void onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) override{ const GrBitmapTextGeoProc& cte = args.fGP.cast<GrBitmapTextGeoProc>(); GrGLGPBuilder* pb = args.fPB; GrGLVertexBuilder* vsBuilder = pb->getVertexShaderBuilder(); // emit attributes vsBuilder->emitAttributes(cte); GrGLVertToFrag v(kVec2f_GrSLType); pb->addVarying("TextureCoords", &v); // this is only used with text, so our texture bounds always match the glyph atlas if (cte.maskFormat() == kA8_GrMaskFormat) { vsBuilder->codeAppendf("%s = vec2(" GR_FONT_ATLAS_A8_RECIP_WIDTH ", " GR_FONT_ATLAS_RECIP_HEIGHT ")*%s;", v.vsOut(), cte.inTextureCoords()->fName); } else { vsBuilder->codeAppendf("%s = vec2(" GR_FONT_ATLAS_RECIP_WIDTH ", " GR_FONT_ATLAS_RECIP_HEIGHT ")*%s;", v.vsOut(), cte.inTextureCoords()->fName); } // Setup pass through color if (!cte.colorIgnored()) { if (cte.hasVertexColor()) { pb->addPassThroughAttribute(cte.inColor(), args.fOutputColor); } else { this->setupUniformColor(pb, args.fOutputColor, &fColorUniform); } } // Setup position this->setupPosition(pb, gpArgs, cte.inPosition()->fName); // emit transforms this->emitTransforms(args.fPB, gpArgs->fPositionVar, cte.inPosition()->fName, cte.localMatrix(), args.fTransformsIn, args.fTransformsOut); GrGLFragmentBuilder* fsBuilder = pb->getFragmentShaderBuilder(); if (cte.maskFormat() == kARGB_GrMaskFormat) { fsBuilder->codeAppendf("%s = ", args.fOutputColor); fsBuilder->appendTextureLookupAndModulate(args.fOutputColor, args.fSamplers[0], v.fsIn(), kVec2f_GrSLType); fsBuilder->codeAppend(";"); fsBuilder->codeAppendf("%s = vec4(1);", args.fOutputCoverage); } else { fsBuilder->codeAppendf("%s = ", args.fOutputCoverage); fsBuilder->appendTextureLookup(args.fSamplers[0], v.fsIn(), kVec2f_GrSLType); fsBuilder->codeAppend(";"); } }
void GrGLGeometryProcessor::setupPosition(GrGLGPBuilder* pb, GrGPArgs* gpArgs, const char* posName, const SkMatrix& mat) { GrGLVertexBuilder* vsBuilder = pb->getVertexShaderBuilder(); if (mat.isIdentity()) { gpArgs->fPositionVar.set(kVec2f_GrSLType, "pos2"); vsBuilder->codeAppendf("vec2 %s = %s;", gpArgs->fPositionVar.c_str(), posName); } else if (!mat.hasPerspective()) { this->addUniformViewMatrix(pb); gpArgs->fPositionVar.set(kVec2f_GrSLType, "pos2"); vsBuilder->codeAppendf("vec2 %s = vec2(%s * vec3(%s, 1));", gpArgs->fPositionVar.c_str(), this->uViewM(), posName); } else { this->addUniformViewMatrix(pb); gpArgs->fPositionVar.set(kVec3f_GrSLType, "pos3"); vsBuilder->codeAppendf("vec3 %s = %s * vec3(%s, 1);", gpArgs->fPositionVar.c_str(), this->uViewM(), posName); } }
void onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) override { const QuadEdgeEffect& qe = args.fGP.cast<QuadEdgeEffect>(); GrGLGPBuilder* pb = args.fPB; GrGLVertexBuilder* vsBuilder = pb->getVertexShaderBuilder(); // emit attributes vsBuilder->emitAttributes(qe); GrGLVertToFrag v(kVec4f_GrSLType); args.fPB->addVarying("QuadEdge", &v); vsBuilder->codeAppendf("%s = %s;", v.vsOut(), qe.inQuadEdge()->fName); const BatchTracker& local = args.fBT.cast<BatchTracker>(); // Setup pass through color this->setupColorPassThrough(pb, local.fInputColorType, args.fOutputColor, NULL, &fColorUniform); // Setup position this->setupPosition(pb, gpArgs, qe.inPosition()->fName, qe.viewMatrix()); // emit transforms this->emitTransforms(args.fPB, gpArgs->fPositionVar, qe.inPosition()->fName, qe.localMatrix(), args.fTransformsIn, args.fTransformsOut); GrGLFragmentBuilder* fsBuilder = args.fPB->getFragmentShaderBuilder(); SkAssertResult(fsBuilder->enableFeature( GrGLFragmentShaderBuilder::kStandardDerivatives_GLSLFeature)); fsBuilder->codeAppendf("float edgeAlpha;"); // keep the derivative instructions outside the conditional fsBuilder->codeAppendf("vec2 