(stInternal, *it)); layer.infill.append(polylines, templ); } } // Generate perimeter(s). layer.perimeters << diff_ex( layer.slices, offset(layer.slices, -scale_(shell_thickness)) ); }
vector<ExPoly> Clipping::getExPolys(const CL::PolyTree &ctree, double z, double extrusionfactor) { ExPolygons cexpolys; PolyTreeToExPolygons(&ctree, cexpolys); vector<ExPoly> expolys(cexpolys.size()); for (uint j = 0 ; j < cexpolys.size(); j++) { expolys[j].outer = getPoly(cexpolys[0].outer, z, extrusionfactor); for (uint i = 0 ; i < cexpolys[j].holes.size(); i++) expolys[j].holes.push_back(getPoly(cexpolys[j].holes[i], z, extrusionfactor)); } return expolys; }
ExtrusionEntityCollection PerimeterGenerator::_fill_gaps(double min, double max, double w, const Polygons &gaps) const { ExtrusionEntityCollection coll; min *= (1 - INSET_OVERLAP_TOLERANCE); ExPolygons curr = diff_ex( offset2(gaps, -min/2, +min/2), offset2(gaps, -max/2, +max/2), true ); Polylines polylines; for (ExPolygons::const_iterator ex = curr.begin(); ex != curr.end(); ++ex) ex->medial_axis(max, min/2, &polylines); if (polylines.empty()) return coll; #ifdef SLIC3R_DEBUG if (!curr.empty()) printf(" %zu gaps filled with extrusion width = %f\n", curr.size(), w); #endif //my $flow = $layerm->flow(FLOW_ROLE_SOLID_INFILL, 0, $w); Flow flow( w, this->layer_height, this->solid_infill_flow.nozzle_diameter ); double mm3_per_mm = flow.mm3_per_mm(); for (Polylines::const_iterator p = polylines.begin(); p != polylines.end(); ++p) { ExtrusionPath path(erGapFill); path.polyline = *p; path.mm3_per_mm = mm3_per_mm; path.width = flow.width; path.height = this->layer_height; if (p->is_valid() && p->first_point().coincides_with(p->last_point())) { // since medial_axis() now returns only Polyline objects, detect loops here ExtrusionLoop loop; loop.paths.push_back(path); coll.append(loop); } else { coll.append(path); } } return coll; }
void Clipping::AddOuterPolyNodeToExPolygons(const CL::PolyNode * polynode, ExPolygons& expolygons) { size_t cnt = expolygons.size(); expolygons.resize(cnt + 1); expolygons[cnt].outer = polynode->Contour; expolygons[cnt].holes.resize(polynode->ChildCount()); for (int i = 0; i < polynode->ChildCount(); ++i) { expolygons[cnt].holes[i] = polynode->Childs[i]->Contour; //Add outer polygons contained by (nested within) holes ... for (int j = 0; j < polynode->Childs[i]->ChildCount(); ++j) AddOuterPolyNodeToExPolygons(polynode->Childs[i]->Childs[j], expolygons); } }
void SurfaceCollection::simplify(double tolerance) { Surfaces ss; for (Surfaces::const_iterator it_s = this->surfaces.begin(); it_s != this->surfaces.end(); ++it_s) { ExPolygons expp; it_s->expolygon.simplify(tolerance, expp); for (ExPolygons::const_iterator it_e = expp.begin(); it_e != expp.end(); ++it_e) { Surface s = *it_s; s.expolygon = *it_e; ss.push_back(s); } } this->surfaces = ss; }
void MotionPlanner::initialize() { if (this->initialized) return; if (this->islands.empty()) return; // prevent initialization of empty BoundingBox ExPolygons expp; for (ExPolygons::const_iterator island = this->islands.begin(); island != this->islands.end(); ++island) { island->simplify(SCALED_EPSILON, expp); } this->islands = expp; // loop through islands in order to create inner expolygons and collect their contours this->inner.reserve(this->islands.size()); Polygons outer_holes; for (ExPolygons::const_iterator island = this->islands.begin(); island != this->islands.end(); ++island) { this->inner.push_back(ExPolygonCollection()); offset(*island, &this->inner.back().expolygons, -MP_INNER_MARGIN); outer_holes.push_back(island->contour); } // grow island