TEST(HMWSoln, fromScratch)
{
    // Regression test based on HMW_test_3
    HMWSoln p;
    auto sH2O = make_species("H2O(l)", "H:2, O:1", h2oliq_nasa_coeffs);
    auto sCl = make_species("Cl-", "Cl:1, E:1", 0.0,
                            298.15, -52.8716, 333.15, -52.8716, 1e5);
    sCl->charge = -1;
    auto sH = make_species("H+", "H:1, E:-1", 0.0, 298.15, 0.0, 333.15, 0.0, 1e5);
    sH->charge = 1;
    auto sNa = make_species("Na+", "Na:1, E:-1", 0.0,
                            298.15, -125.5213, 333.15, -125.5213, 1e5);
    sNa->charge = 1;
    auto sOH = make_species("OH-", "O:1, H:1, E:1", 0.0,
                            298.15, -91.523, 333.15, -91.523, 1e5);
    sOH->charge = -1;
    for (auto& s : {sH2O, sCl, sH, sNa, sOH}) {
        p.addSpecies(s);
    }
    std::unique_ptr<PDSS_Water> ss(new PDSS_Water());
    p.installPDSS(0, std::move(ss));
    size_t k = 1;
    for (double v : {1.3, 1.3, 1.3, 1.3}) {
        std::unique_ptr<PDSS_ConstVol> ss(new PDSS_ConstVol());
        ss->setMolarVolume(v);
        p.installPDSS(k++, std::move(ss));
    }
    p.setPitzerTempModel("complex");
    p.setA_Debye(1.175930);
    p.initThermo();

    set_hmw_interactions(p);
    p.setMolalitiesByName("Na+:6.0997 Cl-:6.0996986044628 H+:2.1628E-9 OH-:1.3977E-6");
    p.setState_TP(150 + 273.15, 101325);

    size_t N = p.nSpecies();
    vector_fp acMol(N), mf(N), activities(N), moll(N), mu0(N);
    p.getMolalityActivityCoefficients(acMol.data());
    p.getMoleFractions(mf.data());
    p.getActivities(activities.data());
    p.getMolalities(moll.data());
    p.getStandardChemPotentials(mu0.data());

    double acMolRef[] = {0.9341, 1.0191, 3.9637, 1.0191, 0.4660};
    double mfRef[] = {0.8198, 0.0901, 0.0000, 0.0901, 0.0000};
    double activitiesRef[] = {0.7658, 6.2164, 0.0000, 6.2164, 0.0000};
    double mollRef[] = {55.5084, 6.0997, 0.0000, 6.0997, 0.0000};
    double mu0Ref[] = {-317.175788, -186.014558, 0.0017225, -441.615429, -322.000412}; // kJ/gmol

    for (size_t k = 0 ; k < N; k++) {
        EXPECT_NEAR(acMol[k], acMolRef[k], 2e-4);
        EXPECT_NEAR(mf[k], mfRef[k], 2e-4);
        EXPECT_NEAR(activities[k], activitiesRef[k], 2e-4);
        EXPECT_NEAR(moll[k], mollRef[k], 2e-4);
        EXPECT_NEAR(mu0[k]/1e6, mu0Ref[k], 2e-6);
    }
}
Exemple #2
0
int main(int argc, char** argv)
{

    int retn = 0;
    size_t i;

    try {
        std::string iFile = (argc > 1) ? argv[1] : "HMW_NaCl.xml";
        double V0[20], pmV[20];

        HMWSoln* HMW = new HMWSoln(iFile, "NaCl_electrolyte");


        /*
         * Load in and initialize the
         */
        Cantera::thermo_t* solid = newPhase<doublereal>("NaCl_Solid.xml","NaCl(S)");


        size_t nsp = HMW->nSpecies();
        //double acMol[100];
        //double act[100];
        double mf[100];
        double moll[100];
        HMW->getMoleFractions(mf);
        string sName;

        TemperatureTable TTable(15, false, 273.15, 25., 0, 0);


        HMW->setState_TP(298.15, 1.01325E5);

        size_t i1 = HMW->speciesIndex("Na+");
        size_t i2 = HMW->speciesIndex("Cl-");
        //int i3 = HMW->speciesIndex("H2O(L)");
        for (i = 0; i < nsp; i++) {
            moll[i] = 0.0;
        }
        HMW->setMolalities(moll);

        /*
         * Set the Pressure
         */
        double pres = OneAtm;

