Exemple #1
0
void MDDAGClassifier::saveLikelihoods(const string& dataFileName, const string& shypFileName,
                                      const string& outFileName, int numIterations)
{
    InputData* pData = loadInputData(dataFileName, shypFileName);

    if (_verbose > 0)
        cout << "Loading strong hypothesis..." << flush;

    // The class that loads the weak hypotheses
    UnSerialization us;

    // Where to put the weak hypotheses
    vector<BaseLearner*> weakHypotheses;

    // loads them
    us.loadHypotheses(shypFileName, weakHypotheses, pData);

    // where the results go
    vector< ExampleResults* > results;

    if (_verbose > 0)
        cout << "Classifying..." << flush;

    const int numClasses = pData->getNumClasses();
    const int numExamples = pData->getNumExamples();


    ofstream outFile(outFileName.c_str());
    string exampleName;

    if (_verbose > 0)
        cout << "Output likelihoods..." << flush;

    // get the results
    /////////////////////////////////////////////////////////////////////
    // computeResults( pData, weakHypotheses, results, numIterations );
    assert( !weakHypotheses.empty() );

    // Initialize the output info
    OutputInfo* pOutInfo = NULL;

    if ( !_outputInfoFile.empty() )
        pOutInfo = new OutputInfo(_outputInfoFile, "err");

    // Creating the results structures. See file Structures.h for the
    // PointResults structure
    results.clear();
    results.reserve(numExamples);
    for (int i = 0; i < numExamples; ++i)
        results.push_back( new ExampleResults(i, numClasses) );

    // sum votes for classes
    vector< AlphaReal > votesForExamples( numClasses );
    vector< AlphaReal > expVotesForExamples( numClasses );

    // iterator over all the weak hypotheses
    vector<BaseLearner*>::const_iterator whyIt;
    int t;

    pOutInfo->initialize( pData );

    // for every feature: 1..T
    for (whyIt = weakHypotheses.begin(), t = 0;
            whyIt != weakHypotheses.end() && t < numIterations; ++whyIt, ++t)
    {
        BaseLearner* currWeakHyp = *whyIt;
        AlphaReal alpha = currWeakHyp->getAlpha();

        // for every point
        for (int i = 0; i < numExamples; ++i)
        {
            // a reference for clarity and speed
            vector<AlphaReal>& currVotesVector = results[i]->getVotesVector();

            // for every class
            for (int l = 0; l < numClasses; ++l)
                currVotesVector[l] += alpha * currWeakHyp->classify(pData, i, l);
        }

        // if needed output the step-by-step information
        if ( pOutInfo )
        {
            pOutInfo->outputIteration(t);
            pOutInfo->outputCustom(pData, currWeakHyp);

            // Margins and edge requires an update of the weight,
            // therefore I keep them out for the moment
            //outInfo.outputMargins(pData, currWeakHyp);
            //outInfo.outputEdge(pData, currWeakHyp);

            pOutInfo->endLine();

        } // for (int i = 0; i < numExamples; ++i)
        // calculate likelihoods from votes

        fill( votesForExamples.begin(), votesForExamples.end(), 0.0 );
        AlphaReal lLambda = 0.0;
        for (int i = 0; i < numExamples; ++i)
        {
            // a reference for clarity and speed
            vector<AlphaReal>& currVotesVector = results[i]->getVotesVector();
            AlphaReal sumExp = 0.0;
            // for every class
            for (int l = 0; l < numClasses; ++l)
            {
                expVotesForExamples[l] =  exp( currVotesVector[l] ) ;
                sumExp += expVotesForExamples[l];
            }

            if ( sumExp > numeric_limits<AlphaReal>::epsilon() )
            {
                for (int l = 0; l < numClasses; ++l)
                {
                    expVotesForExamples[l] /= sumExp;
                }
            }

            Example ex = pData->getExample( results[i]->getIdx() );
            vector<Label> labs = ex.getLabels();
            AlphaReal m = numeric_limits<AlphaReal>::infinity();
            for (int l = 0; l < numClasses; ++l)
            {
                if ( labs[l].y > 0 )
                {
                    if ( expVotesForExamples[l] > numeric_limits<AlphaReal>::epsilon() )
                    {
                        AlphaReal logVal = log( expVotesForExamples[l] );

