static void initOverload(OverloadPtr x) { EnvPtr env = overloadPatternEnv(x); PatternPtr pattern = evaluateOnePattern(x->target, env); ObjectPtr obj = derefDeep(pattern); if (obj == NULL) { x->nameIsPattern = true; addPatternOverload(x); } else { switch (obj->objKind) { case PROCEDURE : { Procedure *proc = (Procedure *)obj.ptr(); addProcedureOverload(proc, env, x); break; } case RECORD_DECL : { RecordDecl *r = (RecordDecl *)obj.ptr(); r->overloads.insert(r->overloads.begin(), x); break; } case VARIANT_DECL : { VariantDecl *v = (VariantDecl *)obj.ptr(); v->overloads.insert(v->overloads.begin(), x); break; } case TYPE : { Type *t = (Type *)obj.ptr(); t->overloads.insert(t->overloads.begin(), x); break; } case PRIM_OP : { if (isOverloadablePrimOp(obj)) addPrimOpOverload((PrimOp *)obj.ptr(), x); else error(x->target, "invalid overload target"); break; } case GLOBAL_ALIAS : { GlobalAlias *a = (GlobalAlias*)obj.ptr(); if (!a->hasParams()) error(x->target, "invalid overload target"); a->overloads.insert(a->overloads.begin(), x); break; } case INTRINSIC : { error(x->target, "invalid overload target"); } default : { error(x->target, "invalid overload target"); } } } }
static void AliasGToF(Function *F, Function *G) { if (!G->hasExternalLinkage() && !G->hasLocalLinkage() && !G->hasWeakLinkage()) return ThunkGToF(F, G); GlobalAlias *GA = new GlobalAlias( G->getType(), G->getLinkage(), "", ConstantExpr::getBitCast(F, G->getType()), G->getParent()); F->setAlignment(std::max(F->getAlignment(), G->getAlignment())); GA->takeName(G); GA->setVisibility(G->getVisibility()); G->replaceAllUsesWith(GA); G->eraseFromParent(); }
Module * llvmutil_extractmodule(Module * OrigMod, TargetMachine * TM, std::vector<Function*> * livefns, std::vector<std::string> * symbolnames) { assert(symbolnames == NULL || livefns->size() == symbolnames->size()); ValueToValueMapTy VMap; Module * M = CloneModule(OrigMod, VMap); PassManager * MPM = new PassManager(); llvmutil_addtargetspecificpasses(MPM, TM); std::vector<const char *> names; for(size_t i = 0; i < livefns->size(); i++) { Function * fn = cast<Function>(VMap[(*livefns)[i]]); const char * name; if(symbolnames) { GlobalAlias * ga = new GlobalAlias(fn->getType(), Function::ExternalLinkage, (*symbolnames)[i], fn, M); name = copyName(ga->getName()); } else { name = copyName(fn->getName()); } names.push_back(name); //internalize pass has weird interface, so we need to copy the names here } //at this point we run optimizations on the module //first internalize all functions not mentioned in "names" using an internalize pass and then perform //standard optimizations MPM->add(createVerifierPass()); //make sure we haven't messed stuff up yet MPM->add(createInternalizePass(names)); MPM->add(createGlobalDCEPass()); //run this early since anything not in the table of exported functions is still in this module //this will remove dead functions //clean up the name list for(size_t i = 0; i < names.size(); i++) { free((char*)names[i]); names[i] = NULL; } PassManagerBuilder PMB; PMB.OptLevel = 3; PMB.DisableUnrollLoops = true; PMB.populateModulePassManager(*MPM); //PMB.populateLTOPassManager(*MPM, false, false); //no need to re-internalize, we already did it MPM->run(*M); delete MPM; MPM = NULL; return M; }
// Replace G with an alias to F and delete G. void MergeFunctions::writeAlias(Function *F, Function *G) { Constant *BitcastF = ConstantExpr::getBitCast(F, G->getType()); GlobalAlias *GA = new GlobalAlias(G->getType(), G->getLinkage(), "", BitcastF, G->getParent()); F->setAlignment(std::max(F->getAlignment(), G->getAlignment())); GA->takeName(G); GA->setVisibility(G->getVisibility()); removeUsers(G); G->replaceAllUsesWith(GA); G->eraseFromParent(); DEBUG(dbgs() << "writeAlias: " << GA->getName() << '\n'); ++NumAliasesWritten; }
static void computeAliasSummary(ModuleSummaryIndex &Index, const GlobalAlias &A, DenseSet<GlobalValue::GUID> &CantBePromoted) { bool NonRenamableLocal = isNonRenamableLocal(A); GlobalValueSummary::GVFlags Flags(A.getLinkage(), NonRenamableLocal, /* LiveRoot = */ false); auto AS = llvm::make_unique<AliasSummary>(Flags, ArrayRef<ValueInfo>{}); auto *Aliasee = A.getBaseObject(); auto *AliaseeSummary = Index.getGlobalValueSummary(*Aliasee); assert(AliaseeSummary && "Alias expects aliasee summary to be parsed"); AS->setAliasee(AliaseeSummary); if (NonRenamableLocal) CantBePromoted.insert(A.getGUID()); Index.addGlobalValueSummary(A.getName(), std::move(AS)); }
static Function* resolveFunction(Module& M, StringRef name) { Function* f = M.getFunction(name); if (f != NULL) return f; GlobalAlias* ga = M.getNamedAlias(name); if (ga != NULL) { const GlobalValue* v = ga->resolveAliasedGlobal(true); f = dyn_cast<Function>(const_cast<GlobalValue*>(v)); if (f != NULL) { errs() << "Resolved alias " << name << " to " << f->getName() << "\n"; return f; } } return NULL; }
