int main(int argc, char *argv[]) { char appName[] = "DelphesPythia8"; stringstream message; TFile *outputFile = 0; TStopwatch readStopWatch, procStopWatch; ExRootTreeWriter *treeWriter = 0; ExRootTreeBranch *branchEvent = 0; ExRootConfReader *confReader = 0; Delphes *modularDelphes = 0; DelphesFactory *factory = 0; TObjArray *stableParticleOutputArray = 0, *allParticleOutputArray = 0, *partonOutputArray = 0; Long64_t eventCounter, errorCounter; Long64_t numberOfEvents, timesAllowErrors; Pythia8::Pythia *pythia = 0; if(argc != 4) { cout << " Usage: " << appName << " config_file" << " pythia_card" << " output_file" << endl; cout << " config_file - configuration file in Tcl format," << endl; cout << " pythia_card - Pythia8 configuration file," << endl; cout << " output_file - output file in ROOT format." << endl; return 1; } signal(SIGINT, SignalHandler); gROOT->SetBatch(); int appargc = 1; char *appargv[] = {appName}; TApplication app(appName, &appargc, appargv); try { outputFile = TFile::Open(argv[3], "CREATE"); if(outputFile == NULL) { message << "can't create output file " << argv[3]; throw runtime_error(message.str()); } treeWriter = new ExRootTreeWriter(outputFile, "Delphes"); branchEvent = treeWriter->NewBranch("Event", HepMCEvent::Class()); confReader = new ExRootConfReader; confReader->ReadFile(argv[1]); modularDelphes = new Delphes("Delphes"); modularDelphes->SetConfReader(confReader); modularDelphes->SetTreeWriter(treeWriter); factory = modularDelphes->GetFactory(); allParticleOutputArray = modularDelphes->ExportArray("allParticles"); stableParticleOutputArray = modularDelphes->ExportArray("stableParticles"); partonOutputArray = modularDelphes->ExportArray("partons"); modularDelphes->InitTask(); // Initialize pythia pythia = new Pythia8::Pythia; if(pythia == NULL) { throw runtime_error("can't create Pythia instance"); } // Read in commands from configuration file pythia->readFile(argv[2]); // Extract settings to be used in the main program numberOfEvents = pythia->mode("Main:numberOfEvents"); timesAllowErrors = pythia->mode("Main:timesAllowErrors"); pythia->init(); // ExRootProgressBar progressBar(numberOfEvents - 1); ExRootProgressBar progressBar(-1); // Loop over all events errorCounter = 0; treeWriter->Clear(); modularDelphes->Clear(); readStopWatch.Start(); for(eventCounter = 0; eventCounter < numberOfEvents && !interrupted; ++eventCounter) { if(!pythia->next()) { // If failure because reached end of file then exit event loop if (pythia->info.atEndOfFile()) { cerr << "Aborted since reached end of Les Houches Event File" << endl; break; } // First few failures write off as "acceptable" errors, then quit if (++errorCounter < timesAllowErrors) continue; cerr << "Event generation aborted prematurely, owing to error!" << endl; break; } readStopWatch.Stop(); procStopWatch.Start(); ConvertInput(eventCounter, pythia, branchEvent, factory, allParticleOutputArray, stableParticleOutputArray, partonOutputArray, &readStopWatch, &procStopWatch); modularDelphes->ProcessTask(); procStopWatch.Stop(); treeWriter->Fill(); treeWriter->Clear(); modularDelphes->Clear(); readStopWatch.Start(); progressBar.Update(eventCounter, eventCounter); } progressBar.Update(eventCounter, eventCounter, kTRUE); progressBar.Finish(); pythia->statistics(); modularDelphes->FinishTask(); treeWriter->Write(); cout << "** Exiting..." << endl; delete pythia; delete modularDelphes; delete confReader; delete treeWriter; delete outputFile; return 0; } catch(runtime_error &e) { if(treeWriter) delete treeWriter; if(outputFile) delete outputFile; cerr << "** ERROR: " << e.what() << endl; return 1; } }