                        if ( logVal != m ) {
                            lLambda += ( ( 1.0/(AlphaReal)numExamples ) * logVal );
                        }
                    }
                }
            }


        }


        outFile << t << "\t" << lLambda ;
        outFile << '\n';

        outFile.flush();
    }

    if (pOutInfo)
        delete pOutInfo;

    // computeResults( pData, weakHypotheses, results, numIterations );
    ///////////////////////////////////////////////////////////////////////////////////


    /*
     for (int i = 0; i < numExamples; ++i)
     {
     // output the name if it exists, otherwise the number
     // of the example
     exampleName = pData->getExampleName(i);
     if ( !exampleName.empty() )
     outFile << exampleName << ',';

     // output the posteriors
     outFile << results[i]->getVotesVector()[0];
     for (int l = 1; l < numClasses; ++l)
     outFile << ',' << results[i]->getVotesVector()[l];
     outFile << '\n';
     }
     */

    if (_verbose > 0)
        cout << "Done!" << endl;

    if (_verbose > 1)
    {
        cout << "\nClass order (You can change it in the header of the data file):" << endl;
        for (int l = 0; l < numClasses; ++l)
            cout << "- " << pData->getClassMap().getNameFromIdx(l) << endl;
    }

    // delete the input data file
    if (pData)
        delete pData;

    vector<ExampleResults*>::iterator it;
    for (it = results.begin(); it != results.end(); ++it)
        delete (*it);
}
    void VJCascadeClassifier::run(const string& dataFileName, const string& shypFileName, 
                                  int numIterations, const string& outResFileName )
    {
        // loading data
        InputData* pData = loadInputData(dataFileName, shypFileName);
        const int numOfExamples = pData->getNumExamples();
                                
        //get the index of positive label               
        const NameMap& namemap = pData->getClassMap();
        _positiveLabelIndex = namemap.getIdxFromName( _positiveLabelName );                             
                
        if (_verbose > 0)
            cout << "Loading strong hypothesis..." << flush;
                
                
                
        // The class that loads the weak hypotheses
        UnSerialization us;
                
        // Where to put the weak hypotheses
        vector<vector<BaseLearner*> > weakHypotheses;
                
        // For stagewise thresholds 
        vector<AlphaReal> thresholds(0);
        
        // loads them
        //us.loadHypotheses(shypFileName, weakHypotheses, pData);
        us.loadCascadeHypotheses(shypFileName, weakHypotheses, thresholds, pData);
                

        // store result
        vector<CascadeOutputInformation> cascadeData(0);
        vector<CascadeOutputInformation>::iterator it;
                
        cascadeData.resize(numOfExamples);              
        for( it=cascadeData.begin(); it != cascadeData.end(); ++it )
        {
            it->active=true;
        }                                                                               
                
        if (!_outputInfoFile.empty())
        {
            outputHeader();
        }
                
        for(int stagei=0; stagei < weakHypotheses.size(); ++stagei )
        {
            // for posteriors
            vector<AlphaReal> posteriors(0);                
                        
            // calculate the posteriors after stage
            VJCascadeLearner::calculatePosteriors( pData, weakHypotheses[stagei], posteriors, _positiveLabelIndex );                        
                        
            // update the data (posteriors, active element index etc.)
            updateCascadeData(pData, weakHypotheses, stagei, posteriors, thresholds, _positiveLabelIndex, cascadeData);
                        
            if (!_outputInfoFile.empty())
            {
                _output << stagei + 1 << "\t";
                _output << weakHypotheses[stagei].size() << "\t";
                outputCascadeResult( pData, cascadeData );
            }
                        
            int numberOfActiveInstance = 0;
            for( int i = 0; i < numOfExamples; ++i )
                if (cascadeData[i].active) numberOfActiveInstance++;
                        
            if (_verbose > 0 )
                cout << "Number of active instances: " << numberOfActiveInstance << "(" << numOfExamples << ")" << endl;                                                                        
        }
                                
        vector<vector<int> > confMatrix(2);
        confMatrix[0].resize(2);
        fill( confMatrix[0].begin(), confMatrix[0].end(), 0 );
        confMatrix[1].resize(2);
        fill( confMatrix[1].begin(), confMatrix[1].end(), 0 );
                