duvdx = dFdx(%s.xy);", v.fsIn()); fsBuilder->codeAppendf("vec2 duvdy = dFdy(%s.xy);", v.fsIn()); fsBuilder->codeAppendf("if (%s.z > 0.0 && %s.w > 0.0) {", v.fsIn(), v.fsIn()); // today we know z and w are in device space. We could use derivatives fsBuilder->codeAppendf("edgeAlpha = min(min(%s.z, %s.w) + 0.5, 1.0);", v.fsIn(), v.fsIn()); fsBuilder->codeAppendf ("} else {"); fsBuilder->codeAppendf("vec2 gF = vec2(2.0*%s.x*duvdx.x - duvdx.y," " 2.0*%s.x*duvdy.x - duvdy.y);", v.fsIn(), v.fsIn()); fsBuilder->codeAppendf("edgeAlpha = (%s.x*%s.x - %s.y);", v.fsIn(), v.fsIn(), v.fsIn()); fsBuilder->codeAppendf("edgeAlpha = " "clamp(0.5 - edgeAlpha / length(gF), 0.0, 1.0);}"); fsBuilder->codeAppendf("%s = vec4(edgeAlpha);", args.fOutputCoverage); }
void onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) override{ const GrDistanceFieldLCDTextGeoProc& dfTexEffect = args.fGP.cast<GrDistanceFieldLCDTextGeoProc>(); GrGLGPBuilder* pb = args.fPB; GrGLVertexBuilder* vsBuilder = args.fPB->getVertexShaderBuilder(); // emit attributes vsBuilder->emitAttributes(dfTexEffect); // setup pass through color if (!dfTexEffect.colorIgnored()) { this->setupUniformColor(pb, args.fOutputColor, &fColorUniform); } // Setup position this->setupPosition(pb, gpArgs, dfTexEffect.inPosition()->fName, dfTexEffect.viewMatrix(), &fViewMatrixUniform); // emit transforms this->emitTransforms(args.fPB, gpArgs->fPositionVar, dfTexEffect.inPosition()->fName, args.fTransformsIn, args.fTransformsOut); // set up varyings bool isUniformScale = SkToBool(dfTexEffect.getFlags() & kUniformScale_DistanceFieldEffectMask); GrGLVertToFrag recipScale(kFloat_GrSLType); GrGLVertToFrag st(kVec2f_GrSLType); args.fPB->addVarying("IntTextureCoords", &st, kHigh_GrSLPrecision); vsBuilder->codeAppendf("%s = %s;", st.vsOut(), dfTexEffect.inTextureCoords()->fName); GrGLVertToFrag uv(kVec2f_GrSLType); args.fPB->addVarying("TextureCoords", &uv, kHigh_GrSLPrecision); // this is only used with text, so our texture bounds always match the glyph atlas vsBuilder->codeAppendf("%s = vec2(" GR_FONT_ATLAS_A8_RECIP_WIDTH ", " GR_FONT_ATLAS_RECIP_HEIGHT ")*%s;", uv.vsOut(), dfTexEffect.inTextureCoords()->fName); // add frag shader code GrGLFragmentBuilder* fsBuilder = args.fPB->getFragmentShaderBuilder(); SkAssertResult(fsBuilder->enableFeature( GrGLFragmentShaderBuilder::kStandardDerivatives_GLSLFeature)); // create LCD offset adjusted by inverse of transform // Use highp to work around aliasing issues fsBuilder->codeAppend(GrGLShaderVar::PrecisionString(kHigh_GrSLPrecision, pb->ctxInfo().standard())); fsBuilder->codeAppendf("vec2 uv = %s;\n", uv.fsIn()); fsBuilder->codeAppend(GrGLShaderVar::PrecisionString(kHigh_GrSLPrecision, pb->ctxInfo().standard())); if (dfTexEffect.getFlags() & kBGR_DistanceFieldEffectFlag) { fsBuilder->codeAppend("float delta = -" GR_FONT_ATLAS_LCD_DELTA ";\n"); } else { fsBuilder->codeAppend("float delta = " GR_FONT_ATLAS_LCD_DELTA ";\n"); } if (isUniformScale) { fsBuilder->codeAppendf("float dy = abs(dFdy(%s.y));", st.fsIn()); fsBuilder->codeAppend("vec2 offset = vec2(dy*delta, 0.0);"); } else { fsBuilder->codeAppendf("vec2 st = %s;\n", st.fsIn()); fsBuilder->codeAppend("vec2 Jdx = dFdx(st);"); fsBuilder->codeAppend("vec2 Jdy = dFdy(st);"); fsBuilder->codeAppend("vec2 offset = delta*Jdx;"); } // green is distance to uv center fsBuilder->codeAppend("\tvec4 texColor = "); fsBuilder->appendTextureLookup(args.fSamplers[0], "uv", kVec2f_GrSLType); fsBuilder->codeAppend(";\n"); fsBuilder->codeAppend("\tvec3 distance;\n"); fsBuilder->codeAppend("\tdistance.y = texColor.r;\n"); // red is distance to left offset fsBuilder->codeAppend("\tvec2 uv_adjusted = uv - offset;\n"); fsBuilder->codeAppend("\ttexColor = "); fsBuilder->appendTextureLookup(args.fSamplers[0], "uv_adjusted", kVec2f_GrSLType); fsBuilder->codeAppend(";\n"); fsBuilder->codeAppend("\tdistance.x = texColor.r;\n"); // blue is distance to right offset fsBuilder->codeAppend("\tuv_adjusted = uv + offset;\n"); fsBuilder->codeAppend("\ttexColor = "); fsBuilder->appendTextureLookup(args.fSamplers[0], "uv_adjusted", kVec2f_GrSLType); fsBuilder->codeAppend(";\n"); fsBuilder->codeAppend("\tdistance.z = texColor.r;\n"); fsBuilder->codeAppend("\tdistance = " "vec3(" SK_DistanceFieldMultiplier ")*(distance - vec3(" SK_DistanceFieldThreshold"));"); // adjust width based on gamma const char* distanceAdjustUniName = NULL; fDistanceAdjustUni = args.fPB->addUniform(GrGLProgramBuilder::kFragment_Visibility, kVec3f_GrSLType, kDefault_GrSLPrecision, "DistanceAdjust", &distanceAdjustUniName); fsBuilder->codeAppendf("distance -= %s;", distanceAdjustUniName); // To be strictly correct, we should compute the anti-aliasing factor separately // for each color component. However, this is only important when using perspective // transformations, and even then using a single factor seems like a reasonable // trade-off between quality and speed. fsBuilder->codeAppend("float afwidth;"); if (isUniformScale) { // For uniform scale, we adjust for the effect of the transformation on the distance // by using the length of the gradient of the texture coordinates. We use st coordinates // to ensure we're mapping 1:1 from texel space to pixel space. // this gives us a smooth step across approximately one fragment fsBuilder->codeAppend("afwidth = " SK_DistanceFieldAAFactor "*dy;"); } else { // For general transforms, to determine the amount of correction we multiply a unit // vector pointing along the SDF gradient direction by the Jacobian of the st coords // (which is the inverse transform for this fragment) and take the length of the result. fsBuilder->codeAppend("vec2 dist_grad = vec2(dFdx(distance.r), dFdy(distance.r));"); // the length of the gradient may be 0, so we need to check for this // this also compensates for the Adreno, which likes to drop tiles on division by 0 fsBuilder->codeAppend("float dg_len2 = dot(dist_grad, dist_grad);"); fsBuilder->codeAppend("if (dg_len2 < 0.0001) {"); fsBuilder->codeAppend("dist_grad = vec2(0.7071, 0.7071);"); fsBuilder->codeAppend("} else {"); fsBuilder->codeAppend("dist_grad = dist_grad*inversesqrt(dg_len2);"); fsBuilder->codeAppend("}"); fsBuilder->codeAppend("vec2 grad = vec2(dist_grad.x*Jdx.x + dist_grad.y*Jdy.x,"); fsBuilder->codeAppend(" dist_grad.x*Jdx.y + dist_grad.y*Jdy.y);"); // this gives us a smooth step across approximately one fragment fsBuilder->codeAppend("afwidth = " SK_DistanceFieldAAFactor "*length(grad);"); } fsBuilder->codeAppend( "vec4 val = vec4(smoothstep(vec3(-afwidth), vec3(afwidth), distance), 1.0);"); fsBuilder->codeAppendf("%s = vec4(val);", args.fOutputCoverage); }
void onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) override{ const GrDistanceFieldA8TextGeoProc& dfTexEffect = args.fGP.cast<GrDistanceFieldA8TextGeoProc>(); GrGLGPBuilder* pb = args.fPB; GrGLFragmentBuilder* fsBuilder = args.fPB->getFragmentShaderBuilder(); SkAssertResult(fsBuilder->enableFeature( GrGLFragmentShaderBuilder::kStandardDerivatives_GLSLFeature)); GrGLVertexBuilder* vsBuilder = args.fPB->getVertexShaderBuilder(); // emit attributes vsBuilder->emitAttributes(dfTexEffect); #ifdef SK_GAMMA_APPLY_TO_A8 // adjust based on gamma const char* distanceAdjustUniName = NULL; // width, height, 1/(3*width) fDistanceAdjustUni = args.fPB->addUniform(GrGLProgramBuilder::kFragment_Visibility, kFloat_GrSLType, kDefault_GrSLPrecision, "DistanceAdjust", &distanceAdjustUniName); #endif // Setup