int main(int argc, char *argv[]) { // Declaration of variables ExRootConfReader *confReader = 0; Delphes *modularDelphes = 0; DelphesFactory *factory = 0; TObjArray *allParticleOutputArray = 0; TObjArray *stableParticleOutputArray = 0; TObjArray *partonOutputArray = 0; Int_t event; TObjArray *inputArray = 0; TIterator *inputIterator = 0; Candidate *candidate = 0; TLorentzVector momentum; JetDefinition *definition = 0; vector<PseudoJet> inputList, outputList; PseudoJet jet; gROOT->SetBatch(); int appargc = 1; char appName[] = "ExternalFastJetBasic"; char *appargv[] = {appName}; TApplication app(appName, &appargc, appargv); if(argc != 2) { cout << " Usage: " << appName << " config_file" << endl; cout << " config_file - configuration file in Tcl format." << endl; return 1; } try { // Initialization confReader = new ExRootConfReader; confReader->ReadFile(argv[1]); modularDelphes = new Delphes("Delphes"); modularDelphes->SetConfReader(confReader); factory = modularDelphes->GetFactory(); allParticleOutputArray = modularDelphes->ExportArray("allParticles"); stableParticleOutputArray = modularDelphes->ExportArray("stableParticles"); partonOutputArray = modularDelphes->ExportArray("partons"); modularDelphes->InitTask(); // fastjet definition ClusterSequence::print_banner(); definition = new JetDefinition(antikt_algorithm, 0.5); // Define your input candidates to fastjet (by default particle-flow objects). // If you want pure calorimeter towers change "EFlowMerger/eflow" into "Calorimeter/towers": inputArray = modularDelphes->ImportArray("EFlowMerger/eflow"); inputIterator = inputArray->MakeIterator(); // Event loop for(event = 0; event < NEVENTS; ++event) { modularDelphes->Clear(); // convert EVENT input array into Delphes internal format ConvertInput(event, factory, allParticleOutputArray, stableParticleOutputArray, partonOutputArray); // run Delphes reconstruction modularDelphes->ProcessTask(); inputList.clear(); inputIterator->Reset(); // pass delphes candidates to fastjet clustering while((candidate = static_cast<Candidate*>(inputIterator->Next()))) { momentum = candidate->Momentum; jet = PseudoJet(momentum.Px(), momentum.Py(), momentum.Pz(), momentum.E()); inputList.push_back(jet); } // run clustering ClusterSequence sequence(inputList, *definition); outputList.clear(); outputList = sorted_by_pt(sequence.inclusive_jets(0.0)); // tell the user what was done // - the description of the algorithm used // - show the inclusive jets as // {index, rapidity, phi, pt} //---------------------------------------------------------- cout << "Ran " << definition->description() << endl; // label the columns printf("%5s %15s %15s %15s\n","jet #", "rapidity", "phi", "pt"); // print out the details for each jet for (unsigned int i = 0; i < outputList.size(); i++) { printf("%5u %15.8f %15.8f %15.8f\n", i, outputList[i].rap(), outputList[i].phi(), outputList[i].perp()); } } // Finalization modularDelphes->FinishTask(); delete modularDelphes; delete confReader; return 0; } catch(runtime_error &e) { cerr << "** ERROR: " << e.what() << endl; return 1; } }