        // print accuracy
        for(int i=0; i<numOfExamples; ++i )
        {               
            const Example& example = pData->getExample(i);
            int labelY = example.getLabelY(_positiveLabelIndex);
            
            if (labelY>0) // pos label                              
                if (cascadeData[i].forecast==1)
                    confMatrix[1][1]++;
                else
                    confMatrix[1][0]++;
            else // negative label
                if (cascadeData[i].forecast==0)
                    confMatrix[0][0]++;
                else
                    confMatrix[0][1]++;
        }                       
                
        double acc = 100.0 * (confMatrix[0][0] + confMatrix[1][1]) / ((double) numOfExamples);
        // output it
        cout << endl;
        cout << "Error Summary" << endl;
        cout << "=============" << endl;
                
        cout << "Accuracy: " << setprecision(4) << acc << endl;
        cout << setw(10) << "\t" << setw(10) << namemap.getNameFromIdx(1-_positiveLabelIndex) << setw(10) << namemap.getNameFromIdx(_positiveLabelIndex) << endl;
        cout << setw(10) << namemap.getNameFromIdx(1-_positiveLabelIndex) << setw(10) << confMatrix[0][0] << setw(10) << confMatrix[0][1] << endl;
        cout << setw(10) << namemap.getNameFromIdx(_positiveLabelIndex) << setw(10) << confMatrix[1][0] << setw(10) << confMatrix[1][1] << endl;                
                
        // output forecast 
        if (!outResFileName.empty() ) outputForecast(pData, outResFileName, cascadeData );
                                                
        // free memory allocation
        vector<vector<BaseLearner*> >::iterator bvIt;
        for( bvIt = weakHypotheses.begin(); bvIt != weakHypotheses.end(); ++bvIt )
        {
            vector<BaseLearner* >::iterator bIt;
            for( bIt = (*bvIt).begin(); bIt != (*bvIt).end(); ++bIt )
                delete *bIt;
        }
    }
Exemple #3
0
/**
 * The main function. Everything starts here!
 * \param argc The number of arguments.
 * \param argv The arguments.
 * \date 11/11/2005
 */
int main(int argc, const char* argv[])
{
	// initializing the random number generator
	srand ( time(NULL) );
	
	// no need to synchronize with C style stream
	std::ios_base::sync_with_stdio(false);
	
#if STABLE_SORT
	cerr << "WARNING: Stable sort active! It might be slower!!" << endl;
#endif
	
	//////////////////////////////////////////////////////////////////////////
	// Standard arguments
	nor_utils::Args args;
	
	args.setArgumentDiscriminator("--");
	
	args.declareArgument("help");
	args.declareArgument("static");
	
	args.declareArgument("h", "Help", 1, "<optiongroup>");
	
	//////////////////////////////////////////////////////////////////////////
	// Basic Arguments
	
	args.setGroup("Parameters");
	
	args.declareArgument("train", "Performs training.", 2, "<dataFile> <nInterations>");
	args.declareArgument("traintest", "Performs training and test at the same time.", 3, "<trainingDataFile> <testDataFile> <nInterations>");
	args.declareArgument("trainvalidtest", "Performs training and test at the same time.", 4, "<trainingDataFile> <validDataFile> <testDataFile> <nInterations>");
	args.declareArgument("test", "Test the model.", 3, "<dataFile> <numIters> <shypFile>");
	args.declareArgument("test", "Test the model and output the results", 4, "<datafile> <shypFile> <numIters> <outFile>");
	args.declareArgument("cmatrix", "Print the confusion matrix for the given model.", 2, "<dataFile> <shypFile>");
	args.declareArgument("cmatrixfile", "Print the confusion matrix with the class names to a file.", 3, "<dataFile> <shypFile> <outFile>");
	args.declareArgument("posteriors", "Output the posteriors for each class, that is the vector-valued discriminant function for the given dataset and model.", 4, "<dataFile> <shypFile> <outFile> <numIters>");
	args.declareArgument("posteriors", "Output the posteriors for each class, that is the vector-valued discriminant function for the given dataset and model periodically.", 5, "<dataFile> <shypFile> <outFile> <numIters> <period>");	
		
	args.declareArgument("encode", "Save the coefficient vector of boosting individually on each point using ParasiteLearner", 6, "<inputDataFile> <autoassociativeDataFile> <outputDataFile> <nIterations> <poolFile> <nBaseLearners>");	
	args.declareArgument("ssfeatures", "Print matrix data for SingleStump-Based weak learners (if numIters=0 it means all of them).", 4, "<dataFile> <shypFile> <outFile> <numIters>");
	