contours in order to prepare holes of the outer environment // This is actually wrong because it might merge contours that are close, // thus confusing the island check in shortest_path() below //offset(outer_holes, &outer_holes, +MP_OUTER_MARGIN); // generate outer contour as bounding box of everything Points points; for (Polygons::const_iterator contour = outer_holes.begin(); contour != outer_holes.end(); ++contour) points.insert(points.end(), contour->points.begin(), contour->points.end()); BoundingBox bb(points); // grow outer contour Polygons contour; offset(bb.polygon(), &contour, +MP_OUTER_MARGIN); assert(contour.size() == 1); // make expolygon for outer environment ExPolygons outer; diff(contour, outer_holes, &outer); assert(outer.size() == 1); this->outer = outer.front(); this->graphs.resize(this->islands.size() + 1, NULL); this->initialized = true; }
Surfaces offset(const Surface &surface, const float delta, double scale, ClipperLib::JoinType joinType, double miterLimit) { // perform offset ExPolygons expp = offset_ex(surface.expolygon, delta, scale, joinType, miterLimit); // clone the input surface for each expolygon we got Surfaces retval; retval.reserve(expp.size()); for (ExPolygons::iterator it = expp.begin(); it != expp.end(); ++it) { Surface s = surface; // clone s.expolygon = *it; retval.push_back(s); } return retval; }
inline Polylines to_polylines(const ExPolygons &src) { Polylines polylines; polylines.assign(number_polygons(src), Polyline()); size_t idx = 0; for (ExPolygons::const_iterator it = src.begin(); it != src.end(); ++it) { Polyline &pl = polylines[idx ++]; pl.points = it->contour.points; pl.points.push_back(pl.points.front()); for (Polygons::const_iterator ith = it->holes.begin(); ith != it->holes.end(); ++ith) { Polyline &pl = polylines[idx ++]; pl.points = ith->points; pl.points.push_back(ith->points.front()); } } assert(idx == polylines.size()); return polylines; }
inline Lines to_lines(const ExPolygons &src) { size_t n_lines = 0; for (ExPolygons::const_iterator it_expoly = src.begin(); it_expoly != src.end(); ++ it_expoly) { n_lines += it_expoly->contour.points.size(); for (size_t i = 0; i < it_expoly->holes.size(); ++ i) n_lines += it_expoly->holes[i].points.size(); } Lines lines; lines.reserve(n_lines); for (ExPolygons::const_iterator it_expoly = src.begin(); it_expoly != src.end(); ++ it_expoly) { for (size_t i = 0; i <= it_expoly->holes.size(); ++ i) { const Points &points = ((i == 0) ? it_expoly->contour : it_expoly->holes[i - 1]).points; for (Points::const_iterator it = points.begin(); it != points.end()-1; ++it) lines.push_back(Line(*it, *(it + 1))); lines.push_back(Line(points.back(), points.front())); } } return lines; }
void MotionPlanner::initialize() { if (this->initialized) return; if (this->islands.empty()) return; // prevent initialization of empty BoundingBox // loop through islands in order to create inner expolygons and collect their contours Polygons outer_holes; for (std::vector<MotionPlannerEnv>::iterator island = this->islands.begin(); island != this->islands.end(); ++island) { // generate the internal env boundaries by shrinking the island // we'll use these inner rings for motion planning (endpoints of the Voronoi-based // graph, visibility check) in order to avoid moving too close to the boundaries island->env = offset_ex(island->island, -MP_INNER_MARGIN); // island contours are holes of our external environment outer_holes.push_back(island->island.contour); } // generate outer contour as bounding box of everything BoundingBox bb; for (Polygons::const_iterator contour = outer_holes.begin(); contour != outer_holes.end(); ++contour) bb.merge(contour->bounding_box()); // grow outer contour Polygons contour = offset(bb.polygon(), +MP_OUTER_MARGIN*2); assert(contour.size() == 1); // make expolygon for outer environment ExPolygons outer = diff_ex(contour, outer_holes); assert(outer.size() == 1); this->outer.island = outer.front(); this->outer.env = ExPolygonCollection(diff_ex(contour, offset(outer_holes, +MP_OUTER_MARGIN))); this->graphs.resize(this->islands.size() + 1, NULL); this->initialized = true; }