        /*
         * Fix the molality
         */
        double Is = 6.146;
        moll[i1] = Is;
        moll[i2] = Is;
        HMW->setState_TPM(298.15, pres, moll);
        double Xmol[30];
        HMW->getMoleFractions(Xmol);
        double meanMW = HMW->meanMolecularWeight();

        /*
         * ThermoUnknowns
         */
        double T;

        double V0_NaCl = 0.0, V0_Naplus = 0.0, V0_Clminus = 0.0, Delta_V0s = 0.0, V0_H2O = 0.0;
        double V_NaCl = 0.0, V_Naplus = 0.0, V_Clminus = 0.0, V_H2O = 0.0;
        double molarV0;
#ifdef DEBUG_HKM
        FILE* ttt = fopen("table.csv","w");
#endif
        printf("A_V   : Comparison to Pitzer's book, p. 99, can be made.\n");
        printf("        Agreement to 3  sig digits \n");
        printf("\n");

        printf("Delta_V0: Heat Capacity of Solution per mole of salt (standard states)\n");
        printf("           rxn for the ss heat of soln:     "
               "NaCl(s) -> Na+(aq) + Cl-(aq)\n");

        printf("\n");
        printf("Delta_Vs: Delta volume of Solution per mole of salt\n");
        printf("          rxn for heat of soln:     "
               " n1 H2O(l,pure) + n2 NaCl(s) -> n2 MX(aq) + n1 H2O(l) \n");
        printf("          Delta_Hs = (n1 h_H2O_bar + n2 h_MX_bar "
               "- n1 h_H2O_0 - n2 h_MX_0)/n2\n");
        printf("\n");
        printf("phiV:     phiV, calculated from the program, is checked\n");
        printf("          against analytical formula in V_standalone program.\n");
        printf("          (comparison against Pitzer book, p. 97, eqn. 96)\n");

        /*
         * Create a Table of NaCl Enthalpy Properties as a Function
         * of the Temperature
         */
        printf("\n\n");
        printf("            T,          Pres,         Aphi,            A_V,"
               "      Delta_V0,"
               "      Delta_Vs,           Vex,          phiV,"
               "        MolarV,     MolarV0\n");
        printf("       Kelvin,         bar, sqrt(kg/gmol),sqrt(kg/gmol)cm3/gmol,"
               "cm**3/gmolSalt,"
               "cm**3/gmolSalt,cm**3/gmolSoln,cm**3/gmolSalt,"
               "cm**3/gmol,   cm**3/gmol\n");
#ifdef DEBUG_HKM
        fprintf(ttt,"T, Pres, A_V, Vex, phiV, MolarV, MolarV0\n");
        fprintf(ttt,"Kelvin, bar, sqrt(kg/gmol)cm3/gmol, cm3/gmolSoln, cm3/gmolSalt, kJ/gmolSoln,"
                "kJ/gmolSoln\n");
#endif
        for (i = 0; i < TTable.NPoints + 1; i++) {
            if (i == TTable.NPoints) {
                T = 323.15;
            } else {
                T = TTable.T[i];
            }
            /*
             * RT is in units of J/kmolK
             */
            //double RT = GasConstant * T;

            /*
             * Make sure we are at the saturation pressure or above.
             */

            double psat = HMW->satPressure(T);

            pres = OneAtm;
            if (psat > pres) {
                pres = psat;
            }


            HMW->setState_TPM(T, pres, moll);

            solid->setState_TP(T, pres);

            /*
             * Get the Standard State volumes m3/kmol
             */
            solid->getStandardVolumes(V0);
            V0_NaCl = V0[0];
            HMW->getStandardVolumes(V0);
            V0_H2O     = V0[0];
            V0_Naplus  = V0[i1];
            V0_Clminus = V0[i2];

            /*
             * Calculate the standard state volume change of solution
             * for NaCl(s) -> Na+ + Cl-
             *   units: m3 / kmol
             */
            Delta_V0s = V0_Naplus + V0_Clminus - V0_NaCl;

            double dd = solid->density();
            double MW_NaCl = solid->meanMolecularWeight();
            V_NaCl = MW_NaCl / dd;
            //printf("V_NaCl = %g , V0_NaCl = %g %g\n", V_NaCl, V0_NaCl, 1.0/solid->molarDensity());