/// LinkAliasProto - Set up prototypes for any aliases that come over from the /// source module. bool ModuleLinker::linkAliasProto(GlobalAlias *SGA) { GlobalValue *DGV = getLinkedToGlobal(SGA); llvm::Optional<GlobalValue::VisibilityTypes> NewVisibility; if (DGV) { GlobalValue::LinkageTypes NewLinkage = GlobalValue::InternalLinkage; GlobalValue::VisibilityTypes NV; bool LinkFromSrc = false; if (getLinkageResult(DGV, SGA, NewLinkage, NV, LinkFromSrc)) return true; NewVisibility = NV; if (!LinkFromSrc) { // Set calculated linkage. DGV->setLinkage(NewLinkage); DGV->setVisibility(*NewVisibility); // Make sure to remember this mapping. ValueMap[SGA] = ConstantExpr::getBitCast(DGV,TypeMap.get(SGA->getType())); // Track the alias from the source module so we don't attempt to remap it. DoNotLinkFromSource.insert(SGA); return false; } } // If there is no linkage to be performed or we're linking from the source, // bring over SGA. GlobalAlias *NewDA = new GlobalAlias(TypeMap.get(SGA->getType()), SGA->getLinkage(), SGA->getName(), /*aliasee*/0, DstM); CopyGVAttributes(NewDA, SGA); if (NewVisibility) NewDA->setVisibility(*NewVisibility); if (DGV) { // Any uses of DGV need to change to NewDA, with cast. DGV->replaceAllUsesWith(ConstantExpr::getBitCast(NewDA, DGV->getType())); DGV->eraseFromParent(); } ValueMap[SGA] = NewDA; return false; }
// // Method: runOnModule() // // Description: // Entry point for this LLVM pass. // Replace all internal aliases with the // aliasee value // // Inputs: // M - A reference to the LLVM module to transform // // Outputs: // M - The transformed LLVM module. // // Return value: // true - The module was modified. // false - The module was not modified. // bool FuncSimplify::runOnModule(Module& M) { std::vector<GlobalAlias*> toDelete; for (Module::alias_iterator I = M.alias_begin(); I != M.alias_end(); ++I) { if(!I->hasInternalLinkage()) continue; I->replaceAllUsesWith(I->getAliasee()); toDelete.push_back(I); } numChanged += toDelete.size(); while(!toDelete.empty()) { GlobalAlias *I = toDelete.back(); toDelete.pop_back(); I->eraseFromParent(); } return true; }
static llvm::ArrayRef<OverloadPtr> callableOverloads(ObjectPtr x) { initCallable(x); switch (x->objKind) { case TYPE : { Type *y = (Type *)x.ptr(); return y->overloads; } case RECORD_DECL : { RecordDecl *y = (RecordDecl *)x.ptr(); return y->overloads; } case VARIANT_DECL : { VariantDecl *y = (VariantDecl *)x.ptr(); return y->overloads; } case PROCEDURE : { Procedure *y = (Procedure *)x.ptr(); return y->overloads; } case PRIM_OP : { assert(isOverloadablePrimOp(x)); PrimOp *y = (PrimOp *)x.ptr(); return primOpOverloads(y); } case GLOBAL_ALIAS : { GlobalAlias *a = (GlobalAlias *)x.ptr(); assert(a->hasParams()); return a->overloads; } default : { assert(false); const vector<OverloadPtr> *ptr = NULL; return *ptr; } } }
static void convertAliasToDeclaration(GlobalAlias &GA, Module &M) { GlobalValue *GVal = GA.getBaseObject(); GlobalValue *NewGV; if (auto *GVar = dyn_cast<GlobalVariable>(GVal)) { GlobalVariable *NewGVar = new GlobalVariable( M, GVar->getType()->getElementType(), GVar->isConstant(), GVar->getLinkage(), /*init*/ nullptr, GA.getName(), GVar, GVar->getThreadLocalMode(), GVar->getType()->getAddressSpace()); NewGV = NewGVar; NewGV->copyAttributesFrom(GVar); } else { auto *F = dyn_cast<Function>(GVal); assert(F); Function *NewF = Function::Create(F->getFunctionType(), F->getLinkage(), GA.getName(), &M); NewGV = NewF; NewGV->copyAttributesFrom(F); } GA.replaceAllUsesWith(ConstantExpr::getBitCast(NewGV, GA.getType())); GA.eraseFromParent(); }
LLVMValueRef LLVM_General_GetNextAlias(LLVMValueRef a) { GlobalAlias *alias = unwrap<GlobalAlias>(a); Module::alias_iterator i = alias; if (++i == alias->getParent()->alias_end()) return 0; return wrap(i); }
DyckVertex* AAAnalyzer::wrapValue(Value * v) { // if the vertex of v exists, return it, otherwise create one pair < DyckVertex*, bool> retpair = dgraph->retrieveDyckVertex(v); if (retpair.second) { return retpair.first; } DyckVertex* vdv = retpair.first; // constantTy are handled as below. if (isa<ConstantExpr>(v)) { // constant expr should be handled like a assignment instruction if (isa<GEPOperator>(v)) { DyckVertex * got = handle_gep((GEPOperator*) v); makeAlias(vdv, got); } else if (((ConstantExpr*) v)->isCast()) { // errs() << *v << "\n"; DyckVertex * got = wrapValue(((ConstantExpr*) v)->getOperand(0)); makeAlias(vdv, got); } else { unsigned opcode = ((ConstantExpr*) v)->getOpcode(); switch (opcode) { case 23: // BinaryConstantExpr "and" case 24: // BinaryConstantExpr "or" { // do nothing } break; default: { errs() << "ERROR when handle the following constant expression\n"; errs() << *v << "\n"; errs() << ((ConstantExpr*) v)->getOpcode() << "\n"; errs() << ((ConstantExpr*) v)->getOpcodeName() << "\n"; errs().flush(); exit(-1); } break; } } } else if (isa<ConstantArray>(v)) { #ifndef ARRAY_SIMPLIFIED DyckVertex* ptr = addPtrTo(NULL, vdv, dgraph); DyckVertex* current = ptr; Constant * vAgg = (Constant*) v; int numElmt = vAgg->getNumOperands(); for (int i = 0; i < numElmt; i++) { Value * vi = vAgg->getOperand(i); DyckVertex* viptr = addPtrOffset(current, i * dl.getTypeAllocSize(vi->getType()), dgraph); addPtrTo(viptr, wrapValue(vi, dgraph, dl), dgraph); } #else Constant * vAgg = (Constant*) v; int numElmt = vAgg->getNumOperands(); for (int i = 0; i < numElmt; i++) { Value * vi = vAgg->getOperand(i); makeAlias(vdv, wrapValue(vi)); } #endif } else if (isa<ConstantStruct>(v)) { //DyckVertex* ptr = addPtrTo(NULL, vdv); //DyckVertex* current = ptr; Constant * vAgg = (Constant*) v; int numElmt = vAgg->getNumOperands(); for (int i = 0; i < numElmt; i++) { Value * vi = vAgg->getOperand(i); addField(vdv, -2 - i, wrapValue(vi)); } } else if (isa<GlobalValue>(v)) { if (isa<GlobalVariable>(v)) { GlobalVariable * global = (GlobalVariable *) v; if (global->hasInitializer()) { Value * initializer = global->getInitializer(); if (!isa<UndefValue>(initializer)) { DyckVertex * initVer = wrapValue(initializer); addPtrTo(vdv, initVer); } } } else if (isa<GlobalAlias>(v)) { GlobalAlias * global = (GlobalAlias *) v; Value * aliasee = global->getAliasee(); makeAlias(vdv, wrapValue(aliasee)); } else if (isa<Function>(v)) { // do nothing } // no else } else if (isa<ConstantInt>(v) || isa<ConstantFP>(v) || isa<ConstantPointerNull>(v) || isa<UndefValue>(v)) { // do nothing } else if (isa<ConstantDataArray>(v) || isa<ConstantAggregateZero>(v)) { // do nothing } else if (isa<BlockAddress>(v)) { // do nothing } else if (isa<ConstantDataVector>(v)) { errs() << "ERROR when handle the following ConstantDataSequential, ConstantDataVector\n"; errs() << *v << "\n"; errs().flush(); exit(-1); } else if (isa<ConstantVector>(v)) { errs() << "ERROR when handle the following ConstantVector\n"; errs() << *v << "\n"; errs().flush(); exit(-1); } else if (isa<Constant>(v)) { errs() << "ERROR when handle the following constant value\n"; errs() << *v << "\n"; errs().flush(); exit(-1); } return vdv; }
/// Given a disjoint set of bitsets and globals, layout the globals, build the /// bit sets and lower the llvm.bitset.test calls. void LowerBitSets::buildBitSetsFromGlobalVariables( ArrayRef<Metadata *> BitSets, ArrayRef<GlobalVariable *> Globals) { // Build a new global with the combined contents of the referenced globals. // This global is a struct whose even-indexed elements contain the original // contents of the referenced globals and whose odd-indexed elements contain // any padding required to align the next element to the next power of 2. std::vector<Constant *> GlobalInits; const DataLayout &DL = M->getDataLayout(); for (GlobalVariable *G : Globals) { GlobalInits.push_back(G->getInitializer()); uint64_t InitSize = DL.getTypeAllocSize(G->getValueType()); // Compute the amount of padding required. uint64_t Padding = NextPowerOf2(InitSize - 1) - InitSize; // Cap at 128 was found experimentally to have a good data/instruction // overhead tradeoff. if (Padding > 128) Padding = RoundUpToAlignment(InitSize, 128) - InitSize; GlobalInits.push_back( ConstantAggregateZero::get(ArrayType::get(Int8Ty, Padding))); } if (!GlobalInits.empty()) GlobalInits.pop_back(); Constant *NewInit = ConstantStruct::getAnon(M->getContext(), GlobalInits); auto *CombinedGlobal = new GlobalVariable(*M, NewInit->getType(), /*isConstant=*/true, GlobalValue::PrivateLinkage, NewInit); StructType *NewTy = cast<StructType>(NewInit->getType()); const StructLayout *CombinedGlobalLayout = DL.getStructLayout(NewTy); // Compute the offsets of the original globals within the new global. DenseMap<GlobalObject *, uint64_t> GlobalLayout; for (unsigned I = 0; I != Globals.size(); ++I) // Multiply by 2 to account for padding elements. GlobalLayout[Globals[I]] = CombinedGlobalLayout->getElementOffset(I * 2); lowerBitSetCalls(BitSets, CombinedGlobal, GlobalLayout); // Build aliases pointing to offsets into the combined global for each // global from which we built the combined global, and replace references // to the original globals with references to the aliases. for (unsigned I = 0; I != Globals.size(); ++I) { // Multiply by 2 to account for padding elements. Constant *CombinedGlobalIdxs[] = {ConstantInt::get(Int32Ty, 0), ConstantInt::get(Int32Ty, I * 2)}; Constant *CombinedGlobalElemPtr = ConstantExpr::getGetElementPtr( NewInit->getType(), CombinedGlobal, CombinedGlobalIdxs); if (LinkerSubsectionsViaSymbols) { Globals[I]->replaceAllUsesWith(CombinedGlobalElemPtr); } else { assert(Globals[I]->getType()->getAddressSpace() == 0); GlobalAlias *GAlias = GlobalAlias::create(NewTy->getElementType(I * 2), 0, Globals[I]->getLinkage(), "", CombinedGlobalElemPtr, M); GAlias->setVisibility(Globals[I]->getVisibility()); GAlias->takeName(Globals[I]); Globals[I]->replaceAllUsesWith(GAlias); } Globals[I]->eraseFromParent(); } }
SizeOffsetType ObjectSizeOffsetVisitor::visitGlobalAlias(GlobalAlias &GA) { if (GA.isInterposable()) return unknown(); return compute(GA.getAliasee()); }
static bool isAliasToDeclaration(const GlobalAlias &V) { return isDeclaration(*V.getAliasedGlobal()); }
// emit_alias_to_llvm - Given decl and target emit alias to target. void emit_alias_to_llvm(tree decl, tree target, tree target_decl) { if (errorcount || sorrycount) return; timevar_push(TV_LLVM_GLOBALS); // Get or create LLVM global for our alias. GlobalValue *V = cast<GlobalValue>(DECL_LLVM(decl)); GlobalValue *Aliasee = NULL; if (target_decl) Aliasee = cast<GlobalValue>(DECL_LLVM(target_decl)); else { // This is something insane. Probably only LTHUNKs can be here // Try to grab decl from IDENTIFIER_NODE // Query SymTab for aliasee const char* AliaseeName = IDENTIFIER_POINTER(target); Aliasee = dyn_cast_or_null<GlobalValue>(TheModule-> getValueSymbolTable().lookup(AliaseeName)); // Last resort. Query for name set via __asm__ if (!Aliasee) { std::string starred = std::string("\001") + AliaseeName; Aliasee = dyn_cast_or_null<GlobalValue>(TheModule-> getValueSymbolTable().lookup(starred)); } if (!Aliasee) { error ("%J%qD aliased to undefined symbol %qE", decl, decl, target); timevar_pop(TV_LLVM_GLOBALS); return; } } GlobalValue::LinkageTypes Linkage; // Check for external weak linkage if (DECL_EXTERNAL(decl) && DECL_WEAK(decl)) Linkage = GlobalValue::WeakLinkage; else if (!TREE_PUBLIC(decl)) Linkage = GlobalValue::InternalLinkage; else Linkage = GlobalValue::ExternalLinkage; GlobalAlias* GA = new GlobalAlias(Aliasee->getType(), Linkage, "", Aliasee, TheModule); // Handle visibility style if (TREE_PUBLIC(decl)) { if (DECL_VISIBILITY(decl) == VISIBILITY_HIDDEN) GA->setVisibility(GlobalValue::HiddenVisibility); else if (DECL_VISIBILITY(decl) == VISIBILITY_PROTECTED) GA->setVisibility(GlobalValue::ProtectedVisibility); } if (V->getType() == GA->getType()) V->replaceAllUsesWith(GA); else if (!V->use_empty()) { error ("%J Alias %qD used with invalid type!", decl, decl); timevar_pop(TV_LLVM_GLOBALS); return; } changeLLVMValue(V, GA); GA->takeName(V); if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) GV->eraseFromParent(); else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) GA->eraseFromParent(); else if (Function *F = dyn_cast<Function>(V)) F->eraseFromParent(); else assert(0 && "Unsuported global value"); TREE_ASM_WRITTEN(decl) = 1; timevar_pop(TV_LLVM_GLOBALS); return; }