void LayerRegion::process_external_surfaces(const Layer* lower_layer) { const Surfaces &surfaces = this->fill_surfaces.surfaces; const double margin = scale_(EXTERNAL_INFILL_MARGIN); SurfaceCollection bottom; for (Surfaces::const_iterator surface = surfaces.begin(); surface != surfaces.end(); ++surface) { if (!surface->is_bottom()) continue; ExPolygons grown = offset_ex(surface->expolygon, +margin); /* detect bridge direction before merging grown surfaces otherwise adjacent bridges would get merged into a single one while they need different directions also, supply the original expolygon instead of the grown one, because in case of very thin (but still working) anchors, the grown expolygon would go beyond them */ double angle = -1; if (lower_layer != NULL) { BridgeDetector bd( surface->expolygon, lower_layer->slices, this->flow(frInfill, this->layer()->height, true).scaled_width() ); #ifdef SLIC3R_DEBUG printf("Processing bridge at layer %zu:\n", this->layer()->id()); #endif if (bd.detect_angle()) { angle = bd.angle; if (this->layer()->object()->config.support_material) { Polygons coverage = bd.coverage(); this->bridged.insert(this->bridged.end(), coverage.begin(), coverage.end()); this->unsupported_bridge_edges.append(bd.unsupported_edges()); } } } for (ExPolygons::const_iterator it = grown.begin(); it != grown.end(); ++it) { Surface s = *surface; s.expolygon = *it; s.bridge_angle = angle; bottom.surfaces.push_back(s); } } SurfaceCollection top; for (Surfaces::const_iterator surface = surfaces.begin(); surface != surfaces.end(); ++surface) { if (surface->surface_type != stTop) continue; // give priority to bottom surfaces ExPolygons grown = diff_ex( offset(surface->expolygon, +margin), (Polygons)bottom ); for (ExPolygons::const_iterator it = grown.begin(); it != grown.end(); ++it) { Surface s = *surface; s.expolygon = *it; top.surfaces.push_back(s); } } /* if we're slicing with no infill, we can't extend external surfaces over non-existent infill */ SurfaceCollection fill_boundaries; if (this->region()->config.fill_density.value > 0) { fill_boundaries = SurfaceCollection(surfaces); } else { for (Surfaces::const_iterator it = surfaces.begin(); it != surfaces.end(); ++it) { if (it->surface_type != stInternal) fill_boundaries.surfaces.push_back(*it); } } // intersect the grown surfaces with the actual fill boundaries SurfaceCollection new_surfaces; { // merge top and bottom in a single collection SurfaceCollection tb = top; tb.append(bottom); // group surfaces std::vector<SurfacesConstPtr> groups; tb.group(&groups); for (std::vector<SurfacesConstPtr>::const_iterator g = groups.begin(); g != groups.end(); ++g) { Polygons subject; for (SurfacesConstPtr::const_iterator s = g->begin(); s != g->end(); ++s) append_to(subject, (Polygons)**s); ExPolygons expp = intersection_ex( subject, (Polygons)fill_boundaries, true // to ensure adjacent expolygons are unified ); for (ExPolygons::const_iterator ex = expp.begin(); ex != expp.end(); ++ex) { Surface s = *g->front(); s.expolygon = *ex; new_surfaces.surfaces.push_back(s); } } } /* subtract the new top surfaces