pass through color if (!dfTexEffect.colorIgnored()) { if (dfTexEffect.hasVertexColor()) { pb->addPassThroughAttribute(dfTexEffect.inColor(), args.fOutputColor); } else { this->setupUniformColor(pb, args.fOutputColor, &fColorUniform); } } // Setup position this->setupPosition(pb, gpArgs, dfTexEffect.inPosition()->fName, dfTexEffect.viewMatrix(), &fViewMatrixUniform); // emit transforms this->emitTransforms(args.fPB, gpArgs->fPositionVar, dfTexEffect.inPosition()->fName, args.fTransformsIn, args.fTransformsOut); // add varyings GrGLVertToFrag recipScale(kFloat_GrSLType); GrGLVertToFrag st(kVec2f_GrSLType); bool isSimilarity = SkToBool(dfTexEffect.getFlags() & kSimilarity_DistanceFieldEffectFlag); args.fPB->addVarying("IntTextureCoords", &st, kHigh_GrSLPrecision); vsBuilder->codeAppendf("%s = %s;", st.vsOut(), dfTexEffect.inTextureCoords()->fName); GrGLVertToFrag uv(kVec2f_GrSLType); args.fPB->addVarying("TextureCoords", &uv, kHigh_GrSLPrecision); // this is only used with text, so our texture bounds always match the glyph atlas vsBuilder->codeAppendf("%s = vec2(" GR_FONT_ATLAS_A8_RECIP_WIDTH ", " GR_FONT_ATLAS_RECIP_HEIGHT ")*%s;", uv.vsOut(), dfTexEffect.inTextureCoords()->fName); // Use highp to work around aliasing issues fsBuilder->codeAppend(GrGLShaderVar::PrecisionString(kHigh_GrSLPrecision, pb->ctxInfo().standard())); fsBuilder->codeAppendf("vec2 uv = %s;\n", uv.fsIn()); fsBuilder->codeAppend("\tfloat texColor = "); fsBuilder->appendTextureLookup(args.fSamplers[0], "uv", kVec2f_GrSLType); fsBuilder->codeAppend(".r;\n"); fsBuilder->codeAppend("\tfloat distance = " SK_DistanceFieldMultiplier "*(texColor - " SK_DistanceFieldThreshold ");"); #ifdef SK_GAMMA_APPLY_TO_A8 // adjust width based on gamma fsBuilder->codeAppendf("distance -= %s;", distanceAdjustUniName); #endif fsBuilder->codeAppend("float afwidth;"); if (isSimilarity) { // For uniform scale, we adjust for the effect of the transformation on the distance // by using the length of the gradient of the texture coordinates. We use st coordinates // to ensure we're mapping 1:1 from texel space to pixel space. // this gives us a smooth step across approximately one fragment // we use y to work around a Mali400 bug in the x direction fsBuilder->codeAppendf("afwidth = abs(" SK_DistanceFieldAAFactor "*dFdy(%s.y));", st.fsIn()); } else { // For general transforms, to determine the amount of correction we multiply a unit // vector pointing along the SDF gradient direction by the Jacobian of the st coords // (which is the inverse transform for this fragment) and take the length of the result. fsBuilder->codeAppend("vec2 dist_grad = vec2(dFdx(distance), dFdy(distance));"); // the length of the gradient may be 0, so we need to check for this // this also compensates for the Adreno, which likes to drop tiles on division by 0 fsBuilder->codeAppend("float dg_len2 = dot(dist_grad, dist_grad);"); fsBuilder->codeAppend("if (dg_len2 < 0.0001) {"); fsBuilder->codeAppend("dist_grad = vec2(0.7071, 0.7071);"); fsBuilder->codeAppend("} else {"); fsBuilder->codeAppend("dist_grad = dist_grad*inversesqrt(dg_len2);"); fsBuilder->codeAppend("}"); fsBuilder->codeAppendf("vec2 Jdx = dFdx(%s);", st.fsIn()); fsBuilder->codeAppendf("vec2 Jdy = dFdy(%s);", st.fsIn()); fsBuilder->codeAppend("vec2 grad = vec2(dist_grad.x*Jdx.x + dist_grad.y*Jdy.x,"); fsBuilder->codeAppend(" dist_grad.x*Jdx.y + dist_grad.y*Jdy.y);"); // this gives us a smooth step across approximately one fragment fsBuilder->codeAppend("afwidth = " SK_DistanceFieldAAFactor "*length(grad);"); } fsBuilder->codeAppend("float val = smoothstep(-afwidth, afwidth, distance);"); fsBuilder->codeAppendf("%s = vec4(val);", args.fOutputCoverage); }
void onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) override{ const GrDistanceFieldPathGeoProc& dfTexEffect = args.fGP.cast<GrDistanceFieldPathGeoProc>(); GrGLGPBuilder* pb = args.fPB; GrGLFragmentBuilder* fsBuilder = args.fPB->getFragmentShaderBuilder(); SkAssertResult(fsBuilder->enableFeature( GrGLFragmentShaderBuilder::kStandardDerivatives_GLSLFeature)); GrGLVertexBuilder* vsBuilder = args.fPB->getVertexShaderBuilder(); // emit attributes vsBuilder->emitAttributes(dfTexEffect); GrGLVertToFrag v(kVec2f_GrSLType); args.fPB->addVarying("TextureCoords", &v, kHigh_GrSLPrecision); // setup pass through color if (!dfTexEffect.colorIgnored()) { if (dfTexEffect.hasVertexColor()) { pb->addPassThroughAttribute(dfTexEffect.inColor(), args.fOutputColor); } else { this->setupUniformColor(pb, args.fOutputColor, &fColorUniform); } } vsBuilder->codeAppendf("%s = %s;", v.vsOut(), dfTexEffect.inTextureCoords()->fName); // Setup position this->setupPosition(pb, gpArgs, dfTexEffect.inPosition()->fName, dfTexEffect.viewMatrix(), &fViewMatrixUniform); // emit transforms this->emitTransforms(args.fPB, gpArgs->fPositionVar, dfTexEffect.inPosition()->fName, args.fTransformsIn, args.fTransformsOut); const char* textureSizeUniName = NULL; fTextureSizeUni = args.fPB->addUniform(GrGLProgramBuilder::kFragment_Visibility, kVec2f_GrSLType, kDefault_GrSLPrecision, "TextureSize", &textureSizeUniName); // Use highp to work around aliasing issues fsBuilder->codeAppend(GrGLShaderVar::PrecisionString(kHigh_GrSLPrecision, pb->ctxInfo().standard())); fsBuilder->codeAppendf("vec2 uv = %s;", v.fsIn()); fsBuilder->codeAppend("float texColor = "); fsBuilder->appendTextureLookup(args.fSamplers[0], "uv", kVec2f_GrSLType); fsBuilder->codeAppend(".r;"); fsBuilder->codeAppend("float distance = " SK_DistanceFieldMultiplier "*(texColor - " SK_DistanceFieldThreshold ");"); fsBuilder->codeAppend(GrGLShaderVar::PrecisionString(kHigh_GrSLPrecision, pb->ctxInfo().standard())); fsBuilder->codeAppendf("vec2 st = uv*%s;", textureSizeUniName); fsBuilder->codeAppend("float afwidth;"); if (dfTexEffect.getFlags() & kSimilarity_DistanceFieldEffectFlag) { // For uniform scale, we adjust for the effect of the transformation on the distance // by using the length of the gradient of the texture coordinates. We use st coordinates // to ensure we're mapping 1:1 from texel space to pixel space. // this gives us a smooth step across approximately one fragment fsBuilder->codeAppend("afwidth = abs(" SK_DistanceFieldAAFactor "*dFdy(st.y));"); } else { // For general transforms, to determine the amount of correction we multiply a unit // vector pointing along the SDF gradient direction by the Jacobian of the st coords // (which is the inverse transform for this fragment) and take the length of the result. fsBuilder->codeAppend("vec2 dist_grad = vec2(dFdx(distance), dFdy(distance));"); // the length of the gradient may be 0, so we need to check for this // this also compensates for the Adreno, which likes to drop tiles on division by 0 fsBuilder->codeAppend("float dg_len2 = dot(dist_grad, dist_grad);"); fsBuilder->codeAppend("if (dg_len2 < 0.0001) {"); fsBuilder->codeAppend("dist_grad = vec2(0.7071, 0.7071);"); fsBuilder->codeAppend("} else {"); fsBuilder->codeAppend("dist_grad = dist_grad*inversesqrt(dg_len2);"); fsBuilder->codeAppend("}"); fsBuilder->codeAppend("vec2 Jdx = dFdx(st);"); fsBuilder->codeAppend("vec2 Jdy = dFdy(st);"); fsBuilder->codeAppend("vec2 grad = vec2(dist_grad.x*Jdx.x + dist_grad.y*Jdy.x,"); fsBuilder->codeAppend(" dist_grad.x*Jdx.y + dist_grad.y*Jdy.y);"); // this gives us a smooth step across approximately one fragment fsBuilder->codeAppend("afwidth = " SK_DistanceFieldAAFactor "*length(grad);"); } fsBuilder->codeAppend("float val = smoothstep(-afwidth, afwidth, distance);"); fsBuilder->codeAppendf("%s = vec4(val);", args.fOutputCoverage); }