void IRLinker::linkAliasBody(GlobalAlias &Dst, GlobalAlias &Src) { Constant *Aliasee = Src.getAliasee(); Constant *Val = MapValue(Aliasee, AliasValueMap, RF_MoveDistinctMDs, &TypeMap, &LValMaterializer); Dst.setAliasee(Val); }
SizeOffsetType ObjectSizeOffsetVisitor::visitGlobalAlias(GlobalAlias &GA) { if (GA.mayBeOverridden()) return unknown(); return compute(GA.getAliasee()); }
bool GlobalMerge::doMerge(const SmallVectorImpl<GlobalVariable *> &Globals, const BitVector &GlobalSet, Module &M, bool isConst, unsigned AddrSpace) const { assert(Globals.size() > 1); Type *Int32Ty = Type::getInt32Ty(M.getContext()); auto &DL = M.getDataLayout(); LLVM_DEBUG(dbgs() << " Trying to merge set, starts with #" << GlobalSet.find_first() << "\n"); bool Changed = false; ssize_t i = GlobalSet.find_first(); while (i != -1) { ssize_t j = 0; uint64_t MergedSize = 0; std::vector<Type*> Tys; std::vector<Constant*> Inits; bool HasExternal = false; StringRef FirstExternalName; for (j = i; j != -1; j = GlobalSet.find_next(j)) { Type *Ty = Globals[j]->getValueType(); MergedSize += DL.getTypeAllocSize(Ty); if (MergedSize > MaxOffset) { break; } Tys.push_back(Ty); Inits.push_back(Globals[j]->getInitializer()); if (Globals[j]->hasExternalLinkage() && !HasExternal) { HasExternal = true; FirstExternalName = Globals[j]->getName(); } } // Exit early if there is only one global to merge. if (Tys.size() < 2) { i = j; continue; } // If merged variables doesn't have external linkage, we needn't to expose // the symbol after merging. GlobalValue::LinkageTypes Linkage = HasExternal ? GlobalValue::ExternalLinkage : GlobalValue::InternalLinkage; StructType *MergedTy = StructType::get(M.getContext(), Tys); Constant *MergedInit = ConstantStruct::get(MergedTy, Inits); // On Darwin external linkage needs to be preserved, otherwise // dsymutil cannot preserve the debug info for the merged // variables. If they have external linkage, use the symbol name // of the first variable merged as the suffix of global symbol // name. This avoids a link-time naming conflict for the // _MergedGlobals symbols. Twine MergedName = (IsMachO && HasExternal) ? "_MergedGlobals_" + FirstExternalName : "_MergedGlobals"; auto MergedLinkage = IsMachO ? Linkage : GlobalValue::PrivateLinkage; auto *MergedGV = new GlobalVariable( M, MergedTy, isConst, MergedLinkage, MergedInit, MergedName, nullptr, GlobalVariable::NotThreadLocal, AddrSpace); const StructLayout *MergedLayout = DL.getStructLayout(MergedTy); for (ssize_t k = i, idx = 0; k != j; k = GlobalSet.find_next(k), ++idx) { GlobalValue::LinkageTypes Linkage = Globals[k]->getLinkage(); std::string Name = Globals[k]->getName(); GlobalValue::DLLStorageClassTypes DLLStorage = Globals[k]->getDLLStorageClass(); // Copy metadata while adjusting any debug info metadata by the original // global's offset within the merged global. MergedGV->copyMetadata(Globals[k], MergedLayout->getElementOffset(idx)); Constant *Idx[2] = { ConstantInt::get(Int32Ty, 0), ConstantInt::get(Int32Ty, idx), }; Constant *GEP = ConstantExpr::getInBoundsGetElementPtr(MergedTy, MergedGV, Idx); Globals[k]->replaceAllUsesWith(GEP); Globals[k]->eraseFromParent(); // When the linkage is not internal we must emit an alias for the original // variable name as it may be accessed from another object. On non-Mach-O // we can also emit an alias for internal linkage as it's safe to do so. // It's not safe on Mach-O as the alias (and thus the portion of the // MergedGlobals variable) may be dead stripped at link time. if (Linkage != GlobalValue::InternalLinkage || !IsMachO) { GlobalAlias *GA = GlobalAlias::create(Tys[idx], AddrSpace, Linkage, Name, GEP, &M); GA->setDLLStorageClass(DLLStorage); } NumMerged++; } Changed = true; i = j; } return Changed; }
Module *llvm::CloneModule(const Module *M, ValueToValueMapTy &VMap) { // First off, we need to create the new module. Module *New = new Module(M->getModuleIdentifier(), M->getContext()); New->setDataLayout(M->getDataLayout()); New->setTargetTriple(M->getTargetTriple()); New->setModuleInlineAsm(M->getModuleInlineAsm()); // Loop over all of the global variables, making corresponding globals in the // new module. Here we add them to the VMap and to the new Module. We // don't worry about attributes or initializers, they will come later. // for (Module::const_global_iterator I = M->global_begin(), E = M->global_end(); I != E; ++I) { GlobalVariable *GV = new GlobalVariable(*New, I->getType()->getElementType(), I->isConstant(), I->getLinkage(), (Constant*) nullptr, I->getName(), (GlobalVariable*) nullptr, I->getThreadLocalMode(), I->getType()->getAddressSpace()); GV->copyAttributesFrom(I); VMap[I] = GV; } // Loop over the functions in the module, making external functions as before