from the other non-top surfaces and re-add them */ { SurfaceCollection other; for (Surfaces::const_iterator s = surfaces.begin(); s != surfaces.end(); ++s) { if (s->surface_type != stTop && !s->is_bottom()) other.surfaces.push_back(*s); } // group surfaces std::vector<SurfacesConstPtr> groups; other.group(&groups); for (std::vector<SurfacesConstPtr>::const_iterator g = groups.begin(); g != groups.end(); ++g) { Polygons subject; for (SurfacesConstPtr::const_iterator s = g->begin(); s != g->end(); ++s) append_to(subject, (Polygons)**s); ExPolygons expp = diff_ex( subject, (Polygons)new_surfaces ); for (ExPolygons::const_iterator ex = expp.begin(); ex != expp.end(); ++ex) { Surface s = *g->front(); s.expolygon = *ex; new_surfaces.surfaces.push_back(s); } } } this->fill_surfaces = new_surfaces; }
void PerimeterGenerator::process() { // other perimeters this->_mm3_per_mm = this->perimeter_flow.mm3_per_mm(); coord_t pwidth = this->perimeter_flow.scaled_width(); coord_t pspacing = this->perimeter_flow.scaled_spacing(); // external perimeters this->_ext_mm3_per_mm = this->ext_perimeter_flow.mm3_per_mm(); coord_t ext_pwidth = this->ext_perimeter_flow.scaled_width(); coord_t ext_pspacing = this->ext_perimeter_flow.scaled_spacing(); coord_t ext_pspacing2 = this->ext_perimeter_flow.scaled_spacing(this->perimeter_flow); // overhang perimeters this->_mm3_per_mm_overhang = this->overhang_flow.mm3_per_mm(); // solid infill coord_t ispacing = this->solid_infill_flow.scaled_spacing(); coord_t gap_area_threshold = pwidth * pwidth; // Calculate the minimum required spacing between two adjacent traces. // This should be equal to the nominal flow spacing but we experiment // with some tolerance in order to avoid triggering medial axis when // some squishing might work. Loops are still spaced by the entire // flow spacing; this only applies to collapsing parts. // For ext_min_spacing we use the ext_pspacing calculated for two adjacent // external loops (which is the correct way) instead of using ext_pspacing2 // which is the spacing between external and internal, which is not correct // and would make the collapsing (thus the details resolution) dependent on // internal flow which is unrelated. coord_t min_spacing = pspacing * (1 - INSET_OVERLAP_TOLERANCE); coord_t ext_min_spacing = ext_pspacing * (1 - INSET_OVERLAP_TOLERANCE); // prepare grown lower layer slices for overhang detection if (this->lower_slices != NULL && this->config->overhangs) { // We consider overhang any part where the entire nozzle diameter is not supported by the // lower layer, so we take lower slices and offset them by half the nozzle diameter used // in the current layer double nozzle_diameter = this->print_config->nozzle_diameter.get_at(this->config->perimeter_extruder-1); this->_lower_slices_p = offset(*this->lower_slices, scale_(+nozzle_diameter/2)); } // we need to process each island separately because we might have different // extra perimeters for each one for (Surfaces::const_iterator surface = this->slices->surfaces.begin(); surface != this->slices->surfaces.end(); ++surface) { // detect how many perimeters must be generated for this island signed short loop_number = this->config->perimeters + surface->extra_perimeters; loop_number--; // 0-indexed loops Polygons gaps; Polygons last = surface->expolygon.simplify_p(SCALED_RESOLUTION); if (loop_number >= 0) { // no loops = -1 std::vector<PerimeterGeneratorLoops> contours(loop_number+1); // depth => loops std::vector<PerimeterGeneratorLoops> holes(loop_number+1); // depth => loops Polylines thin_walls; // we loop one time more than needed in