void GrGLGeometryProcessor::emitTransforms(GrGLGPBuilder* pb, const GrShaderVar& posVar, const char* localCoords, const SkMatrix& localMatrix, const TransformsIn& tin, TransformsOut* tout) { GrGLVertexBuilder* vb = pb->getVertexShaderBuilder(); tout->push_back_n(tin.count()); fInstalledTransforms.push_back_n(tin.count()); for (int i = 0; i < tin.count(); i++) { const ProcCoords& coordTransforms = tin[i]; fInstalledTransforms[i].push_back_n(coordTransforms.count()); for (int t = 0; t < coordTransforms.count(); t++) { SkString strUniName("StageMatrix"); strUniName.appendf("_%i_%i", i, t); GrSLType varyingType; GrCoordSet coordType = coordTransforms[t]->sourceCoords(); uint32_t type = coordTransforms[t]->getMatrix().getType(); if (kLocal_GrCoordSet == coordType) { type |= localMatrix.getType(); } varyingType = SkToBool(SkMatrix::kPerspective_Mask & type) ? kVec3f_GrSLType : kVec2f_GrSLType; GrSLPrecision precision = coordTransforms[t]->precision(); const char* uniName; fInstalledTransforms[i][t].fHandle = pb->addUniform(GrGLProgramBuilder::kVertex_Visibility, kMat33f_GrSLType, precision, strUniName.c_str(), &uniName).toShaderBuilderIndex(); SkString strVaryingName("MatrixCoord"); strVaryingName.appendf("_%i_%i", i, t); GrGLVertToFrag v(varyingType); pb->addVarying(strVaryingName.c_str(), &v, precision); SkASSERT(kVec2f_GrSLType == varyingType || kVec3f_GrSLType == varyingType); SkNEW_APPEND_TO_TARRAY(&(*tout)[i], GrGLProcessor::TransformedCoords, (SkString(v.fsIn()), varyingType)); // varying = matrix * coords (logically) if (kDevice_GrCoordSet == coordType) { if (kVec2f_GrSLType == varyingType) { if (kVec2f_GrSLType == posVar.getType()) { vb->codeAppendf("%s = (%s * vec3(%s, 1)).xy;", v.vsOut(), uniName, posVar.c_str()); } else { // The brackets here are just to scope the temp variable vb->codeAppendf("{ vec3 temp = %s * %s;", uniName, posVar.c_str()); vb->codeAppendf("%s = vec2(temp.x/temp.z, temp.y/temp.z); }", v.vsOut()); } } else { if (kVec2f_GrSLType == posVar.getType()) { vb->codeAppendf("%s = %s * vec3(%s, 1);", v.vsOut(), uniName, posVar.c_str()); } else { vb->codeAppendf("%s = %s * %s;", v.vsOut(), uniName, posVar.c_str()); } } } else { if (kVec2f_GrSLType == varyingType) { vb->codeAppendf("%s = (%s * vec3(%s, 1)).xy;", v.vsOut(), uniName, localCoords); } else { vb->codeAppendf("%s = %s * vec3(%s, 1);", v.vsOut(), uniName, localCoords); } } } } }
void GrGLConicEffect::onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) { GrGLGPBuilder* pb = args.fPB; GrGLVertexBuilder* vsBuilder = args.fPB->getVertexShaderBuilder(); const GrConicEffect& gp = args.fGP.cast<GrConicEffect>(); const ConicBatchTracker& local = args.fBT.cast<ConicBatchTracker>(); // emit attributes vsBuilder->emitAttributes(gp); GrGLVertToFrag v(kVec4f_GrSLType); args.fPB->addVarying("ConicCoeffs", &v); vsBuilder->codeAppendf("%s = %s;", v.vsOut(), gp.inConicCoeffs()->fName); // Setup pass through color this->setupColorPassThrough(args.fPB, local.fInputColorType, args.fOutputColor, NULL, &fColorUniform); // Setup position this->setupPosition(pb, gpArgs, gp.inPosition()->fName, gp.viewMatrix()); // emit transforms with position this->emitTransforms(pb, gpArgs->fPositionVar, gp.inPosition()->fName, gp.localMatrix(), args.fTransformsIn, args.fTransformsOut); GrGLFragmentBuilder* fsBuilder = args.fPB->getFragmentShaderBuilder(); fsBuilder->codeAppend("float edgeAlpha;"); switch (fEdgeType) { case kHairlineAA_GrProcessorEdgeType: { SkAssertResult(fsBuilder->enableFeature( GrGLFragmentShaderBuilder::kStandardDerivatives_GLSLFeature)); fsBuilder->codeAppendf("vec3 