/**
   * Add a new entry to the diagnosis table.
   * @param runTitle       :: Title of the run fitted
   * @param fitQuality     :: Number representing a goodness of the fit
   * @param fittedFunction :: Function containing fitted parameters 
   */
  void MuonSequentialFitDialog::addDiagnosisEntry(const std::string& runTitle, double fitQuality,
      IFunction_sptr fittedFunction)
  {
    int newRow = m_ui.diagnosisTable->rowCount();

    m_ui.diagnosisTable->insertRow(newRow);

    QString runTitleDisplay = QString::fromStdString(runTitle);
    m_ui.diagnosisTable->setItem( newRow, 0, createTableWidgetItem(runTitleDisplay) );

    QString fitQualityDisplay = QString::number(fitQuality);
    m_ui.diagnosisTable->setItem( newRow, 1, createTableWidgetItem(fitQualityDisplay) );

    for(int i = 2; i < m_ui.diagnosisTable->columnCount(); i += 2)
    {
      std::string paramName = m_ui.diagnosisTable->horizontalHeaderItem(i)->text().toStdString();
      size_t paramIndex = fittedFunction->parameterIndex(paramName);

      QString value = QString::number( fittedFunction->getParameter(paramIndex) );
      QString error = QString::number( fittedFunction->getError(paramIndex) );

      m_ui.diagnosisTable->setItem(newRow, i, createTableWidgetItem(value) );
      m_ui.diagnosisTable->setItem(newRow, i + 1, createTableWidgetItem(error) );
    }

    m_ui.diagnosisTable->scrollToBottom();
  }
TEST(FunctionFactoryTest, CreateFitFunctionTest)
{
  IFunction_sptr fun = FunctionFactory::instance().createFitFunction("FunctionFactoryTestFunction(A=10,B=20)");
  EXPECT_TRUE( fun.get() != nullptr );
  EXPECT_EQ(fun->getParameter("A"),10);
  EXPECT_EQ(fun->getParameter("B"),20);
  //std::cerr << fun->asString() << std::endl;
}
  /** Fit function
    * Minimizer: "Levenberg-MarquardtMD"/"Simplex"
   */
  bool RefinePowderInstrumentParameters2::doFitFunction(IFunction_sptr function, Workspace2D_sptr dataws, int wsindex,
                                                        string minimizer, int numiters, double& chi2, string& fitstatus)
  {
    // 0. Debug output
    stringstream outss;
    outss << "Fit function: " << m_positionFunc->asString() << endl << "Data To Fit: \n";
    for (size_t i = 0; i < dataws->readX(0).size(); ++i)
      outss << dataws->readX(wsindex)[i] << "\t\t" << dataws->readY(wsindex)[i] << "\t\t"
            << dataws->readE(wsindex)[i] << "\n";
    g_log.information() << outss.str();

    // 1. Create and setup fit algorithm
    API::IAlgorithm_sptr fitalg = createChildAlgorithm("Fit", 0.0, 0.2, true);
    fitalg->initialize();

    fitalg->setProperty("Function", function);
    fitalg->setProperty("InputWorkspace", dataws);
    fitalg->setProperty("WorkspaceIndex", wsindex);
    fitalg->setProperty("Minimizer", minimizer);
    fitalg->setProperty("CostFunction", "Least squares");
    fitalg->setProperty("MaxIterations", numiters);
    fitalg->setProperty("CalcErrors", true);

    // 2. Fit
    bool successfulfit = fitalg->execute();
    if (!fitalg->isExecuted() || ! successfulfit)
    {
      // Early return due to bad fit
      g_log.warning("Fitting to instrument geometry function failed. ");
      chi2 = DBL_MAX;
      fitstatus = "Minimizer throws exception.";
      return false;
    }

    // 3. Understand solution
    chi2 = fitalg->getProperty("OutputChi2overDoF");
    string tempfitstatus = fitalg->getProperty("OutputStatus");
    fitstatus = tempfitstatus;

    bool goodfit = fitstatus.compare("success") == 0;

    stringstream dbss;
    dbss << "Fit Result (GSL):  Chi^2 = " << chi2
         << "; Fit Status = " << fitstatus << ", Return Bool = " << goodfit << std::endl;
    vector<string> funcparnames = function->getParameterNames();
    for (size_t i = 0; i < funcparnames.size(); ++i)
      dbss << funcparnames[i] << " = " << setw(20) << function->getParameter(funcparnames[i])
           << " +/- " << function->getError(i) << "\n";
    g_log.debug() << dbss.str();