int main(int argc, char *argv[]) { char appName[] = "DelphesPythia8"; stringstream message; TFile *outputFile = 0; TStopwatch readStopWatch, procStopWatch; ExRootTreeWriter *treeWriter = 0; ExRootTreeBranch *branchEvent = 0; ExRootConfReader *confReader = 0; Delphes *modularDelphes = 0; DelphesFactory *factory = 0; TObjArray *stableParticleOutputArray = 0, *allParticleOutputArray = 0, *partonOutputArray = 0; Long64_t eventCounter, errorCounter; Long64_t numberOfEvents, timesAllowErrors; Pythia8::Pythia *pythia = 0; if(argc != 4) { cout << " Usage: " << appName << " config_file" << " pythia_card" << " output_file" << endl; cout << " config_file - configuration file in Tcl format," << endl; cout << " pythia_card - Pythia8 configuration file," << endl; cout << " output_file - output file in ROOT format." << endl; return 1; } signal(SIGINT, SignalHandler); gROOT->SetBatch(); int appargc = 1; char *appargv[] = {appName}; TApplication app(appName, &appargc, appargv); try { outputFile = TFile::Open(argv[3], "CREATE"); if(outputFile == NULL) { message << "can't create output file " << argv[3]; throw runtime_error(message.str()); } treeWriter = new ExRootTreeWriter(outputFile, "Delphes"); branchEvent = treeWriter->NewBranch("Event", HepMCEvent::Class()); confReader = new ExRootConfReader; confReader->ReadFile(argv[1]); modularDelphes = new Delphes("Delphes"); modularDelphes->SetConfReader(confReader); modularDelphes->SetTreeWriter(treeWriter); factory = modularDelphes->GetFactory(); allParticleOutputArray = modularDelphes->ExportArray("allParticles"); stableParticleOutputArray = modularDelphes->ExportArray("stableParticles"); partonOutputArray = modularDelphes->ExportArray("partons"); modularDelphes->InitTask(); // Initialize pythia pythia = new Pythia8::Pythia; if(pythia == NULL) { throw runtime_error("can't create Pythia instance"); } // Read in commands from configuration file pythia->readFile(argv[2]); // Extract settings to be used in the main program numberOfEvents = pythia->mode("Main:numberOfEvents"); timesAllowErrors = pythia->mode("Main:timesAllowErrors"); pythia->init(); // ExRootProgressBar progressBar(numberOfEvents - 1); ExRootProgressBar progressBar(-1); // Loop over all events errorCounter = 0; treeWriter->Clear(); modularDelphes->Clear(); readStopWatch.Start(); for(eventCounter = 0; eventCounter < numberOfEvents && !interrupted; ++eventCounter) { if(!pythia->next()) { // If failure because reached end of file then exit event loop if (pythia->info.atEndOfFile()) { cerr << "Aborted since reached end of Les Houches Event File" << endl; break; } // First few failures write off as "acceptable" errors, then quit if (++errorCounter < timesAllowErrors) continue; cerr << "Event generation aborted prematurely, owing to error!" << endl; break; } readStopWatch.Stop(); procStopWatch.Start(); ConvertInput(eventCounter, pythia, branchEvent, factory, allParticleOutputArray, stableParticleOutputArray, partonOutputArray, &readStopWatch, &procStopWatch); modularDelphes->ProcessTask(); procStopWatch.Stop(); treeWriter->Fill(); treeWriter->Clear(); modularDelphes->Clear(); readStopWatch.Start(); progressBar.Update(eventCounter, eventCounter); } progressBar.Update(eventCounter, eventCounter, kTRUE); progressBar.Finish(); pythia->statistics(); modularDelphes->FinishTask(); treeWriter->Write(); cout << "** Exiting..." << endl; delete pythia; delete modularDelphes; delete confReader; delete treeWriter; delete outputFile; return 0; } catch(runtime_error &e) { if(treeWriter) delete treeWriter; if(outputFile) delete outputFile; cerr << "** ERROR: " << e.what() << endl; return 1; } }