            /*
             * Get the partial molar volumes
             */
            HMW->getPartialMolarVolumes(pmV);
            V_H2O     = pmV[0];
            V_Naplus  = pmV[i1];
            V_Clminus = pmV[i2];


            //double Delta_V_Salt = V_NaCl - (V_Naplus + V_Clminus);

            /*
             * Calculate the molar volume of solution
             */
            double dsoln = HMW->density();
            meanMW = HMW->meanMolecularWeight();
            double molarV = meanMW / dsoln;
            //double md = HMW->molarDensity();
            //printf("compare %g %g\n", molarV, 1.0/md);

            /*
             * Calculate the delta volume of solution for the reaction
             *                NaCl(s) -> Na+ + Cl-
             */
            double Delta_Vs = (Xmol[0]  * V_H2O +
                               Xmol[i1] * V_Naplus +
                               Xmol[i2] * V_Clminus
                               - Xmol[0] * V0_H2O
                               - Xmol[i1] * V_NaCl);
            Delta_Vs /= Xmol[i1];


            /*
             * Calculate the apparent molar volume, J, from the
             * partial molar quantities, units m3/kmol
             */
            double Vex = (Xmol[0]  * (V_H2O    - V0_H2O) +
                          Xmol[i1] * (V_Naplus - V0_Naplus) +
                          Xmol[i2] * (V_Clminus - V0_Clminus));

            /*
             * Calculate the apparent relative molal volume, phiV,
             * units of m3/kmol
             */
            double phiV = Vex / Xmol[i1];

            double Aphi = HMW->A_Debye_TP(T, pres) / 3.0;
            //double AL = HMW->ADebye_L(T,pres);
            double Av = HMW->ADebye_V(T, pres) * 1.0E3;

            molarV0 = 0.0;
            for (size_t k = 0; k < nsp; k++) {
                molarV0 += Xmol[k] * V0[k];
            }

            if (i != TTable.NPoints+1) {
                printf("%13.4g, %13.4g, %13.4g, %13.4g, %13.4g, %13.4g, "
                       "%13.5g, %13.4g, %13.4g, %13.4g\n",
                       T, pres*1.0E-5,  Aphi, Av, Delta_V0s*1.0E3, Delta_Vs*1.0E3,
                       Vex*1.0E3, phiV*1.0E3, molarV*1.0E3 , molarV0*1.0E3);
#ifdef DEBUG_HKM
                fprintf(ttt,"%g, %g, %g, %g, %g, %g, %g\n",
                        T, pres*1.0E-5, Av, Vex*1.0E3, phiV*1.0E3, molarV*1.0E3 , molarV0*1.0E3);
#endif
            }

        }

        printf("Breakdown of Volume Calculation at 323.15 K, 1atm:\n");

        printf(" Species     MoleFrac        Molal          V0      "
               "    partV     (partV - V0)\n");
        printf("  H2O(L)");
        printf("%13.4g %13.4g %13.4g %13.4g %13.4g\n", Xmol[0], moll[0], V0_H2O*1.E3, V_H2O*1.E3,
               (V_H2O-V0_H2O)*1.E3);
        printf("  Na+   ");
        printf("%13.4g %13.4g %13.4g %13.4g %13.4g\n", Xmol[i1], moll[i1],
               V0_Naplus*1.E3 , V_Naplus*1.E3, (V_Naplus -V0_Naplus)*1.E3);
        printf("  Cl-   ");
        printf("%13.4g %13.4g %13.4g %13.4g %13.4g\n", Xmol[i2], moll[i2],
               V0_Clminus*1.E3, V_Clminus*1.E3, (V_Clminus - V0_Clminus)*1.E3);

        printf(" NaCl(s)");
        double dd = V_NaCl*1.E3 - V0_NaCl*1.E3;
        if (fabs(dd) < 1.0E-12) {
            dd = 0.0;
        }
        printf("%13.4g               %13.4g %13.4g %13.4g\n", 1.0,
               V0_NaCl*1.E3 , V_NaCl*1.E3,  dd);


        delete HMW;
        HMW = 0;
        delete solid;
        solid = 0;
        Cantera::appdelete();
#ifdef DEBUG_HKM
        fclose(ttt);
#endif
        return retn;

    } catch (CanteraError& err) {
        std::cout << err.what() << std::endl;
        Cantera::appdelete();
        return -1;
    }
}
Exemple #3
0
int main(int argc, char** argv)
{

    int retn = 0;
    size_t i;

    try {
        std::string iFile = (argc > 1) ? argv[1] : "HMW_NaCl.xml";
        double Cp0_R[20], pmCp[20];