	args.declareArgument( "fileformat", "Defines the type of intput file. Available types are:\n" 
						 "* simple: each line has attributes separated by whitespace and class at the end (DEFAULT!)\n"
						 "* arff: arff filetype. The header file can be specified using --headerfile option\n"
						 "* arffbzip: bziped arff filetype. The header file can be specified using --headerfile option\n"
						 "* svmlight: \n"
						 "(Example: --fileformat simple)",
                         1, "<fileFormat>" );
	
	args.declareArgument("headerfile", "The header file for arff and SVMLight and arff formats.", 1, "header.txt");
	
	args.declareArgument("constant", "Check constant learner in each iteration.", 0, "");
	args.declareArgument("timelimit", "Time limit in minutes", 1, "<minutes>" );
	args.declareArgument("stronglearner", "Available strong learners:\n"
						 "AdaBoost (default)\n"
						 "FilterBoost\n"
                         "SoftCascade\n"
                         "VJcascade\n", 1, "<stronglearner>" );
	
	args.declareArgument("slowresumeprocess", "Computes every statitstic in each iteration (slow resume)\n"
						 "Computes only the statistics in the last iteration (fast resume, default)\n", 0, "" );
	args.declareArgument("weights", "Outputs the weights of instances at the end of the learning process", 1, "<filename>" );
	args.declareArgument("Cn", "Resampling size for FilterBoost (default=300)", 1, "<value>" );
	
	args.declareArgument("onlinetraining", "The weak learner will be trained online\n", 0, "" );
	
	//// ignored for the moment!
	//args.declareArgument("arffheader", "Specify the arff header.", 1, "<arffHeaderFile>");
	
	// for MDDAG
	//args.setGroup("MDDAG");
	args.declareArgument("traintestmddag", "Performs training and test at the same time using mddag.", 5, "<trainingDataFile> <testDataFile> <modelFile> <nIterations> <baseIter>");
	args.declareArgument("policytrainingiter", "The iteration number the policy learner takes.", 1, "<iternum>");
	args.declareArgument("rollouts", "The number of rollouts.", 1, "<num>");
	args.declareArgument("rollouttype", "Rollout type (montecarlo or szatymaz)", 1, "<rollouttype>");
	args.declareArgument("beta", "Trade-off parameter", 1, "<beta>");
	args.declareArgument("outdir", "Output directory.", 1, "<outdir>");
	args.declareArgument("policyalpha", "Alpha for policy array.", 1, "<alpha>");
	args.declareArgument("succrewardtype", "Rewrd type (e01 or hammng)", 1, "<rward_type");
	args.declareArgument("outtrainingerror", "Output training error", 0, "");
	args.declareArgument("epsilon", "Exploration term", 1, "<epsilon>");
	args.declareArgument("updateperc", "Number of component in the policy are updated", 1, "<perc>");
	
	// for VJ cascade
	VJCascadeLearner::declareBaseArguments(args);
    
    // for SoftCascade
    SoftCascadeLearner::declareBaseArguments(args);
	//////////////////////////////////////////////////////////////////////////
	// Options
	
	args.setGroup("I/O Options");
	
	/////////////////////////////////////////////
	// these are valid only for .txt input!
	// they might be removed!
	args.declareArgument("d", "The separation characters between the fields (default: whitespaces).\nExample: -d \"\\t,.-\"\nNote: new-line is always included!", 1, "<separators>");
	args.declareArgument("classend", "The class is the last column instead of the first (or second if -examplelabel is active).");
	args.declareArgument("examplename", "The data file has an additional column (the very first) which contains the 'name' of the example.");
	/////////////////////////////////////////////
	
	args.setGroup("Basic Algorithm Options");
	args.declareArgument("weightpolicy", "Specify the type of weight initialization. The user specified weights (if available) are used inside the policy which can be:\n"
						 "* sharepoints Share the weight equally among data points and between positiv and negative labels (DEFAULT)\n"
						 "* sharelabels Share the weight equally among data points\n"
						 "* proportional Share the weights freely", 1, "<weightType>");
	
	
	args.setGroup("General Options");
	
	args.declareArgument("verbose", "Set the verbose level 0, 1 or 2 (0=no messages, 1=default, 2=all messages).", 1, "<val>");
	args.declareArgument("outputinfo", "Output informations on the algorithm performances during training, on file <filename>.", 1, "<filename>");
	args.declareArgument("outputinfo", "Output specific informations on the algorithm performances during training, on file <filename> <outputlist>. <outputlist> must be a concatenated list of three characters abreviation (ex: err for error, fpr for false positive rate)", 2, "<filename> <outputlist>");

	args.declareArgument("seed", "Defines the seed for the random operations.", 1, "<seedval>");
	