    return goodfit;
  }
Exemple #4
0
/// Returns a TableWorkspace with refined cell parameters and error.
ITableWorkspace_sptr PoldiFitPeaks2D::getRefinedCellParameters(
    const IFunction_sptr &fitFunction) const {
  Poldi2DFunction_sptr poldi2DFunction =
      boost::dynamic_pointer_cast<Poldi2DFunction>(fitFunction);

  if (!poldi2DFunction || poldi2DFunction->nFunctions() < 1) {
    throw std::invalid_argument(
        "Cannot process function that is not a Poldi2DFunction.");
  }

  // Create a new table for lattice parameters
  ITableWorkspace_sptr latticeParameterTable =
      WorkspaceFactory::Instance().createTable();

  latticeParameterTable->addColumn("str", "Parameter");
  latticeParameterTable->addColumn("double", "Value");
  latticeParameterTable->addColumn("double", "Error");

  // The first function should be PoldiSpectrumPawleyFunction
  boost::shared_ptr<PoldiSpectrumPawleyFunction> poldiPawleyFunction =
      boost::dynamic_pointer_cast<PoldiSpectrumPawleyFunction>(
          poldi2DFunction->getFunction(0));

  if (!poldiPawleyFunction) {
    throw std::invalid_argument("First function in Poldi2DFunction is not "
                                "PoldiSpectrumPawleyFunction.");
  }

  // Get the actual PawleyFunction to extract parameters.
  IPawleyFunction_sptr pawleyFunction =
      boost::dynamic_pointer_cast<IPawleyFunction>(
          poldiPawleyFunction->getDecoratedFunction());

  if (pawleyFunction) {
    CompositeFunction_sptr pawleyParts =
        boost::dynamic_pointer_cast<CompositeFunction>(
            pawleyFunction->getDecoratedFunction());

    // The first function in PawleyFunction contains the parameters
    IFunction_sptr pawleyParameters = pawleyParts->getFunction(0);

    for (size_t i = 0; i < pawleyParameters->nParams(); ++i) {
      TableRow newRow = latticeParameterTable->appendRow();
      newRow << pawleyParameters->parameterName(i)
             << pawleyParameters->getParameter(i)
             << pawleyParameters->getError(i);
    }
  }

  return latticeParameterTable;
}
  /** Store function parameter values to a map
    */
  void storeFunctionParameterValue(IFunction_sptr function, map<string, pair<double, double> >& parvaluemap)
  {
    parvaluemap.clear();

    vector<string> parnames = function->getParameterNames();
    for (size_t i = 0; i < parnames.size(); ++i)
    {
      string& parname = parnames[i];
      double parvalue = function->getParameter(i);
      double parerror = function->getError(i);
      parvaluemap.insert(make_pair(parname, make_pair(parvalue, parerror)));
    }

    return;
  }
API::MatrixWorkspace_sptr
CreateFloodWorkspace::removeBackground(API::MatrixWorkspace_sptr ws) {
  g_log.information() << "Remove background "
                      << getPropertyValue(Prop::BACKGROUND) << '\n';
  auto fitWS = transpose(ws);
  auto const &x = fitWS->x(0);

  // Define the fitting interval
  double startX = getProperty(Prop::START_X);
  double endX = getProperty(Prop::END_X);
  std::vector<double> excludeFromFit;
  if (isDefault(Prop::START_X)) {
    startX = x.front();
  } else {
    excludeFromFit.push_back(x.front());
    excludeFromFit.push_back(startX);
  }
  if (isDefault(Prop::END_X)) {
    endX = x.back();
  } else {
    excludeFromFit.push_back(endX);
    excludeFromFit.push_back(x.back());
  }

  // Exclude any bad detectors.
  for (auto i : m_excludedSpectra) {
    excludeFromFit.push_back(i);
    excludeFromFit.push_back(i);
  }

  std::string const function = getBackgroundFunction();

  // Fit the data to determine unwanted background
  auto alg = createChildAlgorithm("Fit", 0.9, 0.99);
  alg->setProperty("Function", function);
  alg->setProperty("InputWorkspace", fitWS);
  alg->setProperty("WorkspaceIndex", 0);
  if (!excludeFromFit.empty()) {
    alg->setProperty("Exclude", excludeFromFit);
  }
  alg->setProperty("Output", "fit");
  alg->execute();

