//static void matchDescriptors( const Mat& queryDescriptors, const vector<Mat>& trainDescriptors, //vector<DMatch>& matches, FlannBasedMatcher& descriptorMatcher ) static void matchDescriptors( const Mat& queryDescriptors, const vector<Mat>& trainDescriptors, vector<DMatch>& matches, FlannBasedMatcher& descriptorMatcher, const vector<Mat>& trainImages, const vector<string>& trainImagesNames ) { cout << "< Set train descriptors collection in the matcher and match query descriptors to them..." << endl; descriptorMatcher.add( trainDescriptors ); descriptorMatcher.train(); descriptorMatcher.match( queryDescriptors, matches ); CV_Assert( queryDescriptors.rows == (int)matches.size() || matches.empty() ); cout << "Number of matches: " << matches.size() << endl; cout << ">" << endl; for( int i = 0; i < trainDescriptors.size(); i++){ std::vector< std::vector< DMatch> > matches2; std::vector< DMatch > good_matches; descriptorMatcher.knnMatch( queryDescriptors, trainDescriptors[i], matches2, 2); CV_Assert( queryDescriptors.rows == (int)matches2.size() || matches2.empty() ); for (int j = 0; j < matches2.size(); ++j){ const float ratio = 0.8; // As in Lowe's paper; can be tuned if (matches2[j][0].distance < ratio * matches2[j][1].distance){ good_matches.push_back(matches2[j][0]); } } cout << "currentMatchSize : " << good_matches.size() << endl; } }
/** * @function main */ int main(int, char **argv) { image1 = imread(argv[1], 1); image2 = imread(argv[2], 1); rows = image1.rows; cols = image1.cols; namedWindow("image1", WINDOW_AUTOSIZE); imshow("image1", image1); namedWindow("image2", WINDOW_AUTOSIZE); imshow("image2", image2); Mat image1_gray; Mat image2_gray; /// Converts an image from one color space to another. cvtColor(image1, image1_gray, COLOR_BGR2GRAY); cvtColor(image2, image2_gray, COLOR_BGR2GRAY); /// Detector parameters int blockSize = 2; int apertureSize = 3; double k = 0.04; /// Detecting corners /* void ocl::cornerHarris(const oclMat& src, oclMat& dst, int blockSize, int ksize, double k, int bordertype=cv::BORDER_DEFAULT) src – Source image. Only CV_8UC1 and CV_32FC1 images are supported now. dst – Destination image containing cornerness values. It has the same size as src and CV_32FC1 type. blockSize – Neighborhood size ksize – Aperture parameter for the Sobel operator k – Harris detector free parameter bordertype – Pixel extrapolation method. Only BORDER_REFLECT101, BORDER_REFLECT, BORDER_CONSTANT and BORDER_REPLICATE are supported now. */ Mat image1dst; Mat image2dst; image1dst = Mat::zeros(image1.size(), CV_32FC1); image2dst = Mat::zeros(image2.size(), CV_32FC1); cornerHarris(image1_gray, image1dst, blockSize, apertureSize, k, BORDER_DEFAULT); cornerHarris(image2_gray, image2dst, blockSize, apertureSize, k, BORDER_DEFAULT); int threshHarris = 100; /// Normalizing /* void normalize(InputArray src, OutputArray dst, double alpha=1, double beta=0, int norm_type=NORM_L2, int dtype=-1, InputArray mask=noArray() ) src – input array. dst – output array of the same size as src . alpha – norm value to normalize to or the lower range boundary in case of the range normalization. beta – upper range boundary in case of the range normalization; it is not used for the norm normalization. normType – normalization type (see the details below). dtype – when negative, the output array has the same type as src; otherwise, it has the same number of channels as src and the depth =CV_MAT_DEPTH(dtype). mask – optional operation mask. */ Mat image1dst_norm; Mat