order to find gaps after the last perimeter was applied for (signed short i = 0; i <= loop_number+1; ++i) { // outer loop is 0 Polygons offsets; if (i == 0) { // the minimum thickness of a single loop is: // ext_width/2 + ext_spacing/2 + spacing/2 + width/2 if (this->config->thin_walls) { offsets = offset2( last, -(ext_pwidth/2 + ext_min_spacing/2 - 1), +(ext_min_spacing/2 - 1) ); } else { offsets = offset(last, -ext_pwidth/2); } // look for thin walls if (this->config->thin_walls) { Polygons diffpp = diff( last, offset(offsets, +ext_pwidth/2), true // medial axis requires non-overlapping geometry ); // the following offset2 ensures almost nothing in @thin_walls is narrower than $min_width // (actually, something larger than that still may exist due to mitering or other causes) coord_t min_width = ext_pwidth / 2; ExPolygons expp = offset2_ex(diffpp, -min_width/2, +min_width/2); // the maximum thickness of our thin wall area is equal to the minimum thickness of a single loop Polylines pp; for (ExPolygons::const_iterator ex = expp.begin(); ex != expp.end(); ++ex) ex->medial_axis(ext_pwidth + ext_pspacing2, min_width, &pp); double threshold = ext_pwidth * 2; for (Polylines::const_iterator p = pp.begin(); p != pp.end(); ++p) { if (p->length() > threshold) { thin_walls.push_back(*p); } } #ifdef DEBUG printf(" %zu thin walls detected\n", thin_walls.size()); #endif /* if (false) { require "Slic3r/SVG.pm"; Slic3r::SVG::output( "medial_axis.svg", no_arrows => 1, #expolygons => \@expp, polylines => \@thin_walls, ); } */ } } else { coord_t distance = (i == 1) ? ext_pspacing2 : pspacing; if (this->config->thin_walls) { offsets = offset2( last, -(distance + min_spacing/2 - 1), +(min_spacing/2 - 1) ); } else { offsets = offset( last, -distance ); } // look for gaps if (this->config->gap_fill_speed.value > 0 && this->config->fill_density.value > 0) { // not using safety offset here would "detect" very narrow gaps // (but still long enough to escape the area threshold) that gap fill // won't be able to fill but we'd still remove from infill area ExPolygons diff_expp = diff_ex( offset(last, -0.5*distance), offset(offsets, +0.5*distance + 10) // safety offset ); for (ExPolygons::const_iterator ex = diff_expp.begin(); ex != diff_expp.end(); ++ex) { if (fabs(ex->area()) >= gap_area_threshold) { Polygons pp = *ex; gaps.insert(gaps.end(), pp.begin(), pp.end()); } } } } if (offsets.empty()) break; if (i > loop_number) break; // we were only looking for gaps this time last = offsets; for (Polygons::const_iterator polygon = offsets.begin(); polygon != offsets.end(); ++polygon) { PerimeterGeneratorLoop loop(*polygon, i); loop.is_contour = polygon->is_counter_clockwise(); if (loop.is_contour) { contours[i].push_back(loop); } else { holes[i].push_back(loop); } } } // nest loops: holes first for (signed short d = 0; d <= loop_number; ++d) { PerimeterGeneratorLoops &holes_d = holes[d]; // loop through all holes having depth == d for (signed short i = 0; i < holes_d.size(); ++i) { const PerimeterGeneratorLoop &loop = holes_d[i]; // find the hole loop that contains this one, if any for (signed short t = d+1; t <= loop_number; ++t) { for (signed short j = 0; j < holes[t].size(); ++j) { PerimeterGeneratorLoop &candidate_parent = holes[t][j]; if (candidate_parent.polygon.contains(loop.polygon.first_point())) { candidate_parent.children.push_back(loop); holes_d.erase(holes_d.begin() + i); --i; goto NEXT_LOOP; } } } // if no hole contains this hole, find the contour loop that contains it for (signed short t = loop_number; t >= 0; --t) { for (signed short j = 0; j < contours[t].size(); ++j) { PerimeterGeneratorLoop &candidate_parent = contours[t][j]; if (candidate_parent.polygon.contains(loop.polygon.first_point())) { candidate_parent.children.push_back(loop); holes_d.erase(holes_d.begin() + i); --i; goto NEXT_LOOP; } } } NEXT_LOOP: ; } } // nest contour loops for (signed short d = loop_number; d >= 1; --d) { PerimeterGeneratorLoops &contours_d = contours[d]; // loop through all contours having depth == d for (signed short i = 0; i < contours_d.size(); ++i) { const PerimeterGeneratorLoop &loop = contours_d[i]; // find the contour loop that contains it for (signed short t = d-1; t >= 0; --t) { for (signed short j = 0; j < contours[t].size(); ++j) { PerimeterGeneratorLoop &candidate_parent = contours[t][j]; if (candidate_parent.polygon.contains(loop.polygon.first_point())) { candidate_parent.children.push_back(loop); contours_d.erase(contours_d.begin() + i); --i; goto NEXT_CONTOUR; } } } NEXT_CONTOUR: ; } } // at this point, all loops should be in contours[0] ExtrusionEntityCollection entities = this->_traverse_loops(contours.front(), thin_walls); // if brim will be printed, reverse the order of perimeters so that // we continue inwards after having finished the brim // TODO: add test for perimeter order if (this->config->external_perimeters_first || (this->layer_id == 0 && this->print_config->brim_width.value > 0)) entities.reverse(); // append perimeters for this slice as a collection if (!entities.empty()) this->loops->append(entities); } // fill gaps if (!gaps.empty()) { /* if (false) { require "Slic3r/SVG.pm"; Slic3r::SVG::output( "gaps.svg", expolygons => union_ex(\@gaps), ); } */ // where $pwidth < thickness < 2*$pspacing, infill with width = 2*$pwidth // where 0.1*$pwidth < thickness < $pwidth, infill with width = 1*$pwidth std::vector<PerimeterGeneratorGapSize> gap_sizes; gap_sizes.push_back(PerimeterGeneratorGapSize(pwidth, 2*pspacing, 2*pwidth)); gap_sizes.push_back(PerimeterGeneratorGapSize(0.1*pwidth, pwidth, 1*pwidth)); for (std::vector<PerimeterGeneratorGapSize>::const_iterator gap_size = gap_sizes.begin(); gap_size != gap_sizes.end(); ++gap_size) { ExtrusionEntityCollection gap_fill = this->_fill_gaps(gap_size->min, gap_size->max, unscale(gap_size->width), gaps); this->gap_fill->append(gap_fill.entities); // Make sure we don't infill narrow parts that are already gap-filled // (we only consider this surface's gaps to reduce the diff() complexity). // Growing actual extrusions ensures that gaps not filled by medial axis // are not subtracted from fill surfaces (they might be too short gaps // that medial axis skips but infill might join with other infill regions // and use zigzag). coord_t dist = gap_size->width/2; Polygons filled; for (ExtrusionEntitiesPtr::const_iterator it = gap_fill.entities.begin(); it != gap_fill.entities.end(); ++it) { Polygons f; offset((*it)->as_polyline(), &f, dist); filled.insert(filled.end(), f.begin(), f.end()); } last = diff(last, filled); gaps = diff(gaps, filled); // prevent more gap fill here } } // create one more offset to be used as boundary for fill // we offset by half the perimeter spacing (to get to the actual infill boundary) // and then we offset back and forth by half the infill spacing to only consider the // non-collapsing regions coord_t inset = 0; if (loop_number == 0) { // one loop inset += ext_pspacing2/2; } else if (loop_number > 0) { // two or more loops inset += pspacing/2; } // only apply infill overlap if we actually have one perimeter if (inset > 0) inset -= this->config->get_abs_value("infill_overlap", inset + ispacing/2); { ExPolygons expp = union_ex(last); // simplify