	//////////////////////////////////////////////////////////////////////////
	// Shows the list of available learners
	string learnersComment = "Available learners are:";
	
	vector<string> learnersList;
	BaseLearner::RegisteredLearners().getList(learnersList);
	vector<string>::const_iterator it;
	for (it = learnersList.begin(); it != learnersList.end(); ++it)
	{
		learnersComment += "\n ** " + *it;
		// defaultLearner is defined in Defaults.h
		if ( *it == defaultLearner )
			learnersComment += " (DEFAULT)";
	}
	
	args.declareArgument("learnertype", "Change the type of weak learner. " + learnersComment, 1, "<learner>");
	
	//////////////////////////////////////////////////////////////////////////
	//// Declare arguments that belongs to all weak learners
	BaseLearner::declareBaseArguments(args);
	
	////////////////////////////////////////////////////////////////////////////
	//// Weak learners (and input data) arguments
	for (it = learnersList.begin(); it != learnersList.end(); ++it)
	{
		args.setGroup(*it + " Options");
		// add weaklearner-specific options
		BaseLearner::RegisteredLearners().getLearner(*it)->declareArguments(args);
	}
	
	//////////////////////////////////////////////////////////////////////////
	//// Declare arguments that belongs to all bandit learner
	GenericBanditAlgorithm::declareBaseArguments(args);
	
	
	//////////////////////////////////////////////////////////////////////////////////////////  
	//////////////////////////////////////////////////////////////////////////////////////////
	
	switch ( args.readArguments(argc, argv) )
	{
		case nor_utils::AOT_NO_ARGUMENTS:
			showBase();
			break;
			
		case nor_utils::AOT_UNKOWN_ARGUMENT:
			exit(1);
			break;
			
		case nor_utils::AOT_INCORRECT_VALUES_NUMBER:
			exit(1);
			break;
			
		case nor_utils::AOT_OK:
			break;
	}
	
	//////////////////////////////////////////////////////////////////////////////////////////  
	//////////////////////////////////////////////////////////////////////////////////////////
	
	if ( args.hasArgument("help") )
		showHelp(args, learnersList);
	if ( args.hasArgument("static") )
		showStaticConfig();
	
	//////////////////////////////////////////////////////////////////////////////////////////  
	//////////////////////////////////////////////////////////////////////////////////////////
	
	if ( args.hasArgument("h") )
		showOptionalHelp(args);
	
	//////////////////////////////////////////////////////////////////////////////////////////  
	//////////////////////////////////////////////////////////////////////////////////////////
	
	int verbose = 1;
	
	if ( args.hasArgument("verbose") )
		args.getValue("verbose", 0, verbose);
	
	//////////////////////////////////////////////////////////////////////////////////////////  
	//////////////////////////////////////////////////////////////////////////////////////////
	
	// defines the seed
	if (args.hasArgument("seed"))
	{
		unsigned int seed = args.getValue<unsigned int>("seed", 0);
		srand(seed);
	}
	
	//////////////////////////////////////////////////////////////////////////////////////////  
	//////////////////////////////////////////////////////////////////////////////////////////
	
	GenericStrongLearner* pModel = NULL;
	
	if ( args.hasArgument("train") ||
        args.hasArgument("traintest") || 
	    args.hasArgument("trainvalidtest") ) // for Viola-Jones Cascade
	{
		
		// get the name of the learner
		string baseLearnerName = defaultLearner;
		if ( args.hasArgument("learnertype") )
			args.getValue("learnertype", 0, baseLearnerName);
		
		checkBaseLearner(baseLearnerName);
		if (verbose > 1)    
			cout << "--> Using learner: " << baseLearnerName << endl;
		