for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I) { Function *NF = Function::Create(cast<FunctionType>(I->getType()->getElementType()), I->getLinkage(), I->getName(), New); NF->copyAttributesFrom(I); VMap[I] = NF; } // Loop over the aliases in the module for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end(); I != E; ++I) { auto *PTy = cast<PointerType>(I->getType()); auto *GA = GlobalAlias::create(PTy->getElementType(), PTy->getAddressSpace(), I->getLinkage(), I->getName(), New); GA->copyAttributesFrom(I); VMap[I] = GA; } // Now that all of the things that global variable initializer can refer to // have been created, loop through and copy the global variable referrers // over... We also set the attributes on the global now. // for (Module::const_global_iterator I = M->global_begin(), E = M->global_end(); I != E; ++I) { GlobalVariable *GV = cast<GlobalVariable>(VMap[I]); if (I->hasInitializer()) GV->setInitializer(MapValue(I->getInitializer(), VMap)); } // Similarly, copy over function bodies now... // for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I) { Function *F = cast<Function>(VMap[I]); if (!I->isDeclaration()) { Function::arg_iterator DestI = F->arg_begin(); for (Function::const_arg_iterator J = I->arg_begin(); J != I->arg_end(); ++J) { DestI->setName(J->getName()); VMap[J] = DestI++; } SmallVector<ReturnInst*, 8> Returns; // Ignore returns cloned. CloneFunctionInto(F, I, VMap, /*ModuleLevelChanges=*/true, Returns); } } // And aliases for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end(); I != E; ++I) { GlobalAlias *GA = cast<GlobalAlias>(VMap[I]); if (const Constant *C = I->getAliasee()) GA->setAliasee(cast<GlobalObject>(MapValue(C, VMap))); } // And named metadata.... for (Module::const_named_metadata_iterator I = M->named_metadata_begin(), E = M->named_metadata_end(); I != E; ++I) { const NamedMDNode &NMD = *I; NamedMDNode *NewNMD = New->getOrInsertNamedMetadata(NMD.getName()); for (unsigned i = 0, e = NMD.getNumOperands(); i != e; ++i) NewNMD->addOperand(MapValue(NMD.getOperand(i), VMap)); } return New; }
Module *llvm::CloneModule(const Module *M, ValueToValueMapTy &VMap) { // First off, we need to create the new module... Module *New = new Module(M->getModuleIdentifier(), M->getContext()); New->setDataLayout(M->getDataLayout()); New->setTargetTriple(M->getTargetTriple()); New->setModuleInlineAsm(M->getModuleInlineAsm()); // Copy all of the type symbol table entries over. const TypeSymbolTable &TST = M->getTypeSymbolTable(); for (TypeSymbolTable::const_iterator TI = TST.begin(), TE = TST.end(); TI != TE; ++TI) New->addTypeName(TI->first, TI->second); // Copy all of the dependent libraries over. for (Module::lib_iterator I = M->lib_begin(), E = M->lib_end(); I != E; ++I) New->addLibrary(*I); // Loop over all of the global variables, making corresponding globals in the // new module. Here we add them to the VMap and to the new Module. We // don't worry about attributes or initializers, they will come later. // for (Module::const_global_iterator I = M->global_begin(), E = M->global_end(); I != E; ++I) { GlobalVariable *GV = new GlobalVariable(*New, I->getType()->getElementType(), false, GlobalValue::ExternalLinkage, 0, I->getName()); GV->setAlignment(I->getAlignment()); VMap[I] = GV; } // Loop over the functions in the module, making external functions as before for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I) { Function *NF = Function::Create(cast<FunctionType>(I->getType()->getElementType()), GlobalValue::ExternalLinkage, I->getName(), New); NF->copyAttributesFrom(I); VMap[I] = NF; } // Loop over the aliases in the module for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end(); I != E; ++I) VMap[I] = new GlobalAlias(I->getType(), GlobalAlias::ExternalLinkage, I->getName(), NULL, New); // Now that all of the things that global variable initializer can refer to // have been created, loop through and copy the global variable referrers // over... We also set the attributes on the global now. // for (Module::const_global_iterator I = M->global_begin(), E = M->global_end(); I != E; ++I) { GlobalVariable *GV = cast<GlobalVariable>(VMap[I]); if (I->hasInitializer()) GV->setInitializer(cast<Constant>(MapValue(I->getInitializer(), VMap))); GV->setLinkage(I->getLinkage()); GV->setThreadLocal(I->isThreadLocal()); GV->setConstant(I->isConstant()); } // Similarly, copy over function bodies now... // for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I) { Function *F = cast<Function>(VMap[I]); if (!I->isDeclaration()) { Function::arg_iterator DestI = F->arg_begin(); for (Function::const_arg_iterator J = I->arg_begin(); J != I->arg_end(); ++J) { DestI->setName(J->getName()); VMap[J] = DestI++; } SmallVector<ReturnInst*, 8> Returns; // Ignore returns cloned. CloneFunctionInto(F, I, VMap, Returns); } F->setLinkage(I->getLinkage()); } // And aliases for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end(); I != E; ++I) { GlobalAlias *GA = cast<GlobalAlias>(VMap[I]); GA->setLinkage(I->getLinkage()); if (const Constant* C = I->getAliasee()) GA->setAliasee(cast<Constant>(MapValue(C, VMap))); } // And named metadata.... for (Module::const_named_metadata_iterator I = M->named_metadata_begin(), E = M->named_metadata_end(); I != E; ++I) { const NamedMDNode &NMD = *I; SmallVector<MDNode*, 4> MDs; for (unsigned i = 0, e = NMD.getNumOperands(); i != e; ++i) MDs.push_back(cast<MDNode>(MapValue(NMD.getOperand(i), VMap))); NamedMDNode::Create(New->getContext(), NMD.getName(), MDs.data(), MDs.size(), New); } // Update metadata attach with instructions. for (Module::iterator MI = New->begin(), ME = New->end(); MI != ME; ++MI) for (Function::iterator FI = MI->begin(), FE = MI->end(); FI != FE; ++FI) for (BasicBlock::iterator BI = FI->begin(), BE = FI->end(); BI != BE; ++BI) { SmallVector<std::pair<unsigned, MDNode *>, 4 > MDs; BI->getAllMetadata(MDs); for (SmallVector<std::pair<unsigned, MDNode *>, 4>::iterator MDI = MDs.begin(), MDE = MDs.end(); MDI != MDE; ++MDI) { Value *MappedValue = MapValue(MDI->second, VMap); if (MDI->second != MappedValue && MappedValue) BI->setMetadata(MDI->first, cast<MDNode>(MappedValue)); } } return New; }