dklmdx = dFdx(%s.xyz);", v.fsIn()); fsBuilder->codeAppendf("vec3 dklmdy = dFdy(%s.xyz);", v.fsIn()); fsBuilder->codeAppendf("float dfdx =" "2.0 * %s.x * dklmdx.x - %s.y * dklmdx.z - %s.z * dklmdx.y;", v.fsIn(), v.fsIn(), v.fsIn()); fsBuilder->codeAppendf("float dfdy =" "2.0 * %s.x * dklmdy.x - %s.y * dklmdy.z - %s.z * dklmdy.y;", v.fsIn(), v.fsIn(), v.fsIn()); fsBuilder->codeAppend("vec2 gF = vec2(dfdx, dfdy);"); fsBuilder->codeAppend("float gFM = sqrt(dot(gF, gF));"); fsBuilder->codeAppendf("float func = %s.x*%s.x - %s.y*%s.z;", v.fsIn(), v.fsIn(), v.fsIn(), v.fsIn()); fsBuilder->codeAppend("func = abs(func);"); fsBuilder->codeAppend("edgeAlpha = func / gFM;"); fsBuilder->codeAppend("edgeAlpha = max(1.0 - edgeAlpha, 0.0);"); // Add line below for smooth cubic ramp // fsBuilder->codeAppend("edgeAlpha = edgeAlpha*edgeAlpha*(3.0-2.0*edgeAlpha);"); break; } case kFillAA_GrProcessorEdgeType: { SkAssertResult(fsBuilder->enableFeature( GrGLFragmentShaderBuilder::kStandardDerivatives_GLSLFeature)); fsBuilder->codeAppendf("vec3 dklmdx = dFdx(%s.xyz);", v.fsIn()); fsBuilder->codeAppendf("vec3 dklmdy = dFdy(%s.xyz);", v.fsIn()); fsBuilder->codeAppendf("float dfdx =" "2.0 * %s.x * dklmdx.x - %s.y * dklmdx.z - %s.z * dklmdx.y;", v.fsIn(), v.fsIn(), v.fsIn()); fsBuilder->codeAppendf("float dfdy =" "2.0 * %s.x * dklmdy.x - %s.y * dklmdy.z - %s.z * dklmdy.y;", v.fsIn(), v.fsIn(), v.fsIn()); fsBuilder->codeAppend("vec2 gF = vec2(dfdx, dfdy);"); fsBuilder->codeAppend("float gFM = sqrt(dot(gF, gF));"); fsBuilder->codeAppendf("float func = %s.x * %s.x - %s.y * %s.z;", v.fsIn(), v.fsIn(), v.fsIn(), v.fsIn()); fsBuilder->codeAppend("edgeAlpha = func / gFM;"); fsBuilder->codeAppend("edgeAlpha = clamp(1.0 - edgeAlpha, 0.0, 1.0);"); // Add line below for smooth cubic ramp // fsBuilder->codeAppend("edgeAlpha = edgeAlpha*edgeAlpha*(3.0-2.0*edgeAlpha);"); break; } case kFillBW_GrProcessorEdgeType: { fsBuilder->codeAppendf("edgeAlpha = %s.x * %s.x - %s.y * %s.z;", v.fsIn(), v.fsIn(), v.fsIn(), v.fsIn()); fsBuilder->codeAppend("edgeAlpha = float(edgeAlpha < 0.0);"); break; } default: SkFAIL("Shouldn't get here"); } if (0xff != local.fCoverageScale) { const char* coverageScale; fCoverageScaleUniform = pb->addUniform(GrGLProgramBuilder::kFragment_Visibility, kFloat_GrSLType, kDefault_GrSLPrecision, "Coverage", &coverageScale); fsBuilder->codeAppendf("%s = vec4(%s * edgeAlpha);", args.fOutputCoverage, coverageScale); } else { fsBuilder->codeAppendf("%s = vec4(edgeAlpha);", args.fOutputCoverage); } }
void GrGLCubicEffect::onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) { GrGLVertexBuilder* vsBuilder = args.fPB->getVertexShaderBuilder(); const GrCubicEffect& gp = args.fGP.cast<GrCubicEffect>(); const CubicBatchTracker& local = args.fBT.cast<CubicBatchTracker>(); // emit attributes vsBuilder->emitAttributes(gp); GrGLVertToFrag v(kVec4f_GrSLType); args.fPB->addVarying("CubicCoeffs", &v, kHigh_GrSLPrecision); vsBuilder->codeAppendf("%s = %s;", v.vsOut(), gp.inCubicCoeffs()->fName); // Setup pass through color this->setupColorPassThrough(args.fPB, local.fInputColorType, args.fOutputColor, NULL, &fColorUniform); // Setup position this->setupPosition(args.fPB, gpArgs, gp.inPosition()->fName, gp.viewMatrix()); // emit transforms with position this->emitTransforms(args.fPB, gpArgs->fPositionVar, gp.inPosition()->fName, args.fTransformsIn, args.fTransformsOut); GrGLFragmentBuilder* fsBuilder = args.fPB->getFragmentShaderBuilder(); GrGLShaderVar edgeAlpha("edgeAlpha", kFloat_GrSLType, 0, kHigh_GrSLPrecision); GrGLShaderVar dklmdx("dklmdx", kVec3f_GrSLType, 0, kHigh_GrSLPrecision); GrGLShaderVar dklmdy("dklmdy", kVec3f_GrSLType, 0, kHigh_GrSLPrecision); GrGLShaderVar