int main(int argc, char *argv[]) { char appName[] = "DelphesLHEF"; stringstream message; FILE *inputFile = 0; TFile *outputFile = 0; TStopwatch readStopWatch, procStopWatch; ExRootTreeWriter *treeWriter = 0; ExRootTreeBranch *branchEvent = 0, *branchWeight = 0; ExRootConfReader *confReader = 0; Delphes *modularDelphes = 0; DelphesFactory *factory = 0; TObjArray *stableParticleOutputArray = 0, *allParticleOutputArray = 0, *partonOutputArray = 0; DelphesLHEFReader *reader = 0; Int_t i, maxEvents, skipEvents; Long64_t length, eventCounter; if(argc < 3) { cout << " Usage: " << appName << " config_file" << " output_file" << " [input_file(s)]" << endl; cout << " config_file - configuration file in Tcl format," << endl; cout << " output_file - output file in ROOT format," << endl; cout << " input_file(s) - input file(s) in LHEF format," << endl; cout << " with no input_file, or when input_file is -, read standard input." << endl; return 1; } signal(SIGINT, SignalHandler); gROOT->SetBatch(); int appargc = 1; char *appargv[] = {appName}; TApplication app(appName, &appargc, appargv); try { outputFile = TFile::Open(argv[2], "CREATE"); if(outputFile == NULL) { message << "can't create output file " << argv[2]; throw runtime_error(message.str()); } treeWriter = new ExRootTreeWriter(outputFile, "Delphes"); branchEvent = treeWriter->NewBranch("Event", LHEFEvent::Class()); branchWeight = treeWriter->NewBranch("Weight", Weight::Class()); confReader = new ExRootConfReader; confReader->ReadFile(argv[1]); maxEvents = confReader->GetInt("::MaxEvents", 0); skipEvents = confReader->GetInt("::SkipEvents", 0); if(maxEvents < 0) { throw runtime_error("MaxEvents must be zero or positive"); } if(skipEvents < 0) { throw runtime_error("SkipEvents must be zero or positive"); } modularDelphes = new Delphes("Delphes"); modularDelphes->SetConfReader(confReader); modularDelphes->SetTreeWriter(treeWriter); factory = modularDelphes->GetFactory(); allParticleOutputArray = modularDelphes->ExportArray("allParticles"); stableParticleOutputArray = modularDelphes->ExportArray("stableParticles"); partonOutputArray = modularDelphes->ExportArray("partons"); reader = new DelphesLHEFReader; modularDelphes->InitTask(); i = 3; do { if(interrupted) break; if(i == argc || strncmp(argv[i], "-", 2) == 0) { cout << "** Reading standard input" << endl; inputFile = stdin; length = -1; } else { cout << "** Reading " << argv[i] << endl; inputFile = fopen(argv[i], "r"); if(inputFile == NULL) { message << "can't open " << argv[i]; throw runtime_error(message.str()); } fseek(inputFile, 0L, SEEK_END); length = ftello(inputFile); fseek(inputFile, 0L, SEEK_SET); if(length <= 0) { fclose(inputFile); ++i; continue; } } reader->SetInputFile(inputFile); ExRootProgressBar progressBar(length); // Loop over all objects eventCounter = 0; treeWriter->Clear(); modularDelphes->Clear(); reader->Clear(); readStopWatch.Start(); while((maxEvents <= 0 || eventCounter - skipEvents < maxEvents) && reader->ReadBlock(factory, allParticleOutputArray, stableParticleOutputArray, partonOutputArray) && !interrupted) { if(reader->EventReady()) { ++eventCounter; readStopWatch.Stop(); if(eventCounter > skipEvents) { readStopWatch.Stop(); procStopWatch.Start(); modularDelphes->ProcessTask(); procStopWatch.Stop(); reader->AnalyzeEvent(branchEvent, eventCounter, &readStopWatch, &procStopWatch); reader->AnalyzeWeight(branchWeight); treeWriter->Fill(); treeWriter->Clear(); } modularDelphes->Clear(); reader->Clear(); readStopWatch.Start(); } progressBar.Update(ftello(inputFile), eventCounter); } fseek(inputFile, 