std::unique_ptr<Module> llvm::CloneModule( const Module *M, ValueToValueMapTy &VMap, std::function<bool(const GlobalValue *)> ShouldCloneDefinition) { // First off, we need to create the new module. std::unique_ptr<Module> New = llvm::make_unique<Module>(M->getModuleIdentifier(), M->getContext()); New->setDataLayout(M->getDataLayout()); New->setTargetTriple(M->getTargetTriple()); New->setModuleInlineAsm(M->getModuleInlineAsm()); // Loop over all of the global variables, making corresponding globals in the // new module. Here we add them to the VMap and to the new Module. We // don't worry about attributes or initializers, they will come later. // for (Module::const_global_iterator I = M->global_begin(), E = M->global_end(); I != E; ++I) { GlobalVariable *GV = new GlobalVariable(*New, I->getValueType(), I->isConstant(), I->getLinkage(), (Constant*) nullptr, I->getName(), (GlobalVariable*) nullptr, I->getThreadLocalMode(), I->getType()->getAddressSpace()); GV->copyAttributesFrom(&*I); VMap[&*I] = GV; } // Loop over the functions in the module, making external functions as before for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I) { Function *NF = Function::Create(cast<FunctionType>(I->getValueType()), I->getLinkage(), I->getName(), New.get()); NF->copyAttributesFrom(&*I); VMap[&*I] = NF; } // Loop over the aliases in the module for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end(); I != E; ++I) { if (!ShouldCloneDefinition(&*I)) { // An alias cannot act as an external reference, so we need to create // either a function or a global variable depending on the value type. // FIXME: Once pointee types are gone we can probably pick one or the // other. GlobalValue *GV; if (I->getValueType()->isFunctionTy()) GV = Function::Create(cast<FunctionType>(I->getValueType()), GlobalValue::ExternalLinkage, I->getName(), New.get()); else GV = new GlobalVariable( *New, I->getValueType(), false, GlobalValue::ExternalLinkage, (Constant *)nullptr, I->getName(), (GlobalVariable *)nullptr, I->getThreadLocalMode(), I->getType()->getAddressSpace()); VMap[&*I] = GV; // We do not copy attributes (mainly because copying between different // kinds of globals is forbidden), but this is generally not required for // correctness. continue; } auto *GA = GlobalAlias::create(I->getValueType(), I->getType()->getPointerAddressSpace(), I->getLinkage(), I->getName(), New.get()); GA->copyAttributesFrom(&*I); VMap[&*I] = GA; } // Now that all of the things that global variable initializer can refer to // have been created, loop through and copy the global variable referrers // over... We also set the attributes on the global now. // for (Module::const_global_iterator I = M->global_begin(), E = M->global_end(); I != E; ++I) { GlobalVariable *GV = cast<GlobalVariable>(VMap[&*I]); if (!ShouldCloneDefinition(&*I)) { // Skip after setting the correct linkage for an external reference. GV->setLinkage(GlobalValue::ExternalLinkage); continue; } if (I->hasInitializer()) GV->setInitializer(MapValue(I->getInitializer(), VMap)); } // Similarly, copy over function bodies now... // for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I) { Function *F = cast<Function>(VMap[&*I]); if (!ShouldCloneDefinition(&*I)) { // Skip after setting the correct linkage for an external reference. F->setLinkage(GlobalValue::ExternalLinkage); // Personality function is not valid on a declaration. F->setPersonalityFn(nullptr); continue; } if (!I->isDeclaration()) { Function::arg_iterator DestI = F->arg_begin(); for (Function::const_arg_iterator J = I->arg_begin(); J != I->arg_end(); ++J) { DestI->setName(J->getName()); VMap[&*J] = &*DestI++; } SmallVector<ReturnInst*, 8> Returns; // Ignore returns cloned. CloneFunctionInto(F, &*I, VMap, /*ModuleLevelChanges=*/true, Returns); } if (I->hasPersonalityFn()) F->setPersonalityFn(MapValue(I->getPersonalityFn(), VMap)); } // And aliases for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end(); I != E; ++I) { // We already dealt with undefined aliases above. if (!ShouldCloneDefinition(&*I)) continue; GlobalAlias *GA = cast<GlobalAlias>(VMap[&*I]); if (const Constant *C = I->getAliasee()) GA->setAliasee(MapValue(C, VMap)); } // And named metadata.... for (Module::const_named_metadata_iterator I = M->named_metadata_begin(), E = M->named_metadata_end(); I != E; ++I) { const NamedMDNode &NMD = *I; NamedMDNode *NewNMD = New->getOrInsertNamedMetadata(NMD.getName()); for (unsigned i = 0, e = NMD.getNumOperands(); i != e; ++i) NewNMD->addOperand(MapMetadata(NMD.getOperand(i), VMap)); } return New; }