image2dst_norm; normalize(image1dst, image1dst_norm, 0, 255, NORM_MINMAX, CV_32FC1, Mat()); normalize(image2dst, image2dst_norm, 0, 255, NORM_MINMAX, CV_32FC1, Mat()); /* On each element of the input array, the function convertScaleAbs performs three operations sequentially: scaling, taking an absolute value, conversion to an unsigned 8-bit type: */ Mat image1dst_norm_scaled; Mat image2dst_norm_scaled; convertScaleAbs(image1dst_norm, image1dst_norm_scaled); convertScaleAbs(image2dst_norm, image2dst_norm_scaled); KeyPoint kp; for (int j = 0; j < image1dst_norm.rows; j++) { for (int i = 0; i < image1dst_norm.cols; i++) { if ((int) image1dst_norm.at < float >(j, i) > threshHarris) { kp.pt.x = (float) j; kp.pt.y = (float) i; //necessaire je ne sais pas pk kp.size = 100.0; keypoints1.push_back(kp); } } } for (int j = 0; j < image2dst_norm.rows; j++) { for (int i = 0; i < image2dst_norm.cols; i++) { if ((int) image2dst_norm.at < float >(j, i) > threshHarris) { kp.pt.x = (float) j; kp.pt.y = (float) i; //necessaire je ne sais pas pk kp.size = 100.0; keypoints2.push_back(kp); } } } BriefDescriptorExtractor briefDesc(64); Mat descriptors1, descriptors2; briefDesc.compute(image1, keypoints1, descriptors1); briefDesc.compute(image2, keypoints2, descriptors2); //Ptr<DescriptorMatcher> matcher = new FlannBasedMatcher(DescriptorMatcher::create("Flann")); FlannBasedMatcher matcher; Mat descriptorAuxKp1; Mat descriptorAuxKp2; vector < int >associateIdx; for (int i = 0; i < descriptors1.rows; i++) { //on copie la ligne i du descripteur, qui correspond aux différentes valeurs données par le descripteur pour le Keypoints[i] descriptors1.row(i).copyTo(descriptorAuxKp1); //ici on va mettre que les valeurs du descripteur des keypoints de l'image 2 que l'on veut comparer aux keypoints de l'image1 en cours de traitement descriptorAuxKp2.create(0, 0, CV_8UC1); //associateIdx va servir à faire la transition entre les indices renvoyés par matches et ceux des Keypoints associateIdx.erase(associateIdx.begin(), associateIdx.end()); for (int j = 0; j < descriptors2.rows; j++) { float p1x = keypoints1[i].pt.x; float p1y = keypoints1[i].pt.y; float p2x = keypoints2[j].pt.x; float p2y = keypoints2[j].pt.y; float distance = sqrt(pow((p1x - p2x), 2) + pow((p1y - p2y), 2)); //parmis les valeurs dans descriptors2 on ne va garder que ceux dont les keypoints associés sont à une distance définie du keypoints en cours, en l'occurence le ieme ici. if (distance < 10) { descriptorAuxKp2.push_back(descriptors2.row(j)); associateIdx.push_back(j); } } //ici on ne matche qu'un keypoints de l'image1 avec tous les keypoints gardés de l'image 2 matcher.add(descriptorAuxKp1); matcher.train(); matcher.match(descriptorAuxKp2, matches); //on remet à la bonne valeur les attributs de matches for (int idxMatch = 0; idxMatch < matches.size(); idxMatch++) { //on a comparer le keypoints i matches[idxMatch].queryIdx = i; //avec le keypoints2 j matches[idxMatch].trainIdx = associateIdx[matches[idxMatch].trainIdx]; } //on concatene les matches trouvés pour les points précedents avec les nouveaux matchesWithDist.insert(matchesWithDist.end(), matches.begin(), matches.end()); } //ici on trie les matchesWithDist par distance des valeurs des descripteurs et non par distance euclidienne nth_element(matchesWithDist.begin(), matchesWithDist.begin() + 24, matchesWithDist.end()); // initial position // position of the sorted element // end position Mat imageMatches; Mat matchesMask; drawMatches(image1, keypoints1, // 1st image and its