        HMWSoln* HMW = new HMWSoln(iFile, "NaCl_electrolyte");


        /*
         * Load in and initialize the
         */
        Cantera::thermo_t* solid = newPhase<doublereal>("NaCl_Solid.xml","NaCl(S)");


        size_t nsp = HMW->nSpecies();
        double mf[100];
        double moll[100];
        for (i = 0; i < 100; i++) {
            mf[i] = 0.0;
        }

        HMW->getMoleFractions(mf);
        string sName;

        TemperatureTable TTable(15, false, 273.15, 25., 0, 0);


        HMW->setState_TP(298.15, 1.01325E5);

        size_t i1 = HMW->speciesIndex("Na+");
        size_t i2 = HMW->speciesIndex("Cl-");
        //int i3 = HMW->speciesIndex("H2O(L)");
        for (i = 0; i < nsp; i++) {
            moll[i] = 0.0;
        }
        HMW->setMolalities(moll);

        double Is = 0.0;

        /*
         * Set the Pressure
         */
        double pres = OneAtm;

        /*
         * Fix the molality
         */
        Is = 6.146;
        moll[i1] = Is;
        moll[i2] = Is;
        HMW->setState_TPM(298.15, pres, moll);
        double Xmol[30];
        HMW->getMoleFractions(Xmol);

        /*
         * ThermoUnknowns
         */
        double T;

        double Cp0_NaCl = 0.0, Cp0_Naplus = 0.0, Cp0_Clminus = 0.0, Delta_Cp0s = 0.0, Cp0_H2O = 0.0;
        double Cp_NaCl = 0.0, Cp_Naplus = 0.0, Cp_Clminus = 0.0, Cp_H2O = 0.0;
        double molarCp0;
#ifdef DEBUG_HKM
        FILE* ttt = fopen("table.csv","w");
#endif
        printf("A_J/R: Comparison to Pitzer's book, p. 99, can be made.\n");
        printf("        Agreement is within 12 pc \n");
        printf("\n");

        printf("Delta_Cp0: Heat Capacity of Solution per mole of salt (standard states)\n");
        printf("           rxn for the ss heat of soln:     "
               "NaCl(s) -> Na+(aq) + Cl-(aq)\n");

        printf("\n");
        printf("Delta_Cps: Delta heat Capacity of Solution per mole of salt\n");
        printf("          rxn for heat of soln:     "
               " n1 H2O(l,pure) + n2 NaCl(s) -> n2 MX(aq) + n1 H2O(l) \n");
        printf("          Delta_Hs = (n1 h_H2O_bar + n2 h_MX_bar "
               "- n1 h_H2O_0 - n2 h_MX_0)/n2\n");
        printf("\n");
        printf("phiJ:     phiJ, calculated from the program, is checked\n");
        printf("          against analytical formula in J_standalone program.\n");
        printf("          (comparison against Eq. 12, Silvester and Pitzer)\n");

        /*
         * Create a Table of NaCl Enthalpy Properties as a Function
         * of the Temperature
         */
        printf("\n\n");
        printf("            T,          Pres,          Aphi,         A_J/R,"
               "     Delta_Cp0,"
               "     Delta_Cps,             J,          phiJ,"
               "     MolarCp,   MolarCp0\n");
        printf("       Kelvin,           bar, sqrt(kg/gmol), sqrt(kg/gmol),"
               "   kJ/gmolSalt,"
               "   kJ/gmolSalt,   kJ/gmolSoln,   kJ/gmolSalt,"
               "       kJ/gmol,    kJ/gmol\n");
#ifdef DEBUG_HKM
        fprintf(ttt,"T, Pres, A_J/R, Delta_Cp0, Delta_Cps, J, phiJ\n");
        fprintf(ttt,"Kelvin, bar, sqrt(kg/gmol), kJ/gmolSalt, kJ/gmolSalt, kJ/gmolSoln,"
                "kJ/gmolSalt\n");
#endif
        for (i = 0; i < TTable.NPoints + 1; i++) {
            if (i == TTable.NPoints) {
                T = 323.15;
            } else {
                T = TTable.T[i];
            }
            /*
             * RT is in units of J/kmolK
             */
            //double RT = GasConstant * T;