0L, SEEK_END); progressBar.Update(ftello(inputFile), eventCounter, kTRUE); progressBar.Finish(); if(inputFile != stdin) fclose(inputFile); ++i; } while(i < argc); modularDelphes->FinishTask(); treeWriter->Write(); cout << "** Exiting..." << endl; delete reader; delete modularDelphes; delete confReader; delete treeWriter; delete outputFile; return 0; } catch(runtime_error &e) { if(treeWriter) delete treeWriter; if(outputFile) delete outputFile; cerr << "** ERROR: " << e.what() << endl; return 1; } }
int main(int argc, char *argv[]) { char appName[] = "DelphesCMSFWLite"; stringstream message; TFile *inputFile = 0; TFile *outputFile = 0; TStopwatch eventStopWatch; ExRootTreeWriter *treeWriter = 0; ExRootTreeBranch *branchEvent = 0, *branchRwgt = 0; ExRootConfReader *confReader = 0; Delphes *modularDelphes = 0; DelphesFactory *factory = 0; TObjArray *allParticleOutputArray = 0, *stableParticleOutputArray = 0, *partonOutputArray = 0; Int_t i; Long64_t eventCounter, numberOfEvents; if(argc < 4) { cout << " Usage: " << appName << " config_file" << " output_file" << " input_file(s)" << endl; cout << " config_file - configuration file in Tcl format," << endl; cout << " output_file - output file in ROOT format," << endl; cout << " input_file(s) - input file(s) in ROOT format." << endl; return 1; } signal(SIGINT, SignalHandler); gROOT->SetBatch(); int appargc = 1; char *appargv[] = {appName}; TApplication app(appName, &appargc, appargv); FWLiteEnabler::enable(); try { outputFile = TFile::Open(argv[2], "CREATE"); if(outputFile == NULL) { message << "can't open " << argv[2] << endl; throw runtime_error(message.str()); } treeWriter = new ExRootTreeWriter(outputFile, "Delphes"); branchEvent = treeWriter->NewBranch("Event", HepMCEvent::Class()); branchRwgt = treeWriter->NewBranch("Rwgt", Weight::Class()); confReader = new ExRootConfReader; confReader->ReadFile(argv[1]); modularDelphes = new Delphes("Delphes"); modularDelphes->SetConfReader(confReader); modularDelphes->SetTreeWriter(treeWriter); factory = modularDelphes->GetFactory(); allParticleOutputArray = modularDelphes->ExportArray("allParticles"); stableParticleOutputArray = modularDelphes->ExportArray("stableParticles"); partonOutputArray = modularDelphes->ExportArray("partons"); modularDelphes->InitTask(); for(i = 3; i < argc && !interrupted; ++i) { cout << "** Reading " << argv[i] << endl; inputFile = TFile::Open(argv[i]); if(inputFile == NULL) { message << "can't open " << argv[i] << endl; throw runtime_error(message.str()); } fwlite::Event event(inputFile); numberOfEvents = event.size(); if(numberOfEvents <= 0) continue; // ExRootProgressBar progressBar(numberOfEvents - 1); ExRootProgressBar progressBar(-1); // Loop over all objects eventCounter = 0; modularDelphes->Clear(); treeWriter->Clear(); for(event.toBegin(); !event.atEnd() && !interrupted; ++event) { ConvertInput(event, eventCounter, branchEvent, branchRwgt, factory, allParticleOutputArray, stableParticleOutputArray, partonOutputArray); modularDelphes->ProcessTask(); treeWriter->Fill(); modularDelphes->Clear(); treeWriter->Clear(); progressBar.Update(eventCounter, eventCounter); ++eventCounter; } progressBar.Update(eventCounter, eventCounter, kTRUE); progressBar.Finish(); inputFile->Close(); } modularDelphes->FinishTask(); treeWriter->Write(); cout << "** Exiting..." << endl; delete modularDelphes; delete confReader; delete treeWriter; delete outputFile; return 0; } catch(runtime_error &e) { if(treeWriter) delete treeWriter; if(outputFile) delete outputFile; cerr << "** ERROR: " << e.what() << endl; return 1; } }