		// This hould be changed: the user decides the strong learner
		BaseLearner*  pWeakHypothesisSource = BaseLearner::RegisteredLearners().getLearner(baseLearnerName);
		pModel = pWeakHypothesisSource->createGenericStrongLearner( args );
		
		pModel->run(args);
	}
	//////////////////////////////////////////////////////////////////////////////////////////
	//////////////////////////////////////////////////////////////////////////////////////////
	else if ( args.hasArgument("traintestmddag") )
	{
		// -test <dataFile> <shypFile> <numIters>
		string shypFileName = args.getValue<string>("traintestmddag", 2);
		
		string baseLearnerName = UnSerialization::getWeakLearnerName(shypFileName);
		
		BaseLearner*  pWeakHypothesisSource = BaseLearner::RegisteredLearners().getLearner(baseLearnerName);
		pModel = pWeakHypothesisSource->createGenericStrongLearner( args );
		
		pModel->run(args);
		
	}		
	//////////////////////////////////////////////////////////////////////////////////////////
	//////////////////////////////////////////////////////////////////////////////////////////
	else if ( args.hasArgument("test") )
	{
		// -test <dataFile> <shypFile> <numIters>
		string shypFileName = args.getValue<string>("test", 1);
		
		string baseLearnerName = UnSerialization::getWeakLearnerName(shypFileName);
                
		BaseLearner*  pWeakHypothesisSource = BaseLearner::RegisteredLearners().getLearner(baseLearnerName);
		pModel = pWeakHypothesisSource->createGenericStrongLearner( args );
		
		pModel->classify(args);
	}
	//////////////////////////////////////////////////////////////////////////////////////////
	//////////////////////////////////////////////////////////////////////////////////////////
	else if ( args.hasArgument("cmatrix") )
	{
		// -cmatrix <dataFile> <shypFile>
		
		string shypFileName = args.getValue<string>("cmatrix", 1);
		
		string baseLearnerName = UnSerialization::getWeakLearnerName(shypFileName);
		BaseLearner*  pWeakHypothesisSource = BaseLearner::RegisteredLearners().getLearner(baseLearnerName);
		pModel = pWeakHypothesisSource->createGenericStrongLearner( args );
		
		pModel->doConfusionMatrix(args);
	}
	//////////////////////////////////////////////////////////////////////////////////////////
	//////////////////////////////////////////////////////////////////////////////////////////
	else if ( args.hasArgument("posteriors") )
	{
		// -posteriors <dataFile> <shypFile> <outFileName>
		string shypFileName = args.getValue<string>("posteriors", 1);
		
		string baseLearnerName = UnSerialization::getWeakLearnerName(shypFileName);
        
		BaseLearner*  pWeakHypothesisSource = BaseLearner::RegisteredLearners().getLearner(baseLearnerName);
		pModel = pWeakHypothesisSource->createGenericStrongLearner( args );
		
		pModel->doPosteriors(args);
	}   
	//////////////////////////////////////////////////////////////////////////////////////////
	//////////////////////////////////////////////////////////////////////////////////////////
	else if ( args.hasArgument("ssfeatures") )
	{
		// ONLY for AdaBoostMH classifiers
		
		// -ssfeatures <dataFile> <shypFile> <outFile> <numIters>
		string testFileName = args.getValue<string>("ssfeatures", 0);
		string shypFileName = args.getValue<string>("ssfeatures", 1);
		string outFileName = args.getValue<string>("ssfeatures", 2);
		int numIterations = args.getValue<int>("ssfeatures", 3);
		
		cerr << "ERROR: ssfeatures has been deactivated for the moment!" << endl;
		
		
		//classifier.saveSingleStumpFeatureData(testFileName, shypFileName, outFileName, numIterations);
	}
	
	//////////////////////////////////////////////////////////////////////////////////////////
	//////////////////////////////////////////////////////////////////////////////////////////
	else if ( args.hasArgument("encode") )
	{
		
		// --encode <inputDataFile> <outputDataFile> <nIterations> <poolFile> <nBaseLearners>
		string labelsFileName = args.getValue<string>("encode", 0);
		string autoassociativeFileName = args.getValue<string>("encode", 1);
		string outputFileName = args.getValue<string>("encode", 2);
		int numIterations = args.getValue<int>("encode", 3);
		string poolFileName = args.getValue<string>("encode", 4);
		int numBaseLearners = args.getValue<int>("encode", 5);
		string outputInfoFile;
		const char* tmpArgv1[] = {"bla", // for ParasiteLearner
			"--pool",
			args.getValue<string>("encode", 4).c_str(),
			args.getValue<string>("encode", 5).c_str()};
		args.readArguments(4,tmpArgv1);
		
