Exemple #1
0
// Returns the direction of the fitted line as a unit vector, using the
// least mean squared perpendicular distance. The line runs through the
// mean_point, i.e. a point p on the line is given by:
// p = mean_point() + lambda * vector_fit() for some real number lambda.
// Note that the result (0<=x<=1, -1<=y<=-1) is directionally ambiguous
// and may be negated without changing its meaning.
FCOORD LLSQ::vector_fit() const {
  double x_var = x_variance();
  double y_var = y_variance();
  double covar = covariance();
  FCOORD result;
  if (x_var >= y_var) {
    if (x_var == 0.0)
      return FCOORD(0.0f, 0.0f);
    result.set_x(x_var / sqrt(x_var * x_var + covar * covar));
    result.set_y(sqrt(1.0 - result.x() * result.x()));
  } else {
    result.set_y(y_var / sqrt(y_var * y_var + covar * covar));
    result.set_x(sqrt(1.0 - result.y() * result.y()));
  }
  if (covar < 0.0)
    result.set_y(-result.y());
  return result;
}
Exemple #2
0
void POLY_BLOCK::rotate(FCOORD rotation) {
  FCOORD pos;                    //current pos;
  ICOORDELT *pt;                 //current point
  ICOORDELT_IT pts = &vertices;  //iterator

  do {
    pt = pts.data ();
    pos.set_x (pt->x ());
    pos.set_y (pt->y ());
    pos.rotate (rotation);
    pt->set_x ((inT16) (floor (pos.x () + 0.5)));
    pt->set_y ((inT16) (floor (pos.y () + 0.5)));
    pts.forward ();
  }
  while (!pts.at_first ());
  compute_bb();
}