keypoints image2, keypoints2, // 2nd image and its keypoints matchesWithDist, // the matches imageMatches, // the image produced Scalar::all(-1), // color of the lines Scalar(255, 255, 255) //color of the keypoints ); namedWindow(matches_window, CV_WINDOW_AUTOSIZE); imshow(matches_window, imageMatches); imwrite("resultat.png", imageMatches); /// Create a window and a trackbar namedWindow(transparency_window, WINDOW_AUTOSIZE); createTrackbar("Threshold: ", transparency_window, &thresh, max_thresh, interface); interface(0, 0); waitKey(0); return (0); }
int main(int argc, char** argv) { gval_debug_init(); // get options int showhelp = 0; unsigned int n_cluster = 0; int opt; while ((opt = getopt(argc, argv, "k:h")) != -1) { switch (opt) { case 'h': showhelp = 1; break; case 'k': n_cluster = atoi(optarg); break; default: showhelp = 1; break; } } if (showhelp || n_cluster <= 0 || argc - optind < 2) { fprintf(stderr, "Usage: %s -k n_cluster input_dir output\n", argv[0]); return EXIT_SUCCESS; } path p(argv[optind]); if (!exists(p) || !is_directory(p)) { fprintf(stderr, "%s is not a directory\n", argv[optind]); return EXIT_FAILURE; } BOWKMeansTrainer bow(n_cluster); directory_iterator dir_end; for (directory_iterator i(p); i != dir_end; i++) { if (i->path().extension() == DESCRIPTORS_EXT) { FILE* in = fopen(i->path().c_str(), "r"); assert(in); int counter = 0; int nempty = 0; Mat* desc = (Mat*) gval_read_cvmat(in); while (desc != NULL) { counter++; if (!desc->empty()) { nempty++; bow.add(desc->clone()); } gval_free_cvmat(desc); desc = (Mat*) gval_read_cvmat(in); } fclose(in); fprintf(stderr, "Read from file %s (%d/%d)\n", i->path().c_str(), nempty, counter); } } fprintf(stderr, "Clustering (%d descriptors, %d clusters)...", bow.descripotorsCount(), n_cluster); Mat voc = bow.cluster(); fprintf(stderr, " Done\n"); fprintf(stderr, "Counting document frequency..."); int* dfcounter = (int*) calloc(n_cluster, sizeof(int)); vector<Mat> all = bow.getDescriptors(); FlannBasedMatcher matcher; matcher.add(vector<Mat>(1, voc)); for (vector<Mat>::const_iterator it = all.begin(); it != all.end(); it++) { vector<int> ct(n_cluster, 0); vector<DMatch> matches; matcher.match(*it, matches); for (vector<DMatch>::const_iterator jt = matches.begin(); jt != matches.end(); jt++) { assert(jt->trainIdx >= 0 && jt->trainIdx < n_cluster); ct[jt->trainIdx] = 1; } for (int j = 0; j < n_cluster; j++) { dfcounter[j] += ct[j]; } } int dtotal = all.size(); fprintf(stderr, " Done\n"); FILE* out = fopen(argv[optind + 1], "w"); assert(out); gval_write_cvmat(&voc, out); fwrite(dfcounter, sizeof(int), n_cluster, out); fwrite(&dtotal, sizeof(int), 1, out); // debug fprintf(stderr, "total:%d\n", dtotal); for (int j = 0; j < n_cluster; j++) { fprintf(stderr, "%d:%d\n", j, dfcounter[j]); } fclose(out); fprintf(stderr, "Written to %s\n", argv[optind + 1]); free(dfcounter); return EXIT_SUCCESS; }
int main( int argc, char* argv[]) { // jmena souboru pro zpracovani string imageName1; string imageName2; // zpracovani parametru prikazove radky for( int i = 1; i < argc; i++){ if( string(argv[ i]) == "-i1" && i + 1 < argc){ imageName1 = argv[ ++i]; } else if( string(argv[ i]) == "-i2" && i + 1 < argc){ imageName2 = argv[ ++i]; } else if( string(argv[ i]) == "-h"){ cout << "Use: " << argv[0] << " -i1 imageName1 -i2 imageName2" << endl; cout << "Merges two images into one. The images have to share some common area and have to be taken from one location." << endl; return 0; } else { cerr << "Error: Unrecognized