		InputData* pAutoassociativeData = new InputData();
		pAutoassociativeData->initOptions(args);
		pAutoassociativeData->load(autoassociativeFileName,IT_TRAIN,verbose);
		
		// for the original labels
		InputData* pLabelsData = new InputData();
		pLabelsData->initOptions(args);
		pLabelsData->load(labelsFileName,IT_TRAIN,verbose);
		
		// set up all the InputData members identically to pAutoassociativeData
		EncodeData* pOnePoint = new EncodeData();
		pOnePoint->initOptions(args);
		pOnePoint->load(autoassociativeFileName,IT_TRAIN,verbose);
		
		const int numExamples = pAutoassociativeData->getNumExamples();
		BaseLearner* pWeakHypothesisSource = 
		BaseLearner::RegisteredLearners().getLearner("ParasiteLearner");
		pWeakHypothesisSource->declareArguments(args);
		
		ParasiteLearner* pWeakHypothesis;
		
		ofstream outFile(outputFileName.c_str());
		if (!outFile.is_open())
		{
			cerr << "ERROR: Cannot open strong hypothesis file <" << outputFileName << ">!" << endl;
			exit(1);
		}
		
		for (int i = 0; i < numExamples ; ++i)
		{
			vector<float> alphas;
			alphas.resize(numBaseLearners);
			fill(alphas.begin(), alphas.end(), 0);
			
			if (verbose >= 1)
				cout << "--> Encoding example no " << (i+1) << endl;
			pOnePoint->resetData();
			pOnePoint->addExample( pAutoassociativeData->getExample(i) );
			AlphaReal energy = 1;
			
			OutputInfo* pOutInfo = NULL;
			if ( args.hasArgument("outputinfo") ) 
			{
				args.getValue("outputinfo", 0, outputInfoFile);
				pOutInfo = new OutputInfo(args);
				pOutInfo->initialize(pOnePoint);
			}
			
			
			for (int t = 0; t < numIterations; ++t)
			{
				pWeakHypothesis = (ParasiteLearner*)pWeakHypothesisSource->create();
				pWeakHypothesis->initLearningOptions(args);
				pWeakHypothesis->setTrainingData(pOnePoint);
				energy *= pWeakHypothesis->run();
				// 	    if (verbose >= 2)
				//  	       cout << "energy = " << energy << endl << flush;
				AdaBoostMHLearner adaBoostMHLearner;
				
				if (i == 0 && t == 0)
				{
					if ( pWeakHypothesis->getBaseLearners().size() < numBaseLearners )
						numBaseLearners = pWeakHypothesis->getBaseLearners().size();
					outFile << "%Hidden representation using autoassociative boosting" << endl << endl;
					outFile << "@RELATION " << outputFileName << endl << endl;
					outFile << "% numBaseLearners" << endl;
					for (int j = 0; j < numBaseLearners; ++j) 
						outFile << "@ATTRIBUTE " << j << "_" <<
						pWeakHypothesis->getBaseLearners()[j]->getId() << " NUMERIC" << endl;
					outFile << "@ATTRIBUTE class {" << pLabelsData->getClassMap().getNameFromIdx(0);
					for (int l = 1; l < pLabelsData->getClassMap().getNumNames(); ++l)
						outFile << ", " << pLabelsData->getClassMap().getNameFromIdx(l);
					outFile << "}" << endl<< endl<< "@DATA" << endl;
				}
				alphas[pWeakHypothesis->getSelectedIndex()] += 
				pWeakHypothesis->getAlpha() * pWeakHypothesis->getSignOfAlpha();
				if ( pOutInfo )
					adaBoostMHLearner.printOutputInfo(pOutInfo, t, pOnePoint, NULL, pWeakHypothesis);
				adaBoostMHLearner.updateWeights(pOnePoint,pWeakHypothesis);
			}
			float sumAlphas = 0;
			for (int j = 0; j < numBaseLearners; ++j)
				sumAlphas += alphas[j];
			
			for (int j = 0; j < numBaseLearners; ++j)
				outFile << alphas[j]/sumAlphas << ",";
			const vector<Label>& labels = pLabelsData->getLabels(i);
			for (int l = 0; l < labels.size(); ++l)
				if (labels[l].y > 0)
					outFile << pLabelsData->getClassMap().getNameFromIdx(labels[l].idx) << endl;
			delete pOutInfo;
		}
		outFile.close();
	}
	
	if (pModel)
		delete pModel;
	
	return 0;
}
    void VJCascadeClassifier::savePosteriors(const string& dataFileName, const string& shypFileName, 
                                             const string& outFileName, int numIterations)
    {
        // loading data
        InputData* pData = loadInputData(dataFileName, shypFileName);
        const int numOfExamples = pData->getNumExamples();
                
