RETURN_STATUS
EFIAPI
ArmVirtTimerFdtClientLibConstructor (
  VOID
  )
{
  EFI_STATUS                    Status;
  FDT_CLIENT_PROTOCOL           *FdtClient;
  CONST INTERRUPT_PROPERTY      *InterruptProp;
  UINT32                        PropSize;
  INT32                         SecIntrNum, IntrNum, VirtIntrNum, HypIntrNum;
  RETURN_STATUS                 PcdStatus;

  Status = gBS->LocateProtocol (&gFdtClientProtocolGuid, NULL,
                  (VOID **)&FdtClient);
  ASSERT_EFI_ERROR (Status);

  Status = FdtClient->FindCompatibleNodeProperty (FdtClient, "arm,armv7-timer",
                        "interrupts", (CONST VOID **)&InterruptProp,
                        &PropSize);
  if (Status == EFI_NOT_FOUND) {
    Status = FdtClient->FindCompatibleNodeProperty (FdtClient,
                          "arm,armv8-timer", "interrupts",
                          (CONST VOID **)&InterruptProp,
                          &PropSize);
  }

  if (EFI_ERROR (Status)) {
    return Status;
  }

  //
  // - interrupts : Interrupt list for secure, non-secure, virtual and
  //  hypervisor timers, in that order.
  //
  ASSERT (PropSize == 36 || PropSize == 48);

  SecIntrNum = SwapBytes32 (InterruptProp[0].Number)
               + (InterruptProp[0].Type ? 16 : 0);
  IntrNum = SwapBytes32 (InterruptProp[1].Number)
            + (InterruptProp[1].Type ? 16 : 0);
  VirtIntrNum = SwapBytes32 (InterruptProp[2].Number)
                + (InterruptProp[2].Type ? 16 : 0);
  HypIntrNum = PropSize < 48 ? 0 : SwapBytes32 (InterruptProp[3].Number)
                                   + (InterruptProp[3].Type ? 16 : 0);

  DEBUG ((EFI_D_INFO, "Found Timer interrupts %d, %d, %d, %d\n",
    SecIntrNum, IntrNum, VirtIntrNum, HypIntrNum));

  PcdStatus = PcdSet32S (PcdArmArchTimerSecIntrNum, SecIntrNum);
  ASSERT_RETURN_ERROR (PcdStatus);
  PcdStatus = PcdSet32S (PcdArmArchTimerIntrNum, IntrNum);
  ASSERT_RETURN_ERROR (PcdStatus);
  PcdStatus = PcdSet32S (PcdArmArchTimerVirtIntrNum, VirtIntrNum);
  ASSERT_RETURN_ERROR (PcdStatus);
  PcdStatus = PcdSet32S (PcdArmArchTimerHypIntrNum, HypIntrNum);
  ASSERT_RETURN_ERROR (PcdStatus);

  return EFI_SUCCESS;
}
RETURN_STATUS
EFIAPI
ArmVirtPL031FdtClientLibConstructor (
  VOID
  )
{
  EFI_STATUS                    Status;
  FDT_CLIENT_PROTOCOL           *FdtClient;
  INT32                         Node;
  CONST UINT64                  *Reg;
  UINT32                        RegSize;
  UINT64                        RegBase;
  RETURN_STATUS                 PcdStatus;

  Status = gBS->LocateProtocol (&gFdtClientProtocolGuid, NULL,
                  (VOID **)&FdtClient);
  ASSERT_EFI_ERROR (Status);

  Status = FdtClient->FindCompatibleNode (FdtClient, "arm,pl031", &Node);
  if (EFI_ERROR (Status)) {
    DEBUG ((EFI_D_WARN, "%a: No 'arm,pl031' compatible DT node found\n",
      __FUNCTION__));
    return EFI_SUCCESS;
  }

  Status = FdtClient->GetNodeProperty (FdtClient, Node, "reg",
                        (CONST VOID **)&Reg, &RegSize);
  if (EFI_ERROR (Status)) {
    DEBUG ((EFI_D_WARN,
      "%a: No 'reg' property found in 'arm,pl031' compatible DT node\n",
      __FUNCTION__));
    return EFI_SUCCESS;
  }

  ASSERT (RegSize == 16);

  RegBase = SwapBytes64 (Reg[0]);
  ASSERT (RegBase < MAX_UINT32);

  PcdStatus = PcdSet32S (PcdPL031RtcBase, (UINT32)RegBase);
  ASSERT_RETURN_ERROR (PcdStatus);

  DEBUG ((EFI_D_INFO, "Found PL031 RTC @ 0x%Lx\n", RegBase));

  if (!FeaturePcdGet (PcdPureAcpiBoot)) {
    //
    // UEFI takes ownership of the RTC hardware, and exposes its functionality
    // through the UEFI Runtime Services GetTime, SetTime, etc. This means we
    // need to disable it in the device tree to prevent the OS from attaching
    // its device driver as well.
    //
    Status = FdtClient->SetNodeProperty (FdtClient, Node, "status",
                          "disabled", sizeof ("disabled"));
    if (EFI_ERROR (Status)) {
        DEBUG ((EFI_D_WARN, "Failed to set PL031 status to 'disabled'\n"));
    }
  }

  return EFI_SUCCESS;
}
/**
  Get the address of Xen ACPI Root System Description Pointer (RSDP)
  structure.