            /*
             * Make sure we are at the saturation pressure or above.
             */

            double psat = HMW->satPressure(T);

            pres = OneAtm;
            if (psat > pres) {
                pres = psat;
            }


            HMW->setState_TPM(T, pres, moll);

            solid->setState_TP(T, pres);

            /*
             * Get the Standard State DeltaH
             */

            solid->getCp_R(Cp0_R);
            Cp0_NaCl = Cp0_R[0] * GasConstant * 1.0E-6;


            HMW->getCp_R(Cp0_R);
            Cp0_H2O    = Cp0_R[0] * GasConstant * 1.0E-6;
            Cp0_Naplus = Cp0_R[i1] * GasConstant * 1.0E-6;
            Cp0_Clminus = Cp0_R[i2] * GasConstant * 1.0E-6;
            /*
             * Calculate the standard state heat of solution
             * for NaCl(s) -> Na+ + Cl-
             *   units: kJ/gmolSalt
             */

            Delta_Cp0s = Cp0_Naplus + Cp0_Clminus - Cp0_NaCl;

            pmCp[0] = solid->cp_mole();

            Cp_NaCl = pmCp[0] * 1.0E-6;


            HMW->getPartialMolarCp(pmCp);
            Cp_H2O     = pmCp[0]  * 1.0E-6;
            Cp_Naplus  = pmCp[i1] * 1.0E-6;
            Cp_Clminus = pmCp[i2] * 1.0E-6;

            //double Delta_Cp_Salt = Cp_NaCl - (Cp_Naplus + Cp_Clminus);

            double molarCp = HMW->cp_mole() * 1.0E-6;

            /*
             * Calculate the heat capacity of solution for the reaction
             * NaCl(s) -> Na+ + Cl-
             */
            double Delta_Cps = (Xmol[0]  * Cp_H2O +
                                Xmol[i1] * Cp_Naplus +
                                Xmol[i2] * Cp_Clminus
                                - Xmol[0] * Cp0_H2O
                                - Xmol[i1] * Cp_NaCl);
            Delta_Cps /= Xmol[i1];


            /*
             * Calculate the relative heat capacity, J, from the
             * partial molar quantities, units J/gmolSolutionK
             */
            double J = (Xmol[0]  * (Cp_H2O    - Cp0_H2O) +
                        Xmol[i1] * (Cp_Naplus - Cp0_Naplus) +
                        Xmol[i2] * (Cp_Clminus - Cp0_Clminus));

            /*
             * Calculate the apparent relative molal heat capacity, phiJ,
             * units of J/gmolSaltAddedK
             */
            double phiJ = J / Xmol[i1];


            double Aphi = HMW->A_Debye_TP(T, pres) / 3.0;
            //double AL = HMW->ADebye_L(T,pres);
            double AJ = HMW->ADebye_J(T, pres);

            for (size_t k = 0; k < nsp; k++) {
                Cp0_R[k] *= GasConstant * 1.0E-6;
            }

            molarCp0 = 0.0;
            for (size_t k = 0; k < nsp; k++) {
                molarCp0 += Xmol[k] * Cp0_R[k];
            }

            if (i != TTable.NPoints+1) {
                printf("%13.5g, %13.5g, %13.5g, %13.5g, %13.5g, %13.5g, "
                       "%13.5g, %13.5g, %13.5g, %13.5g\n",
                       T, pres*1.0E-5,  Aphi, AJ/GasConstant, Delta_Cp0s, Delta_Cps,
                       J, phiJ, molarCp , molarCp0);
#ifdef DEBUG_HKM
                fprintf(ttt,"%g, %g, %g, %g, %g, %g, %g\n",
                        T, pres*1.0E-5, AJ/GasConstant, Delta_Cp0s, Delta_Cps, J, phiJ);
#endif
            }

        }

        printf("Breakdown of Heat Capacity Calculation at 323.15 K, 1atm:\n");

        printf(" Species     MoleFrac        Molal          Cp0      "
               "    partCp     (partCp - Cp0)\n");
        printf("  H2O(L)");
        printf("%13.5g %13.5g %13.5g %13.5g %13.5g\n", Xmol[0], moll[0], Cp0_H2O , Cp_H2O,  Cp_H2O-Cp0_H2O);
        printf("  Na+   ");
        printf("%13.5g %13.5g %13.5g %13.5g %13.5g\n", Xmol[i1], moll[i1],
               Cp0_Naplus , Cp_Naplus,  Cp_Naplus -Cp0_Naplus);
        printf("  Cl-   ");
        printf("%13.5g %13.5g %13.5g %13.5g %13.5g\n", Xmol[i2], moll[i2],
               Cp0_Clminus , Cp_Clminus,  Cp_Clminus - Cp0_Clminus);

        printf(" NaCl(s)");
        printf("%13.5g               %13.5g %13.5g %13.5g\n", 1.0,
               Cp0_NaCl , Cp_NaCl,  Cp_NaCl - Cp0_NaCl);


        delete HMW;
        HMW = 0;
        delete solid;
        solid = 0;
        Cantera::appdelete();