Module *llvm::CloneModule(const Module *M, DenseMap<const Value*, Value*> &ValueMap) { // First off, we need to create the new module... Module *New = new Module(M->getModuleIdentifier()); New->setDataLayout(M->getDataLayout()); New->setTargetTriple(M->getTargetTriple()); New->setModuleInlineAsm(M->getModuleInlineAsm()); // Copy all of the type symbol table entries over. const TypeSymbolTable &TST = M->getTypeSymbolTable(); for (TypeSymbolTable::const_iterator TI = TST.begin(), TE = TST.end(); TI != TE; ++TI) New->addTypeName(TI->first, TI->second); // Copy all of the dependent libraries over. for (Module::lib_iterator I = M->lib_begin(), E = M->lib_end(); I != E; ++I) New->addLibrary(*I); // Loop over all of the global variables, making corresponding globals in the // new module. Here we add them to the ValueMap and to the new Module. We // don't worry about attributes or initializers, they will come later. // for (Module::const_global_iterator I = M->global_begin(), E = M->global_end(); I != E; ++I) { GlobalVariable *GV = new GlobalVariable(I->getType()->getElementType(), false, GlobalValue::ExternalLinkage, 0, I->getName(), New); GV->setAlignment(I->getAlignment()); ValueMap[I] = GV; } // Loop over the functions in the module, making external functions as before for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I) { Function *NF = Function::Create(cast<FunctionType>(I->getType()->getElementType()), GlobalValue::ExternalLinkage, I->getName(), New); NF->copyAttributesFrom(I); ValueMap[I] = NF; } // Loop over the aliases in the module for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end(); I != E; ++I) ValueMap[I] = new GlobalAlias(I->getType(), GlobalAlias::ExternalLinkage, I->getName(), NULL, New); // Now that all of the things that global variable initializer can refer to // have been created, loop through and copy the global variable referrers // over... We also set the attributes on the global now. // for (Module::const_global_iterator I = M->global_begin(), E = M->global_end(); I != E; ++I) { GlobalVariable *GV = cast<GlobalVariable>(ValueMap[I]); if (I->hasInitializer()) GV->setInitializer(cast<Constant>(MapValue(I->getInitializer(), ValueMap))); GV->setLinkage(I->getLinkage()); GV->setThreadLocal(I->isThreadLocal()); GV->setConstant(I->isConstant()); } // Similarly, copy over function bodies now... // for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I) { Function *F = cast<Function>(ValueMap[I]); if (!I->isDeclaration()) { Function::arg_iterator DestI = F->arg_begin(); for (Function::const_arg_iterator J = I->arg_begin(); J != I->arg_end(); ++J) { DestI->setName(J->getName()); ValueMap[J] = DestI++; } std::vector<ReturnInst*> Returns; // Ignore returns cloned... CloneFunctionInto(F, I, ValueMap, Returns); } F->setLinkage(I->getLinkage()); } // And aliases for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end(); I != E; ++I) { GlobalAlias *GA = cast<GlobalAlias>(ValueMap[I]); GA->setLinkage(I->getLinkage()); if (const Constant* C = I->getAliasee()) GA->setAliasee(cast<Constant>(MapValue(C, ValueMap))); } return New; }
// destructively move the contents of src into dest // this assumes that the targets of the two modules are the same // including the DataLayout and ModuleFlags (for example) // and that there is no module-level assembly static void jl_merge_module(Module *dest, std::unique_ptr<Module> src) { assert(dest != src.get()); for (Module::global_iterator I = src->global_begin(), E = src->global_end(); I != E;) { GlobalVariable *sG = &*I; GlobalValue *dG = dest->getNamedValue(sG->getName()); ++I; // Replace a declaration with the definition: if (dG) { if (sG->isDeclaration()) { sG->replaceAllUsesWith(dG); sG->eraseFromParent(); continue; } else { dG->replaceAllUsesWith(sG); dG->eraseFromParent(); } } // Reparent the global variable: sG->removeFromParent(); dest->getGlobalList().push_back(sG); // Comdat is owned by the Module, recreate it in the new parent: addComdat(sG); } for (Module::iterator I = src->begin(), E = src->end(); I != E;) { Function *sG = &*I; GlobalValue *dG = dest->getNamedValue(sG->getName()); ++I; // Replace a declaration with the definition: if (dG) { if (sG->isDeclaration()) { sG->replaceAllUsesWith(dG); sG->eraseFromParent(); continue; } else { dG->replaceAllUsesWith(sG); dG->eraseFromParent(); } } // Reparent the global variable: sG->removeFromParent(); dest->getFunctionList().push_back(sG); // Comdat is owned by the Module, recreate it in the new parent: addComdat(sG); } for (Module::alias_iterator I = src->alias_begin(), E = src->alias_end(); I != E;) { GlobalAlias *sG = &*I; GlobalValue *dG = dest->getNamedValue(sG->getName()); ++I; if (dG) { if (!dG->isDeclaration()) { // aliases are always definitions, so this test is reversed from the above two sG->replaceAllUsesWith(dG); sG->eraseFromParent(); continue; } else { dG->replaceAllUsesWith(sG); dG->eraseFromParent(); } } sG->removeFromParent(); dest->getAliasList().push_back(sG); } // metadata nodes need to be explicitly merged not just copied // so there are special passes here for each known type of metadata NamedMDNode *sNMD = src->getNamedMetadata("llvm.dbg.cu"); if (sNMD) { NamedMDNode *dNMD = dest->getOrInsertNamedMetadata("llvm.dbg.cu"); #ifdef LLVM35 for (NamedMDNode::op_iterator I = sNMD->op_begin(), E = sNMD->op_end(); I != E; ++I) { dNMD->addOperand(*I); } #else for (unsigned i = 0, l = sNMD->getNumOperands(); i < l; i++) { dNMD->addOperand(sNMD->getOperand(i)); } #endif } }