  @param  RsdpStructurePtr   Return pointer to RSDP structure

  @return EFI_SUCCESS        Find Xen RSDP structure successfully.
  @return EFI_NOT_FOUND      Don't find Xen RSDP structure.
  @return EFI_ABORTED        Find Xen RSDP structure, but it's not integrated.

**/
STATIC
EFI_STATUS
EFIAPI
GetXenArmAcpiRsdp (
  OUT   EFI_ACPI_2_0_ROOT_SYSTEM_DESCRIPTION_POINTER   **RsdpPtr
  )
{
  EFI_ACPI_2_0_ROOT_SYSTEM_DESCRIPTION_POINTER   *RsdpStructurePtr;
  EFI_STATUS                                     Status;
  FDT_CLIENT_PROTOCOL                            *FdtClient;
  CONST UINT64                                   *Reg;
  UINT32                                         RegSize;
  UINTN                                          AddressCells, SizeCells;
  UINT64                                         RegBase;
  UINT8                                          Sum;

  RsdpStructurePtr = NULL;
  FdtClient = NULL;
  //
  // Get the RSDP structure address from DeviceTree
  //
  Status = gBS->LocateProtocol (&gFdtClientProtocolGuid, NULL,
                  (VOID **)&FdtClient);
  ASSERT_EFI_ERROR (Status);

  Status = FdtClient->FindCompatibleNodeReg (FdtClient, "xen,guest-acpi",
                        (CONST VOID **)&Reg, &AddressCells, &SizeCells,
                        &RegSize);
  if (EFI_ERROR (Status)) {
    DEBUG ((EFI_D_WARN, "%a: No 'xen,guest-acpi' compatible DT node found\n",
      __FUNCTION__));
    return EFI_NOT_FOUND;
  }

  ASSERT (AddressCells == 2);
  ASSERT (SizeCells == 2);
  ASSERT (RegSize == 2 * sizeof (UINT64));

  RegBase = SwapBytes64(Reg[0]);
  RsdpStructurePtr = (EFI_ACPI_2_0_ROOT_SYSTEM_DESCRIPTION_POINTER *)RegBase;

  if (RsdpStructurePtr && RsdpStructurePtr->Revision >= 2) {
    Sum = CalculateSum8 ((CONST UINT8 *)RsdpStructurePtr,
            sizeof (EFI_ACPI_2_0_ROOT_SYSTEM_DESCRIPTION_POINTER));
    if (Sum != 0) {
      return EFI_ABORTED;
    }
  }

  *RsdpPtr = RsdpStructurePtr;
  return EFI_SUCCESS;
}
Exemple #4
0
RETURN_STATUS
EFIAPI
QemuFwCfgInitialize (
  VOID
  )
{
  EFI_STATUS                    Status;
  FDT_CLIENT_PROTOCOL           *FdtClient;
  CONST UINT64                  *Reg;
  UINT32                        RegSize;
  UINTN                         AddressCells, SizeCells;
  UINT64                        FwCfgSelectorAddress;
  UINT64                        FwCfgSelectorSize;
  UINT64                        FwCfgDataAddress;
  UINT64                        FwCfgDataSize;
  UINT64                        FwCfgDmaAddress;
  UINT64                        FwCfgDmaSize;

  Status = gBS->LocateProtocol (&gFdtClientProtocolGuid, NULL,
                  (VOID **)&FdtClient);
  ASSERT_EFI_ERROR (Status);

  Status = FdtClient->FindCompatibleNodeReg (FdtClient, "qemu,fw-cfg-mmio",
                         (CONST VOID **)&Reg, &AddressCells, &SizeCells,
                         &RegSize);
  if (EFI_ERROR (Status)) {
    DEBUG ((EFI_D_WARN,
      "%a: No 'qemu,fw-cfg-mmio' compatible DT node found (Status == %r)\n",
      __FUNCTION__, Status));
    return EFI_SUCCESS;
  }

  ASSERT (AddressCells == 2);
  ASSERT (SizeCells == 2);
  ASSERT (RegSize == 2 * sizeof (UINT64));

  FwCfgDataAddress     = SwapBytes64 (Reg[0]);
  FwCfgDataSize        = 8;
  FwCfgSelectorAddress = FwCfgDataAddress + FwCfgDataSize;
  FwCfgSelectorSize    = 2;