command line parameter \"" << argv[ i] << "\" use -h to get more information." << endl; } } // kontrola zadani parametru if( imageName1.empty() || imageName2.empty()){ cerr << "Error: Some mandatory command line options were not specified. Use -h for more information." << endl; return -1; } // nacteni sedotonovych obrazku Mat img1 = imread( imageName1, 0); Mat img2 = imread( imageName2, 0); if( img1.data == NULL || img2.data == NULL){ cerr << "Error: Failed to read input image files." << endl; return -1; } // SURF detektor lokalnich oblasti SurfFeatureDetector detector; // samotna detekce lokalnich priznaku vector< KeyPoint> keyPoints1, keyPoints2; detector.detect( img1, keyPoints1); detector.detect( img2, keyPoints2); cout << keyPoints1.size() << " " << keyPoints2.size(); // extraktor SURF descriptoru SurfDescriptorExtractor descriptorExtractor; // samonty vypocet SURF descriptoru Mat descriptors1, descriptors2; descriptorExtractor.compute( img1, keyPoints1, descriptors1); descriptorExtractor.compute( img2, keyPoints2, descriptors2); // tento vektor je pouze pro ucely funkce hledajici korespondence vector< Mat> descriptorVector2; descriptorVector2.push_back( descriptors2); // objekt, ktery dokaze snad pomerne efektivne vyhledavat podebne vektory v prostorech s vysokym poctem dimenzi FlannBasedMatcher matcher; // Pridani deskriptoru, mezi kterymi budeme pozdeji hledat nejblizsi sousedy matcher.add( descriptorVector2); // Vytvoreni vyhledavaci struktury nad vlozenymi descriptory matcher.train(); // nalezeni nejpodobnejsich descriptoru (z obrazku 2) pro descriptors1 (oblasti z obrazku 1) vector<cv::DMatch > matches; matcher.match( descriptors1, matches); // serazeni korespondenci od nejlepsi (ma nejmensi vzajemnou vzdalenost v prostoru descriptoru) sort( matches.begin(), matches.end(), compareDMatch); // pouzijeme jen 200 nejlepsich korespondenci matches.resize( min( 200, (int) matches.size())); // pripraveni korespondujicich dvojic Mat img1Pos( matches.size(), 1, CV_32FC2); Mat img2Pos( matches.size(), 1, CV_32FC2); // naplneni matic pozicemi for( int i = 0; i < (int)matches.size(); i++){ img1Pos.at< Vec2f>( i)[0] = keyPoints1[ matches[ i].queryIdx].pt.x; img1Pos.at< Vec2f>( i)[1] = keyPoints1[ matches[ i].queryIdx].pt.y; img2Pos.at< Vec2f>( i)[0] = keyPoints2[ matches[ i].trainIdx].pt.x; img2Pos.at< Vec2f>( i)[1] = keyPoints2[ matches[ i].trainIdx].pt.y; } // Doplnte vypocet 3x3 matice homografie s vyuzitim algoritmu RANSAC. Pouzijte jdenu funkci knihovny OpenCV. /** FILL DONE **/ Mat homography = findHomography( img1Pos, img2Pos, CV_RANSAC ); // vystupni buffer pro vykresleni spojenych obrazku Mat outputBuffer( 1024, 1280, CV_8UC1); // Vysledny spojeny obraz budeme chtit vykreslit do outputBuffer tak, aby se dotykal okraju, ale nepresahoval je. // "Prilepime" obrazek 2 k prvnimu. Tuto "slepeninu" je potreba zvetsit a posunout, aby byla na pozadovane pozici. // K tomuto potrebujeme zjistit maximalni a minimalni souradnice vykreslenych obrazu. U obrazu 1 je to jednoduche, minima a maxima se // ziskaji primo z rozmeru obrazu. U obrazku 2 musime pomoci drive ziskane homografie promitnout do prostoru obrazku 1 jeho rohove body. float minX = 0; float minY = 0; float maxX = (float) img1.cols; float maxY = (float) img1.rows; // rohy obrazku 2 vector< Vec3d> corners; corners.push_back( Vec3d( 0, 0, 1)); corners.push_back( Vec3d( img2.cols, 0, 1)); corners.push_back( Vec3d( img2.cols, img2.rows, 1)); corners.push_back( Vec3d( 0, img2.rows, 1)); // promitnuti