void LHCOConverter::Write() { if(fIsReadyToFill && fTreeWriter) fTreeWriter->Fill(); if(fTreeWriter) fTreeWriter->Write(); fIsReadyToFill = kFALSE; }
Bool_t LHCOConverter::ReadLine(FILE *inputFile) { int rc; if(!fgets(fBuffer, kBufferSize, inputFile)) return kFALSE; DelphesStream bufferStream(fBuffer); rc = bufferStream.ReadInt(fIntParam[0]); if(!rc) { return kTRUE; } if(fIntParam[0] == 0) { rc = bufferStream.ReadInt(fEventNumber) && bufferStream.ReadInt(fTriggerWord); if(!rc) { cerr << "** ERROR: " << "invalid event format" << endl; return kFALSE; } if(fIsReadyToFill && fTreeWriter) { fTreeWriter->Fill(); fTreeWriter->Clear(); } AnalyseEvent(fBranchEvent); fIsReadyToFill = kTRUE; } else { rc = bufferStream.ReadInt(fIntParam[1]) && bufferStream.ReadDbl(fDblParam[0]) && bufferStream.ReadDbl(fDblParam[1]) && bufferStream.ReadDbl(fDblParam[2]) && bufferStream.ReadDbl(fDblParam[3]) && bufferStream.ReadDbl(fDblParam[4]) && bufferStream.ReadDbl(fDblParam[5]) && bufferStream.ReadDbl(fDblParam[6]); if(!rc) { cerr << "** ERROR: " << "invalid object format" << endl; return kFALSE; } switch(fIntParam[1]) { case 0: AnalysePhoton(fBranchPhoton); break; case 1: AnalyseElectron(fBranchElectron); break; case 2: AnalyseMuon(fBranchMuon); break; case 3: AnalyseTau(fBranchJet); break; case 4: AnalyseJet(fBranchJet); break; case 6: AnalyseMissingET(fBranchMissingET); break; } } return kTRUE; }
int main(int argc, char *argv[]) { char appName[] = "DelphesCMSFWLite"; stringstream message; TFile *inputFile = 0; TFile *outputFile = 0; TStopwatch eventStopWatch; ExRootTreeWriter *treeWriter = 0; ExRootTreeBranch *branchEvent = 0, *branchRwgt = 0; ExRootConfReader *confReader = 0; Delphes *modularDelphes = 0; DelphesFactory *factory = 0; TObjArray *allParticleOutputArray = 0, *stableParticleOutputArray = 0, *partonOutputArray = 0; Int_t i; Long64_t eventCounter, numberOfEvents; if(argc < 4) { cout << " Usage: " << appName << " config_file" << " output_file" << " input_file(s)" << endl; cout << " config_file - configuration file in Tcl format," << endl; cout << " output_file - output file in ROOT format," << endl; cout << " input_file(s) - input file(s) in ROOT format." << endl; return 1; } signal(SIGINT, SignalHandler); gROOT->SetBatch(); int appargc = 1; char *appargv[] = {appName}; TApplication app(appName, &appargc, appargv); FWLiteEnabler::enable(); try { outputFile = TFile::Open(argv[2], "CREATE"); if(outputFile == NULL) { message << "can't open " << argv[2] << endl; throw runtime_error(message.str()); } treeWriter = new ExRootTreeWriter(outputFile, "Delphes"); branchEvent = treeWriter->NewBranch("Event", HepMCEvent::Class()); branchRwgt = treeWriter->NewBranch("Rwgt", Weight::Class()); confReader = new ExRootConfReader; confReader->ReadFile(argv[1]); modularDelphes = new Delphes("Delphes"); modularDelphes->SetConfReader(confReader); modularDelphes->SetTreeWriter(treeWriter); factory = modularDelphes->GetFactory(); allParticleOutputArray = modularDelphes->ExportArray("allParticles"); stableParticleOutputArray = modularDelphes->ExportArray("stableParticles"); partonOutputArray = modularDelphes->ExportArray("partons"); modularDelphes->InitTask(); for(i = 3; i < argc && !interrupted; ++i) { cout << "** Reading " << argv[i] << endl; inputFile = TFile::Open(argv[i]); if(inputFile == NULL) { message << "can't open " << argv[i] << endl; throw runtime_error(message.str()); } fwlite::Event event(inputFile); numberOfEvents = event.size(); if(numberOfEvents <= 0) continue; // ExRootProgressBar progressBar(numberOfEvents - 1); ExRootProgressBar progressBar(-1); // Loop over all objects eventCounter = 0; modularDelphes->Clear(); treeWriter->Clear(); for(event.toBegin(); !event.atEnd() && !interrupted; ++event) { ConvertInput(event, eventCounter, branchEvent, branchRwgt, factory, allParticleOutputArray, stableParticleOutputArray, partonOutputArray); modularDelphes->ProcessTask(); treeWriter->Fill(); modularDelphes->Clear(); treeWriter->Clear(); progressBar.Update(eventCounter, eventCounter); ++eventCounter; } progressBar.Update(eventCounter, eventCounter, kTRUE); progressBar.Finish(); inputFile->Close(); } modularDelphes->FinishTask(); treeWriter->Write(); cout << "** Exiting..." << endl; delete modularDelphes; delete confReader; delete treeWriter; delete outputFile; return 0; } catch(runtime_error &e) { if(treeWriter) delete treeWriter; if(outputFile) delete outputFile; cerr << "** ERROR: " << e.what() << endl; return 1; } }
int main(int argc, char *argv[]) { char appName[] = "DelphesLHEF"; stringstream message; FILE *inputFile = 0; TFile *outputFile = 0; TStopwatch readStopWatch, procStopWatch; ExRootTreeWriter *treeWriter = 0; ExRootTreeBranch *branchEvent = 0, *branchWeight = 0; ExRootConfReader *confReader = 0; Delphes *modularDelphes = 0; DelphesFactory *factory = 0; TObjArray *stableParticleOutputArray = 0, *allParticleOutputArray = 0, *partonOutputArray = 0; DelphesLHEFReader *reader = 0; Int_t i, maxEvents, skipEvents; Long64_t length, eventCounter; if(argc < 3) { cout << " Usage: " << appName << " config_file" << " output_file" << " [input_file(s)]" << endl; cout << " config_file - configuration file in Tcl format," << endl; cout << " output_file - output file in ROOT format," << endl; cout << " input_file(s) - input file(s) in LHEF format," << endl; cout << " with no input_file, or when input_file is -, read standard input." << endl; return 1; } signal(SIGINT, SignalHandler); gROOT->SetBatch(); int appargc = 1; char *appargv[] = {appName}; TApplication app(appName, &appargc, appargv); try { outputFile = TFile::Open(argv[2], "CREATE"); if(outputFile == NULL) { message << "can't create output file " << argv[2]; throw runtime_error(message.str()); } treeWriter = new ExRootTreeWriter(outputFile, "Delphes"); branchEvent = treeWriter->NewBranch("Event", LHEFEvent::Class()); branchWeight = treeWriter->NewBranch("Weight", Weight::Class()); confReader = new ExRootConfReader; confReader->ReadFile(argv[1]); maxEvents = confReader->GetInt("::MaxEvents", 0); skipEvents = confReader->GetInt("::SkipEvents", 0); if(maxEvents < 0) { throw runtime_error("MaxEvents must be zero or positive"); } if(skipEvents < 0) { throw runtime_error("SkipEvents must be zero or positive"); } modularDelphes = new Delphes("Delphes"); modularDelphes->SetConfReader(confReader); modularDelphes->SetTreeWriter(treeWriter); factory = modularDelphes->GetFactory(); allParticleOutputArray = modularDelphes->ExportArray("allParticles"); stableParticleOutputArray = modularDelphes->ExportArray("stableParticles"); partonOutputArray = modularDelphes->ExportArray("partons"); reader = new DelphesLHEFReader; modularDelphes->InitTask(); i = 3; do { if(interrupted) break; if(i == argc || strncmp(argv[i], "-", 2) == 0) { cout << "** Reading standard input" << endl; inputFile = stdin; length = -1; } else { cout << "** Reading " << argv[i] << endl; inputFile = fopen(argv[i], "r"); if(inputFile == NULL) { message << "can't open " << argv[i]; throw runtime_error(message.str()); } fseek(inputFile, 0L, SEEK_END); length = ftello(inputFile); fseek(inputFile, 0L, SEEK_SET); if(length <= 0) { fclose(inputFile); ++i; continue; } } reader->SetInputFile(inputFile); ExRootProgressBar progressBar(length); // Loop over all objects eventCounter = 0; treeWriter->Clear(); modularDelphes->Clear(); reader->Clear(); readStopWatch.Start(); while((maxEvents <= 0 || eventCounter - skipEvents < maxEvents) && reader->ReadBlock(factory, allParticleOutputArray, stableParticleOutputArray, partonOutputArray) && !interrupted) { if(reader->EventReady()) { ++eventCounter; readStopWatch.Stop(); if(eventCounter > skipEvents) { readStopWatch.Stop(); procStopWatch.Start(); modularDelphes->ProcessTask(); procStopWatch.Stop(); reader->AnalyzeEvent(branchEvent, eventCounter, &readStopWatch, &procStopWatch); reader->AnalyzeWeight(branchWeight); treeWriter->Fill(); treeWriter->Clear(); } modularDelphes->Clear(); reader->Clear(); readStopWatch.Start(); } progressBar.Update(ftello(inputFile), eventCounter); } fseek(inputFile, 0L, SEEK_END); progressBar.Update(ftello(inputFile), eventCounter, kTRUE); progressBar.Finish(); if(inputFile != stdin) fclose(inputFile); ++i; } while(i < argc); modularDelphes->FinishTask(); treeWriter->Write(); cout << "** Exiting..." << endl; delete reader; delete modularDelphes; delete confReader; delete treeWriter; delete outputFile; return 0; } catch(runtime_error &e) { if(treeWriter) delete treeWriter; if(outputFile) delete outputFile; cerr << "** ERROR: " << e.what() << endl; return 1; } }
int main(int argc, char *argv[]) { char appName[] = "ExRootLHEFConverter"; if(argc != 3) { cout << " Usage: " << appName << " input_file" << " output_file" << endl; cout << " input_file - input file in LHEF format," << endl; cout << " output_file - output file in ROOT format." << endl; return 1; } gROOT->SetBatch(); int appargc = 1; char *appargv[] = {appName}; TApplication app(appName, &appargc, appargv); // Open a stream connected to an event file: ifstream inputFileStream(argv[1]); // Create the Reader object: LHEF::Reader *inputReader = new LHEF::Reader(inputFileStream); TFile *outputFile = TFile::Open(argv[2], "RECREATE"); ExRootTreeWriter *treeWriter = new ExRootTreeWriter(outputFile, "LHEF"); // generated event from LHEF ExRootTreeBranch *branchEvent = treeWriter->NewBranch("Event", TRootLHEFEvent::Class()); // generated partons from LHEF ExRootTreeBranch *branchParticle = treeWriter->NewBranch("Particle", TRootLHEFParticle::Class()); cout << "** Calculating number of events to process. Please wait..." << endl; Long64_t allEntries = inputReader->getNumberOfEvents(); cout << "** Input file contains " << allEntries << " events" << endl; if(allEntries > 0) { ExRootProgressBar progressBar(allEntries); // Loop over all events Long64_t entry = 0; while(inputReader->readEvent()) { treeWriter->Clear(); AnalyseEvent(inputReader, branchEvent, entry + 1); AnalyseParticles(inputReader, branchParticle); treeWriter->Fill(); progressBar.Update(entry); ++entry; } progressBar.Finish(); } treeWriter->Write(); cout << "** Exiting..." << endl; delete treeWriter; delete outputFile; delete inputReader; }