  //
  // The following ASSERT()s express
  //
  //   Address + Size - 1 <= MAX_UINTN
  //
  // for both registers, that is, that the last byte in each MMIO range is
  // expressible as a MAX_UINTN. The form below is mathematically
  // equivalent, and it also prevents any unsigned overflow before the
  // comparison.
  //
  ASSERT (FwCfgSelectorAddress <= MAX_UINTN - FwCfgSelectorSize + 1);
  ASSERT (FwCfgDataAddress     <= MAX_UINTN - FwCfgDataSize     + 1);

  mFwCfgSelectorAddress = FwCfgSelectorAddress;
  mFwCfgDataAddress     = FwCfgDataAddress;

  DEBUG ((EFI_D_INFO, "Found FwCfg @ 0x%Lx/0x%Lx\n", FwCfgSelectorAddress,
    FwCfgDataAddress));

  if (SwapBytes64 (Reg[1]) >= 0x18) {
    FwCfgDmaAddress = FwCfgDataAddress + 0x10;
    FwCfgDmaSize    = 0x08;

    //
    // See explanation above.
    //
    ASSERT (FwCfgDmaAddress <= MAX_UINTN - FwCfgDmaSize + 1);

    DEBUG ((EFI_D_INFO, "Found FwCfg DMA @ 0x%Lx\n", FwCfgDmaAddress));
  } else {
    FwCfgDmaAddress = 0;
  }

  if (InternalQemuFwCfgIsAvailable ()) {
    UINT32 Signature;

    QemuFwCfgSelectItem (QemuFwCfgItemSignature);
    Signature = QemuFwCfgRead32 ();
    if (Signature == SIGNATURE_32 ('Q', 'E', 'M', 'U')) {
      //
      // For DMA support, we require the DTB to advertise the register, and the
      // feature bitmap (which we read without DMA) to confirm the feature.
      //
      if (FwCfgDmaAddress != 0) {
        UINT32 Features;

        QemuFwCfgSelectItem (QemuFwCfgItemInterfaceVersion);
        Features = QemuFwCfgRead32 ();
        if ((Features & BIT1) != 0) {
          mFwCfgDmaAddress = FwCfgDmaAddress;
          InternalQemuFwCfgReadBytes = DmaReadBytes;
        }
      }
    } else {
      mFwCfgSelectorAddress = 0;
      mFwCfgDataAddress     = 0;
    }
  }
  return RETURN_SUCCESS;
}
Exemple #5
0
EFI_STATUS
NorFlashPlatformGetDevices (
  OUT NOR_FLASH_DESCRIPTION   **NorFlashDescriptions,
  OUT UINT32                  *Count
  )
{
  FDT_CLIENT_PROTOCOL         *FdtClient;
  INT32                       Node;
  EFI_STATUS                  Status;
  EFI_STATUS                  FindNodeStatus;
  CONST UINT32                *Reg;
  UINT32                      PropSize;
  UINT32                      Num;
  UINT64                      Base;
  UINT64                      Size;

  Status = gBS->LocateProtocol (&gFdtClientProtocolGuid, NULL,
                  (VOID **)&FdtClient);
  ASSERT_EFI_ERROR (Status);

  Num = 0;
  for (FindNodeStatus = FdtClient->FindCompatibleNode (FdtClient,
                                     "cfi-flash", &Node);
       !EFI_ERROR (FindNodeStatus) && Num < MAX_FLASH_BANKS;
       FindNodeStatus = FdtClient->FindNextCompatibleNode (FdtClient,
                                     "cfi-flash", Node, &Node)) {

    Status = FdtClient->GetNodeProperty (FdtClient, Node, "reg",
                          (CONST VOID **)&Reg, &PropSize);
    if (EFI_ERROR (Status)) {
      DEBUG ((DEBUG_ERROR, "%a: GetNodeProperty () failed (Status == %r)\n",
        __FUNCTION__, Status));
      continue;
    }

    ASSERT ((PropSize % (4 * sizeof (UINT32))) == 0);

    while (PropSize >= (4 * sizeof (UINT32)) && Num < MAX_FLASH_BANKS) {
      Base = SwapBytes64 (ReadUnaligned64 ((VOID *)&Reg[0]));
      Size = SwapBytes64 (ReadUnaligned64 ((VOID *)&Reg[2]));
      Reg += 4;

      PropSize -= 4 * sizeof (UINT32);

      //
      // Disregard any flash devices that overlap with the primary FV.
      // The firmware is not updatable from inside the guest anyway.
      //
      if ((PcdGet64 (PcdFvBaseAddress) + PcdGet32 (PcdFvSize) > Base) &&
          (Base + Size) > PcdGet64 (PcdFvBaseAddress)) {
        continue;
      }

      mNorFlashDevices[Num].DeviceBaseAddress = (UINTN)Base;
      mNorFlashDevices[Num].RegionBaseAddress = (UINTN)Base;
      mNorFlashDevices[Num].Size              = (UINTN)Size;
      mNorFlashDevices[Num].BlockSize         = QEMU_NOR_BLOCK_SIZE;
      Num++;
    }
  }

  *NorFlashDescriptions = mNorFlashDevices;
  *Count = Num;

  return EFI_SUCCESS;
}