        //get the index of positive label               
        const NameMap& namemap = pData->getClassMap();
        _positiveLabelIndex = namemap.getIdxFromName( _positiveLabelName );
                
                
        if (_verbose > 0)
            cout << "Loading strong hypothesis..." << flush;
                
                
        // open outfile
        ofstream outRes(outFileName.c_str());
        if (!outRes.is_open())
        {
            cout << "Cannot open outfile!!! " << outFileName << endl;
        }
                                
                
        // The class that loads the weak hypotheses
        UnSerialization us;
                
        // Where to put the weak hypotheses
        vector<vector<BaseLearner*> > weakHypotheses;
                        
        // For stagewise thresholds 
        vector<AlphaReal> thresholds(0);
        // loads them
        //us.loadHypotheses(shypFileName, weakHypotheses, pData);
        us.loadCascadeHypotheses(shypFileName, weakHypotheses, thresholds, pData);
                
        // output the number of stages
        outRes << "StageNum " << weakHypotheses.size() << endl;
                
        // output original labels
        outRes << "Labels";
        for(int i=0; i<numOfExamples; ++i )
        {               
            const Example& example = pData->getExample(i);
            int labelY = example.getLabelY(_positiveLabelIndex);
            
            if (labelY>0) // pos label                              
                outRes << " 1";
            else
                outRes << " 0";
        }                               
        outRes << endl;
                
        // store result
        vector<CascadeOutputInformation> cascadeData(0);
        vector<CascadeOutputInformation>::iterator it;
                
        cascadeData.resize(numOfExamples);              
        for( it=cascadeData.begin(); it != cascadeData.end(); ++it )
        {
            it->active=true;
        }                                                                               
                
        for(int stagei=0; stagei < weakHypotheses.size(); ++stagei )
        {
            // for posteriors
            vector<AlphaReal> posteriors(0);                
                        
            // calculate the posteriors after stage
            VJCascadeLearner::calculatePosteriors( pData, weakHypotheses[stagei], posteriors, _positiveLabelIndex );                        
                        
            // update the data (posteriors, active element index etc.)
            //VJCascadeLearner::forecastOverAllCascade( pData, posteriors, activeInstances, thresholds[stagei] );
            updateCascadeData(pData, weakHypotheses, stagei, posteriors, thresholds, _positiveLabelIndex, cascadeData);
                        
                        
            int numberOfActiveInstance = 0;
            for( int i = 0; i < numOfExamples; ++i )
                if (cascadeData[i].active) numberOfActiveInstance++;
                        
            if (_verbose > 0 )
                cout << "Number of active instances: " << numberOfActiveInstance << "(" << numOfExamples << ")" << endl;                                                                        
                        
            // output stats
            outRes << "Stage " << stagei << " " << weakHypotheses[stagei].size() << endl; 

            outRes << "Forecast";
            for(int i=0; i<numOfExamples; ++i )
            {       
                outRes << " " << cascadeData[i].forecast;
            }                               
            outRes << endl;

            outRes << "Active";
            for(int i=0; i<numOfExamples; ++i )
            {       
                if( cascadeData[i].active)
                    outRes << " 1";
                else
                    outRes << " 0";
            }                               
            outRes << endl;

            outRes << "Posteriors";
            for(int i=0; i<numOfExamples; ++i )
            {       
                outRes << " " << cascadeData[i].score;
            }                               
            outRes << endl;
                        
        }                                               
                
        outRes.close();
                
        // free memory allocation
        vector<vector<BaseLearner*> >::iterator bvIt;
        for( bvIt = weakHypotheses.begin(); bvIt != weakHypotheses.end(); ++bvIt )
        {
            vector<BaseLearner* >::iterator bIt;
            for( bIt = (*bvIt).begin(); bIt != (*bvIt).end(); ++bIt )
                delete *bIt;
        }
    }