infill contours according to resolution Polygons pp; for (ExPolygons::const_iterator ex = expp.begin(); ex != expp.end(); ++ex) ex->simplify_p(SCALED_RESOLUTION, &pp); // collapse too narrow infill areas coord_t min_perimeter_infill_spacing = ispacing * (1 - INSET_OVERLAP_TOLERANCE); expp = offset2_ex( pp, -inset -min_perimeter_infill_spacing/2, +min_perimeter_infill_spacing/2 ); // append infill areas to fill_surfaces for (ExPolygons::const_iterator ex = expp.begin(); ex != expp.end(); ++ex) this->fill_surfaces->surfaces.push_back(Surface(stInternal, *ex)); // use a bogus surface type } } }
void SLAPrint::write_svg(const std::string &outputfile) const { const Sizef3 size = this->bb.size(); const double support_material_radius = sm_pillars_radius(); FILE* f = fopen(outputfile.c_str(), "w"); fprintf(f, "<?xml version=\"1.0\" encoding=\"UTF-8\" standalone=\"yes\"?>\n" "<!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 1.0//EN\" \"http://www.w3.org/TR/2001/REC-SVG-20010904/DTD/svg10.dtd\">\n" "<svg width=\"%f\" height=\"%f\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:svg=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\" xmlns:slic3r=\"http://slic3r.org/namespaces/slic3r\" viewport-fill=\"black\">\n" "<!-- Generated using Slic3r %s http://slic3r.org/ -->\n" , size.x, size.y, SLIC3R_VERSION); for (size_t i = 0; i < this->layers.size(); ++i) { const Layer &layer = this->layers[i]; fprintf(f, "\t<g id=\"layer%zu\" slic3r:z=\"%0.4f\" slic3r:slice-z=\"%0.4f\" slic3r:layer-height=\"%0.4f\">\n", i, layer.print_z, layer.slice_z, layer.print_z - ((i == 0) ? 0. : this->layers[i-1].print_z) ); if (layer.solid) { const ExPolygons &slices = layer.slices.expolygons; for (ExPolygons::const_iterator it = slices.begin(); it != slices.end(); ++it) { std::string pd = this->_SVG_path_d(*it); fprintf(f,"\t\t<path d=\"%s\" style=\"fill: %s; stroke: %s; stroke-width: %s; fill-type: evenodd\" slic3r:area=\"%0.4f\" />\n", pd.c_str(), "white", "black", "0", unscale(unscale(it->area())) ); } } else { // Perimeters. for (ExPolygons::const_iterator it = layer.perimeters.expolygons.begin(); it != layer.perimeters.expolygons.end(); ++it) { std::string pd = this->_SVG_path_d(*it); fprintf(f,"\t\t<path d=\"%s\" style=\"fill: %s; stroke: %s; stroke-width: %s; fill-type: evenodd\" slic3r:type=\"perimeter\" />\n", pd.c_str(), "white", "black", "0" ); } // Solid infill. for (ExPolygons::const_iterator it = layer.solid_infill.expolygons.begin(); it != layer.solid_infill.expolygons.end(); ++it) { std::string pd = this->_SVG_path_d(*it); fprintf(f,"\t\t<path d=\"%s\" style=\"fill: %s; stroke: %s; stroke-width: %s; fill-type: evenodd\" slic3r:type=\"infill\" />\n", pd.c_str(), "white", "black", "0" ); } // Internal infill. for (ExtrusionEntitiesPtr::const_iterator it = layer.infill.entities.begin(); it != layer.infill.entities.end(); ++it) { const ExPolygons infill = union_ex((*it)->grow()); for (ExPolygons::const_iterator e = infill.begin(); e != infill.end(); ++e) { std::string pd = this->_SVG_path_d(*e); fprintf(f,"\t\t<path d=\"%s\" style=\"fill: %s; stroke: %s; stroke-width: %s; fill-type: evenodd\" slic3r:type=\"infill\" />\n", pd.c_str(), "white", "black", "0" ); } } } // don't print support material in raft layers if (i >= (size_t)this->config.raft_layers) { // look for support material pillars belonging to this layer for (std::vector<SupportPillar>::const_iterator it = this->sm_pillars.begin(); it != this->sm_pillars.end(); ++it) { if (!(it->top_layer >= i && it->bottom_layer <= i)) continue; // generate a conic tip float radius = fminf( support_material_radius, (it->top_layer - i + 1) * this->config.layer_height.value ); fprintf(f,"\t\t<circle cx=\"%f\" cy=\"%f\" r=\"%f\" stroke-width=\"0\" fill=\"white\" slic3r:type=\"support\" />\n", unscale(it->x) - this->bb.min.x, size.y - (unscale(it->y) - this->bb.min.y), radius ); } } fprintf(f,"\t</g>\n"); } fprintf(f,"</svg>\n"); }