  IFunction_sptr func = alg->getProperty("Function");
  g_log.information() << "Background function parameters:\n";
  for (size_t i = 0; i < func->nParams(); ++i) {
    g_log.information() << "    " << func->parameterName(i) << ": "
                        << func->getParameter(i) << '\n';
  }

  // Divide the workspace by the fitted curve to remove the background
  // and scale to values around 1
  MatrixWorkspace_sptr bkgWS = alg->getProperty("OutputWorkspace");
  auto const &bkg = bkgWS->y(1);
  auto const nHisto = static_cast<int>(ws->getNumberHistograms());
  PARALLEL_FOR_IF(Kernel::threadSafe(*ws, *bkgWS))
  for (int i = 0; i < nHisto; ++i) {
    PARALLEL_START_INTERUPT_REGION
    auto const xVal = x[i];
    if (isExcludedSpectrum(xVal)) {
      ws->mutableY(i)[0] = VERY_BIG_VALUE;
      ws->mutableE(i)[0] = 0.0;
    } else if (xVal >= startX && xVal <= endX) {
      auto const background = bkg[i];
      if (background <= 0.0) {
        throw std::runtime_error(
            "Background is expected to be positive, found value " +
            std::to_string(background) + " at spectrum with workspace index " +
            std::to_string(i));
      }
      ws->mutableY(i)[0] /= background;
      ws->mutableE(i)[0] /= background;
    } else {
      ws->mutableY(i)[0] = 1.0;
      ws->mutableE(i)[0] = 0.0;
    }
    PARALLEL_END_INTERUPT_REGION
  }
  PARALLEL_CHECK_INTERUPT_REGION

  // Remove the logs
  ws->setSharedRun(make_cow<Run>());

  return ws;
}
Exemple #7
0
void IqtFit::singleFitComplete(bool error) {
  disconnect(m_batchAlgoRunner, SIGNAL(batchComplete(bool)), this,
             SLOT(singleFitComplete(bool)));

  if (error) {
    QString msg =
        "There was an error executing the fitting algorithm. Please see the "
        "Results Log pane for more details.";
    showMessageBox(msg);
    return;
  }

  IFunction_sptr outputFunc = m_singleFitAlg->getProperty("Function");

  // Get params.
  QMap<QString, double> parameters;
  std::vector<std::string> parNames = outputFunc->getParameterNames();
  std::vector<double> parVals;

  for (size_t i = 0; i < parNames.size(); ++i)
    parVals.push_back(outputFunc->getParameter(parNames[i]));

  for (size_t i = 0; i < parNames.size(); ++i)
    parameters[QString(parNames[i].c_str())] = parVals[i];

  m_ffRangeManager->setValue(m_properties["BackgroundA0"], parameters["f0.A0"]);

  const int fitType = m_uiForm.cbFitType->currentIndex();
  if (fitType != 2) {
    // Exp 1
    m_dblManager->setValue(m_properties["Exponential1.Intensity"],
                           parameters["f1.Intensity"]);
    m_dblManager->setValue(m_properties["Exponential1.Tau"],
                           parameters["f1.Tau"]);

    if (fitType == 1) {
      // Exp 2
      m_dblManager->setValue(m_properties["Exponential2.Intensity"],
                             parameters["f2.Intensity"]);
      m_dblManager->setValue(m_properties["Exponential2.Tau"],
                             parameters["f2.Tau"]);
    }
  }

  if (fitType > 1) {
    // Str
    QString fval;
    if (fitType == 2) {
      fval = "f1.";
    } else {
      fval = "f2.";
    }

    m_dblManager->setValue(m_properties["StretchedExp.Intensity"],
                           parameters[fval + "Intensity"]);
    m_dblManager->setValue(m_properties["StretchedExp.Tau"],
                           parameters[fval + "Tau"]);
    m_dblManager->setValue(m_properties["StretchedExp.Beta"],
                           parameters[fval + "Beta"]);
  }

  // Can start upddating the guess curve again
  connect(m_dblManager, SIGNAL(propertyChanged(QtProperty *)), this,
          SLOT(plotGuess(QtProperty *)));

  // Plot the guess first so that it is under the fit
  plotGuess(NULL);
  // Now show the fitted curve of the mini plot
  m_uiForm.ppPlot->addSpectrum("Fit", m_singleFitOutputName + "_Workspace", 1,
                               Qt::red);

  m_pythonExportWsName = "";
}