rohu obrazku 2 do prosotoru obrazku 1 a upraveni minim a maxim for( int i = 0; i < (int)corners.size();i ++){ // Doplnte transformaci Mat( corners[ i]) do prostoru obrazku 1 pomoci homography. // Dejte si pozor odkud kam homography je. Podle toho pouzijte homography, nebo homography.inv(). /**FILL ALMOST DONE**/ Mat projResult = homography.inv() * Mat( corners[ i]);// * homography; minX = std::min( minX, (float) (projResult.at<double>( 0) / projResult.at<double>( 2))); maxX = std::max( maxX, (float) (projResult.at<double>( 0) / projResult.at<double>( 2))); minY = std::min( minY, (float) (projResult.at<double>( 1) / projResult.at<double>( 2))); maxY = std::max( maxY, (float) (projResult.at<double>( 1) / projResult.at<double>( 2))); } // Posuneme a zvetseme/zmenseme vysledny spojeny obrazek tak, by vysledny byl co nejvetsi, ale aby byl uvnitr vystupniho bufferu. // Zmena velikosti musi byt takova, aby se nam vysledek vesel na vysku i na sirku double scaleFactor = min( outputBuffer.cols / ( maxX - minX), outputBuffer.rows / ( maxY - minY)); // Doplnte pripraveni matice, ktera zmeni velikost (scaleMatrix) o scaleFactor a druhe (translateMatrix), ktera posune vysledek o -minX a -minY. // Po tomto bude obrazek ve vystupnim bufferu. Mat scaleMatrix = Mat::eye( 3, 3, CV_64F); Mat translateMatrix = Mat::eye( 3, 3, CV_64F); /**FILL DONE**/ scaleMatrix.at<double>(0,0) = scaleFactor; scaleMatrix.at<double>(1,1) = scaleFactor; translateMatrix.at<double>(0,2) = -(double)minX; translateMatrix.at<double>(1,2) = -(double)minY; cout << endl << minX << " " << minY << endl << translateMatrix << endl << endl; Mat centerMatrix = scaleMatrix * translateMatrix; // Transformace obrazku 1 warpPerspective( img1, outputBuffer, centerMatrix, outputBuffer.size(), 1, BORDER_TRANSPARENT); // Transformace obrazku 2 warpPerspective( img2, outputBuffer, centerMatrix * homography.inv(), outputBuffer.size(), 1, BORDER_TRANSPARENT); cout << "normMatrix" << endl; cout << centerMatrix << endl << endl; cout << "normMatrix" << endl; cout << homography << endl << endl; #if VISUAL_OUTPUT imshow( "IMG1", img1); imshow( "IMG2", img2); imshow( "MERGED", outputBuffer); waitKey(); #endif }
//--------------------------------------【main( )函数】----------------------------------------- // 描述:控制台应用程序的入口函数,我们的程序从这里开始执行 //----------------------------------------------------------------------------------------------- int main( ) { //【0】改变console字体颜色 system("color 6F"); void ShowHelpText(); //【1】载入图像、显示并转化为灰度图 Mat trainImage = imread("1.jpg"), trainImage_gray; imshow("原始图",trainImage); cvtColor(trainImage, trainImage_gray, CV_BGR2GRAY); //【2】检测Surf关键点、提取训练图像描述符 vector<KeyPoint> train_keyPoint; Mat trainDescriptor; SurfFeatureDetector featureDetector(80); featureDetector.detect(trainImage_gray, train_keyPoint); SurfDescriptorExtractor featureExtractor; featureExtractor.compute(trainImage_gray, train_keyPoint, trainDescriptor); //【3】创建基于FLANN的描述符匹配对象 FlannBasedMatcher matcher; vector<Mat> train_desc_collection(1, trainDescriptor); matcher.add(train_desc_collection); matcher.train(); //【4】创建视频对象、定义帧率 VideoCapture cap(0); unsigned int frameCount = 0;//帧数 //【5】不断循环,直到q键被按下 while(char(waitKey(1)) != 'q') { //<1>参数设置 int64 time0 = getTickCount(); Mat testImage, testImage_gray; cap >> testImage;//采集视频到testImage中 if(testImage.empty()) continue; //<2>转化图像到灰度 cvtColor(testImage, testImage_gray, CV_BGR2GRAY); //<3>检测S关键点、提取测试图像描述符 vector<KeyPoint> test_keyPoint; Mat