static inline void set(ExPolygons& expolygons, input_iterator_type input_begin, input_iterator_type input_end) { expolygons.assign(input_begin, input_end); }
static inline iterator_type end(const ExPolygons& polygon_set) { return polygon_set.end(); }
static inline iterator_type begin(const ExPolygons& polygon_set) { return polygon_set.begin(); }
void SVG::draw(const ExPolygons &expolygons, std::string fill) { for (ExPolygons::const_iterator it = expolygons.begin(); it != expolygons.end(); ++it) this->draw(*it, fill); }
void BridgeDetector::coverage(double angle, Polygons* coverage) const { // Clone our expolygon and rotate it so that we work with vertical lines. ExPolygon expolygon = this->expolygon; expolygon.rotate(PI/2.0 - angle, Point(0,0)); /* Outset the bridge expolygon by half the amount we used for detecting anchors; we'll use this one to generate our trapezoids and be sure that their vertices are inside the anchors and not on their contours leading to false negatives. */ ExPolygons grown; offset(expolygon, &grown, this->extrusion_width/2.0); // Compute trapezoids according to a vertical orientation Polygons trapezoids; for (ExPolygons::const_iterator it = grown.begin(); it != grown.end(); ++it) it->get_trapezoids2(&trapezoids, PI/2.0); // get anchors, convert them to Polygons and rotate them too Polygons anchors; for (ExPolygons::const_iterator anchor = this->_anchors.begin(); anchor != this->_anchors.end(); ++anchor) { Polygons pp = *anchor; for (Polygons::iterator p = pp.begin(); p != pp.end(); ++p) p->rotate(PI/2.0 - angle, Point(0,0)); anchors.insert(anchors.end(), pp.begin(), pp.end()); } Polygons covered; for (Polygons::const_iterator trapezoid = trapezoids.begin(); trapezoid != trapezoids.end(); ++trapezoid) { Lines lines = trapezoid->lines(); Lines supported; intersection(lines, anchors, &supported); // not nice, we need a more robust non-numeric check for (size_t i = 0; i < supported.size(); ++i) { if (supported[i].length() < this->extrusion_width) { supported.erase(supported.begin() + i); i--; } } if (supported.size() >= 2) covered.push_back(*trapezoid); } // merge trapezoids and rotate them back Polygons _coverage; union_(covered, &_coverage); for (Polygons::iterator p = _coverage.begin(); p != _coverage.end(); ++p) p->rotate(-(PI/2.0 - angle), Point(0,0)); // intersect trapezoids with actual bridge area to remove extra margins // and append it to result intersection(_coverage, this->expolygon, coverage); /* if (0) { my @lines = map @{$_->lines}, @$trapezoids; $_->rotate(-(PI/2 - $angle), [0,0]) for @lines; require "Slic3r/SVG.pm"; Slic3r::SVG::output( "coverage_" . rad2deg($angle) . ".svg", expolygons => [$self->expolygon], green_expolygons => $self->_anchors, red_expolygons => $coverage, lines => \@lines, ); } */ }
void Clipping::PolyTreeToExPolygons(const CL::PolyTree * polytree, ExPolygons& expolygons) { expolygons.clear(); for (int i = 0; i < polytree->ChildCount(); ++i) AddOuterPolyNodeToExPolygons(polytree->Childs[i], expolygons); }
void SVG::draw_outline(const ExPolygons &expolygons, std::string stroke_outer, std::string stroke_holes, coordf_t stroke_width) { for (ExPolygons::const_iterator it = expolygons.begin(); it != expolygons.end(); ++ it) draw_outline(*it, stroke_outer, stroke_holes, stroke_width); }