std::unique_ptr<Module> llvm::CloneSubModule(const Module &M, HandleGlobalVariableFtor HandleGlobalVariable, HandleFunctionFtor HandleFunction, bool KeepInlineAsm) { ValueToValueMapTy VMap; // First off, we need to create the new module. std::unique_ptr<Module> New = llvm::make_unique<Module>(M.getModuleIdentifier(), M.getContext()); New->setDataLayout(M.getDataLayout()); New->setTargetTriple(M.getTargetTriple()); if (KeepInlineAsm) New->setModuleInlineAsm(M.getModuleInlineAsm()); // Copy global variables (but not initializers, yet). for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); I != E; ++I) { GlobalVariable *GV = new GlobalVariable( *New, I->getType()->getElementType(), I->isConstant(), I->getLinkage(), (Constant *)nullptr, I->getName(), (GlobalVariable *)nullptr, I->getThreadLocalMode(), I->getType()->getAddressSpace()); GV->copyAttributesFrom(I); VMap[I] = GV; } // Loop over the functions in the module, making external functions as before for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) { Function *NF = Function::Create(cast<FunctionType>(I->getType()->getElementType()), I->getLinkage(), I->getName(), &*New); NF->copyAttributesFrom(I); VMap[I] = NF; } // Loop over the aliases in the module for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end(); I != E; ++I) { auto *PTy = cast<PointerType>(I->getType()); auto *GA = GlobalAlias::create(PTy->getElementType(), PTy->getAddressSpace(), I->getLinkage(), I->getName(), &*New); GA->copyAttributesFrom(I); VMap[I] = GA; } // Now that all of the things that global variable initializer can refer to // have been created, loop through and copy the global variable referrers // over... We also set the attributes on the global now. for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); I != E; ++I) { GlobalVariable &GV = *cast<GlobalVariable>(VMap[I]); HandleGlobalVariable(GV, *I, VMap); } // Similarly, copy over function bodies now... // for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) { Function &F = *cast<Function>(VMap[I]); HandleFunction(F, *I, VMap); } // And aliases for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end(); I != E; ++I) { GlobalAlias *GA = cast<GlobalAlias>(VMap[I]); if (const Constant *C = I->getAliasee()) GA->setAliasee(MapValue(C, VMap)); } // And named metadata.... for (Module::const_named_metadata_iterator I = M.named_metadata_begin(), E = M.named_metadata_end(); I != E; ++I) { const NamedMDNode &NMD = *I; NamedMDNode *NewNMD = New->getOrInsertNamedMetadata(NMD.getName()); for (unsigned i = 0, e = NMD.getNumOperands(); i != e; ++i) NewNMD->addOperand(MapMetadata(NMD.getOperand(i), VMap)); } return New; }
void IRLinker::linkAliasBody(GlobalAlias &Dst, GlobalAlias &Src) { Mapper.scheduleMapGlobalAliasee(Dst, *Src.getAliasee(), AliasMCID); }
void link(llvm::Module *krn, const llvm::Module *lib) { assert(krn); assert(lib); ValueToValueMapTy vvm; std::list<llvm::StringRef> declared; // Inspect the kernel, find undefined functions llvm::Module::iterator fi,fe; for (fi=krn->begin(), fe=krn->end(); fi != fe; fi++) { if ((*fi).isDeclaration()) { DB_PRINT("%s is not defined\n", fi->getName().data()); declared.push_back(fi->getName()); continue; } // Find all functions the kernel source calls // TODO: is there no direct way? find_called_functions(fi, declared); } declared.sort(stringref_cmp); declared.unique(stringref_equal); // copy all the globals from lib to krn. // it probably is faster to just copy them all, than to inspect // both krn and lib to find which actually are used. DB_PRINT("cloning the global variables:\n"); llvm::Module::const_global_iterator gi,ge; for (gi=lib->global_begin(), ge=lib->global_end(); gi != ge; gi++) { DB_PRINT(" %s\n", gi->getName().data()); GlobalVariable *GV=new GlobalVariable(*krn, gi->getType()->getElementType(), gi->isConstant(), gi->getLinkage(), (Constant*) 0, gi->getName(), (GlobalVariable*) 0, gi->getThreadLocalMode(), gi->getType()->getAddressSpace()); GV->copyAttributesFrom(gi); vvm[gi]=GV; } // For each undefined function in krn, clone it from the lib to the krn module, // if found in lib std::list<llvm::StringRef>::iterator di,de; for (di=declared.begin(), de=declared.end(); di != de; di++) { copy_func_callgraph( *di, lib, krn, vvm); } // copy any aliases to krn DB_PRINT("cloning the aliases:\n"); llvm::Module::const_alias_iterator ai, ae; for (ai = lib->alias_begin(), ae = lib->alias_end(); ai != ae; ai++) { DB_PRINT(" %s\n", ai->getName().data()); GlobalAlias *GA = #if (defined LLVM_3_2 || defined LLVM_3_3 || defined LLVM_3_4) new GlobalAlias(ai->getType(), ai->getLinkage(), ai->getName(), NULL, krn); #elif (defined LLVM_OLDER_THAN_3_7) GlobalAlias::create(ai->getType(), ai->getType()->getAddressSpace(), ai->getLinkage(), ai->getName(), NULL, krn); #else GlobalAlias::create(ai->getType(), ai->getLinkage(), ai->getName(), NULL, krn); #endif GA->copyAttributesFrom(ai); vvm[ai]=GA; } // initialize the globals that were copied for (gi=lib->global_begin(), ge=lib->global_end(); gi != ge; gi++) { GlobalVariable *GV=cast<GlobalVariable>(vvm[gi]); if (gi->hasInitializer()) GV->setInitializer(MapValue(gi->getInitializer(), vvm)); } // copy metadata DB_PRINT("cloning metadata:\n"); llvm::Module::const_named_metadata_iterator mi,me; for (mi=lib->named_metadata_begin(), me=lib->named_metadata_end(); mi != me; mi++) { const NamedMDNode &NMD=*mi; DB_PRINT(" %s:\n", NMD.getName().data()); NamedMDNode *NewNMD=krn->getOrInsertNamedMetadata(NMD.getName()); for (unsigned i=0, e=NMD.getNumOperands(); i != e; ++i) #ifdef LLVM_OLDER_THAN_3_6 NewNMD->addOperand(MapValue(NMD.getOperand(i), vvm)); #else NewNMD->addOperand(MapMetadata(NMD.getOperand(i), vvm)); #endif } }