dfdx("dfdx", kFloat_GrSLType, 0, kHigh_GrSLPrecision); GrGLShaderVar dfdy("dfdy", kFloat_GrSLType, 0, kHigh_GrSLPrecision); GrGLShaderVar gF("gF", kVec2f_GrSLType, 0, kHigh_GrSLPrecision); GrGLShaderVar gFM("gFM", kFloat_GrSLType, 0, kHigh_GrSLPrecision); GrGLShaderVar func("func", kFloat_GrSLType, 0, kHigh_GrSLPrecision); fsBuilder->declAppend(edgeAlpha); fsBuilder->declAppend(dklmdx); fsBuilder->declAppend(dklmdy); fsBuilder->declAppend(dfdx); fsBuilder->declAppend(dfdy); fsBuilder->declAppend(gF); fsBuilder->declAppend(gFM); fsBuilder->declAppend(func); switch (fEdgeType) { case kHairlineAA_GrProcessorEdgeType: { SkAssertResult(fsBuilder->enableFeature( GrGLFragmentShaderBuilder::kStandardDerivatives_GLSLFeature)); fsBuilder->codeAppendf("%s = dFdx(%s.xyz);", dklmdx.c_str(), v.fsIn()); fsBuilder->codeAppendf("%s = dFdy(%s.xyz);", dklmdy.c_str(), v.fsIn()); fsBuilder->codeAppendf("%s = 3.0 * %s.x * %s.x * %s.x - %s.y * %s.z - %s.z * %s.y;", dfdx.c_str(), v.fsIn(), v.fsIn(), dklmdx.c_str(), v.fsIn(), dklmdx.c_str(), v.fsIn(), dklmdx.c_str()); fsBuilder->codeAppendf("%s = 3.0 * %s.x * %s.x * %s.x - %s.y * %s.z - %s.z * %s.y;", dfdy.c_str(), v.fsIn(), v.fsIn(), dklmdy.c_str(), v.fsIn(), dklmdy.c_str(), v.fsIn(), dklmdy.c_str()); fsBuilder->codeAppendf("%s = vec2(%s, %s);", gF.c_str(), dfdx.c_str(), dfdy.c_str()); fsBuilder->codeAppendf("%s = sqrt(dot(%s, %s));", gFM.c_str(), gF.c_str(), gF.c_str()); fsBuilder->codeAppendf("%s = %s.x * %s.x * %s.x - %s.y * %s.z;", func.c_str(), v.fsIn(), v.fsIn(), v.fsIn(), v.fsIn(), v.fsIn()); fsBuilder->codeAppendf("%s = abs(%s);", func.c_str(), func.c_str()); fsBuilder->codeAppendf("%s = %s / %s;", edgeAlpha.c_str(), func.c_str(), gFM.c_str()); fsBuilder->codeAppendf("%s = max(1.0 - %s, 0.0);", edgeAlpha.c_str(), edgeAlpha.c_str()); // Add line below for smooth cubic ramp // fsBuilder->codeAppendf("%s = %s * %s * (3.0 - 2.0 * %s);", // edgeAlpha.c_str(), edgeAlpha.c_str(), edgeAlpha.c_str(), // edgeAlpha.c_str()); break; } case kFillAA_GrProcessorEdgeType: { SkAssertResult(fsBuilder->enableFeature( GrGLFragmentShaderBuilder::kStandardDerivatives_GLSLFeature)); fsBuilder->codeAppendf("%s = dFdx(%s.xyz);", dklmdx.c_str(), v.fsIn()); fsBuilder->codeAppendf("%s = dFdy(%s.xyz);", dklmdy.c_str(), v.fsIn()); fsBuilder->codeAppendf("%s =" "3.0 * %s.x * %s.x * %s.x - %s.y * %s.z - %s.z * %s.y;", dfdx.c_str(), v.fsIn(), v.fsIn(), dklmdx.c_str(), v.fsIn(), dklmdx.c_str(), v.fsIn(), dklmdx.c_str()); fsBuilder->codeAppendf("%s = 3.0 * %s.x * %s.x * %s.x - %s.y * %s.z - %s.z * %s.y;", dfdy.c_str(), v.fsIn(), v.fsIn(), dklmdy.c_str(), v.fsIn(), dklmdy.c_str(), v.fsIn(), dklmdy.c_str()); fsBuilder->codeAppendf("%s = vec2(%s, %s);", gF.c_str(), dfdx.c_str(), dfdy.c_str()); fsBuilder->codeAppendf("%s = sqrt(dot(%s, %s));", gFM.c_str(), gF.c_str(), gF.c_str()); fsBuilder->codeAppendf("%s = %s.x * %s.x * %s.x - %s.y * %s.z;", func.c_str(), v.fsIn(), v.fsIn(), v.fsIn(), v.fsIn(), v.fsIn()); fsBuilder->codeAppendf("%s = %s / %s;", edgeAlpha.c_str(), func.c_str(), gFM.c_str()); fsBuilder->codeAppendf("%s = clamp(1.0 - %s, 0.0, 1.0);", edgeAlpha.c_str(), edgeAlpha.c_str()); // Add line below for smooth cubic ramp // fsBuilder->codeAppendf("%s = %s * %s * (3.0 - 2.0 * %s);", // edgeAlpha.c_str(), edgeAlpha.c_str(), edgeAlpha.c_str(), // edgeAlpha.c_str()); break; } case kFillBW_GrProcessorEdgeType: { fsBuilder->codeAppendf("%s = %s.x * %s.x * %s.x - %s.y * %s.z;", edgeAlpha.c_str(), v.fsIn(), v.fsIn(), v.fsIn(), v.fsIn(), v.fsIn()); fsBuilder->codeAppendf("%s = float(%s < 0.0);", edgeAlpha.c_str(), edgeAlpha.c_str()); break; } default: SkFAIL("Shouldn't get here"); } fsBuilder->codeAppendf("%s = vec4(%s);", args.fOutputCoverage, edgeAlpha.c_str()); }