int main(int argc, char *argv[]) { if(argc != 3) { cout << " Usage: ./CaloGrid [detector card] [calo name]" << endl; cout << "Example: ./CaloGrid cards/delphes_card_CMS.tcl ECal" << endl; return 0; } TString card(argv[1]); ExRootConfReader *confReader = new ExRootConfReader; confReader->ReadFile(card); std::vector<std::string> calorimeters_; std::map<std::string, std::set<std::pair<Double_t, Int_t> > > caloBinning_; std::string s(argv[2]); std::replace(s.begin(), s.end(), ',', ' '); std::istringstream stream(s); std::string word; while(stream >> word) calorimeters_.push_back(word); caloBinning_.clear(); // calo binning TCanvas c("", "", 1600, 838); gPad->SetLeftMargin(0.16); gPad->SetTopMargin(0.16); gPad->SetBottomMargin(0.20); gStyle->SetOptStat(0000000); gStyle->SetTextFont(132); TH2F h2("h2", "", 1, -6, 6, 1, 0, 6.28); h2.GetXaxis()->SetTitle("#eta"); h2.GetYaxis()->SetTitle("#phi"); h2.GetXaxis()->SetTitleFont(132); h2.GetYaxis()->SetTitleFont(132); h2.GetZaxis()->SetTitleFont(132); h2.GetXaxis()->SetLabelFont(132); h2.GetYaxis()->SetLabelFont(132); h2.GetXaxis()->SetTitleOffset(1.4); h2.GetYaxis()->SetTitleOffset(1.1); h2.GetXaxis()->SetLabelOffset(0.02); h2.GetYaxis()->SetLabelOffset(0.02); h2.GetXaxis()->SetTitleSize(0.06); h2.GetYaxis()->SetTitleSize(0.06); h2.GetXaxis()->SetLabelSize(0.06); h2.GetYaxis()->SetLabelSize(0.06); h2.GetXaxis()->SetTickLength(0.0); h2.GetYaxis()->SetTickLength(0.0); h2.Draw(); // fake loop just keeping it for convenience right now for(std::vector<std::string>::const_iterator calo = calorimeters_.begin(); calo != calorimeters_.end(); ++calo) { //first entry is eta bin, second is number of phi bins set<pair<Double_t, Int_t> > caloBinning; ExRootConfParam paramEtaBins, paramPhiBins; ExRootConfParam param = confReader->GetParam(Form("%s::EtaPhiBins", calo->c_str())); Int_t size = param.GetSize(); for(int i = 0; i < size / 2; ++i) { paramEtaBins = param[i * 2]; paramPhiBins = param[i * 2 + 1]; assert(paramEtaBins.GetSize() == 1); caloBinning.insert(std::make_pair(paramEtaBins[0].GetDouble(), paramPhiBins.GetSize() - 1)); } caloBinning_[*calo] = caloBinning; TLine *liney; TLine *linex; //loop over calo binning std::set<std::pair<Double_t, Int_t> >::iterator it; Int_t n = -1; for(it = caloBinning.begin(); it != caloBinning.end(); ++it) { n++; if(debug) cout << "-----------------------" << endl; if(debug) cout << it->first << "," << it->second << endl; liney = new TLine(it->first, 0, it->first, 6.28); liney->SetLineColor(kRed + 3); liney->Draw(); set<std::pair<Double_t, Int_t> >::iterator it2 = it; it2--; for(int j = 0; j <= it->second; j++) { Double_t yval0 = 0 + 6.28 * j / it->second; if(debug) cout << it2->first << "," << yval0 << "," << it->first << "," << yval0 << endl; linex = new TLine(it->first, yval0, it2->first, yval0); linex->SetLineColor(kRed + 3); linex->Draw(); } } } TString text = TString(s); TText *th1 = new TText(5.00, 6.45, text); th1->SetTextAlign(31); th1->SetTextFont(132); th1->SetTextSize(0.075); th1->Draw(); TString output = TString(s); c.Print(output + ".png", "png"); c.Print(output + ".pdf", "pdf"); }