testDescriptor; featureDetector.detect(testImage_gray, test_keyPoint); featureExtractor.compute(testImage_gray, test_keyPoint, testDescriptor); //<4>匹配训练和测试描述符 vector<vector<DMatch> > matches; matcher.knnMatch(testDescriptor, matches, 2); // <5>根据劳氏算法(Lowe's algorithm),得到优秀的匹配点 vector<DMatch> goodMatches; for(unsigned int i = 0; i < matches.size(); i++) { if(matches[i][0].distance < 0.6 * matches[i][1].distance) goodMatches.push_back(matches[i][0]); } //<6>绘制匹配点并显示窗口 Mat dstImage; drawMatches(testImage, test_keyPoint, trainImage, train_keyPoint, goodMatches, dstImage); imshow("匹配窗口", dstImage); //<7>输出帧率信息 cout << "当前帧率为:" << getTickFrequency() / (getTickCount() - time0) << endl; } return 0; }
// La funcion devuelve la cantidad de objetos encontrados en la imagen o, en caso de error, -1 int Matcher::featureMatch(const std::string& pathProduct,cv::Mat &ref) { using namespace cv; using namespace std; const bool GRISES = false; const float FACTOR_CLUSTERING = 0.01; //matches cuya distancia sean menores a este valor por el tamaño de la imagen seran agrupados const int CALIDAD_FEATURES = 800; // mientras mas alto, menos features tomara pero seran de mejor calidad const int MINIMA_DISTANCIA_MATCHES = 30; // mientras mas chica mas parecidos deben ser los descriptors del match const int MULTIPLICADOR_DISTANCE_MATCHES = 3; if (ref.empty()) return -1; Mat imagenCamara; if (!GRISES) imagenCamara = ref; else cv::cvtColor(ref, imagenCamara, CV_BGR2GRAY); if (imagenCamara.empty()) return -1; vector<Mat> imgsObjeto; utils::Directory dir(pathProduct); std::vector<std::string> fileNames = dir.getFileNames(); std::vector<std::string>::iterator it = fileNames.begin(); while (it != fileNames.end()) { cv::Mat imagen = cv::imread((*it)); if (!imagen.empty()) { if (GRISES) cv::cvtColor(imagen, imagen, CV_BGR2GRAY); imgsObjeto.push_back(imagen); } it++; } if (imgsObjeto.size() < 1) return -1; Ptr<Feature2D> detector; detector = xfeatures2d::SIFT::create(CALIDAD_FEATURES); vector<vector<KeyPoint> > keypoints_object; vector<KeyPoint> keypoints_scene; detector->detect(imgsObjeto, keypoints_object); detector->detect(imagenCamara, keypoints_scene); vector<Mat> descriptors_object; Mat descriptors_scene; detector->compute(imgsObjeto, keypoints_object, descriptors_object); detector->compute(imagenCamara, keypoints_scene, descriptors_scene); FlannBasedMatcher matcher; //BFMatcher matcher(NORM_L2); std::vector<DMatch> matches; matcher.add(descriptors_object); matcher.match(descriptors_scene, matches); double maxDist = 0; double minDist = MINIMA_DISTANCIA_MATCHES; for (unsigned int i = 0; i < matches.size(); i++) { double dist = matches[i].distance; if (dist < minDist) minDist = dist; if (dist > maxDist) maxDist = dist; } std::vector<DMatch> buenosMatches; for (unsigned int i = 0; i < matches.size(); i++) { if (matches[i].distance < MULTIPLICADOR_DISTANCE_MATCHES * minDist) { buenosMatches.push_back(matches[i]); } } int total = buenosMatches.size(); // no cuento los matches que estan cerca uno de otros ya que pertenecen al mismo objeto : int tamanioImgCamara = (imagenCamara.rows + imagenCamara.cols) / 2; std::vector<bool> validos(total, true); for (unsigned int i = 0; i < buenosMatches.size(); i++) { if (validos[i]) { Point2f a = keypoints_scene[buenosMatches[i].queryIdx].pt; for (unsigned int j = 0; j < i; j++) { if (validos[j]) { Point2f b = keypoints_scene[buenosMatches[j].queryIdx].pt; double dist = cv::norm(a - b); if ( (float) dist < (float) tamanioImgCamara * FACTOR_CLUSTERING) { total--; validos[j] = false; } } } } } return total; }