#ifdef DEBUG_HKM
        fclose(ttt);
#endif
        return retn;

    } catch (CanteraError& err) {
        std::cout << err.what() << std::endl;
        Cantera::appdelete();
        return -1;
    }
}
Exemple #4
0
int main(int argc, char** argv)
{

    int retn = 0;
    size_t i;
    string commandFile;
    try {

        char iFile[80];
        strcpy(iFile, "HMW_NaCl.xml");
        if (argc > 1) {
            strcpy(iFile, argv[1]);
        }
        double Temp = 273.15 + 275.;

        double aTemp[7];
        aTemp[0] = 298.15;
        aTemp[1] = 273.15 + 100.;
        aTemp[2] = 273.15 + 150.;
        aTemp[3] = 273.15 + 200.;
        aTemp[4] = 273.15 + 250.;
        aTemp[5] = 273.15 + 275.;
        aTemp[6] = 273.15 + 300.;

        HMWSoln* HMW = new HMWSoln(iFile, "NaCl_electrolyte");

        size_t nsp = HMW->nSpecies();
        double acMol[100];
        double act[100];
        double mf[100];
        double moll[100];

        for (i = 0; i < 100; i++) {
            acMol[i] = 1.0;
            act[i] = 1.0;
            mf[i] = 0.0;
            moll[i] = 0.0;
        }

        HMW->getMoleFractions(mf);
        string sName;
        FILE* ff;
        char fname[64];

        for (int jTemp = 0; jTemp < 7; jTemp++) {
            Temp = aTemp[jTemp];
            sprintf(fname, "T%3.0f.csv", Temp);

            ff = fopen(fname, "w");
            HMW->setState_TP(Temp, 1.01325E5);
            printf("   Temperature = %g K\n", Temp);
            size_t i1 = HMW->speciesIndex("Na+");
            size_t i2 = HMW->speciesIndex("Cl-");
            size_t i3 = HMW->speciesIndex("H2O(L)");
            for (i = 1; i < nsp; i++) {
                moll[i] = 0.0;
            }
            HMW->setState_TPM(Temp, OneAtm, moll);
            double Itop = 10.;
            double Ibot = 0.0;
            double ISQRTtop = sqrt(Itop);
            double ISQRTbot = sqrt(Ibot);
            double ISQRT;
            double Is = 0.0;
            size_t its = 100;
            bool doneSp = false;
            fprintf(ff,"              Is,     sqrtIs,     meanAc,"
                    "  log10(meanAC),     acMol_Na+,"
                    "     acMol_Cl-,   ac_Water, act_Water, OsmoticCoeff\n");
            for (i = 0; i < its; i++) {
                ISQRT = ISQRTtop*((double)i)/(its - 1.0)
                        + ISQRTbot*(1.0 - (double)i/(its - 1.0));

                Is = ISQRT * ISQRT;
                if (!doneSp) {
                    if (Is > 6.146) {
                        Is = 6.146;
                        doneSp = true;
                        i = i - 1;
                    }
                }
                moll[i1] = Is;
                moll[i2] = Is;
                HMW->setMolalities(moll);
                HMW->getMolalityActivityCoefficients(acMol);
                HMW->getActivities(act);
                double oc = HMW->osmoticCoefficient();
                double meanAC = sqrt(acMol[i1] * acMol[i2]);
                fprintf(ff,"%15g, %15g, %15g, %15g, %15g, %15g, %15g, %15g, %15g\n",
                        Is, ISQRT, meanAC, log10(meanAC),
                        acMol[i1], acMol[i2], acMol[i3], act[i3], oc);
            }
            fclose(ff);
        }


        delete HMW;
        HMW = 0;
        Cantera::appdelete();

        return retn;

    } catch (CanteraError& err) {
        std::cout << err.what() << std::endl;
        return -1;
    }
}