void radixSort (IntList & values) { bool flag = true; int divisor = 1; while (flag) { DeqVector buckets (10); flag = false; std::for_each (values.begin (), values.end (), copyIntoBuckets (divisor, buckets, flag)); std::accumulate (buckets.begin (), buckets.end (), values.begin (), copyList); divisor *= 10; std::copy (values.begin (), values.end (), OstreamIter (std::cout, " ")); std::cout << std::endl; } }
double check_multiple( double * tgt, double * src, int & ind, IntList & nb, SeedList & seeds, double & tolerance, int & nx, int & ny ) { if ( nb.size() == 1 ) return nb.front(); if ( nb.size() < 1 ) return 0.0; // dumb protection double diff, maxdiff = 0.0, res = 0.0; int i; IntList::iterator it; SeedList::iterator sit; PointXY ptsit, pt = pointFromIndex( ind, nx ); double distx, dist = FLT_MAX; /* maxdiff */ for ( it = nb.begin(); it != nb.end(); it++ ) { if ( !get_seed( seeds, *it, sit ) ) continue; diff = fabs( src[ ind ] - src[ (*sit).index ] ); if ( diff > maxdiff ) { maxdiff = diff; /* assign result to the steepest until and if it not assigned to closest over the tolerance */ if ( dist == FLT_MAX ) res = *it; } /* we assign to the closest centre which is above tolerance, if none than to maxdiff */ if ( diff >= tolerance ) { ptsit = pointFromIndex( (*sit).index, nx ); distx = distanceXY( pt, ptsit); if ( distx < dist ) { dist = distx; res = * it; } } } /* assign all that need assignment to res, which has maxdiff */ for ( it = nb.begin(); it != nb.end(); it++ ) { if ( *it == res ) continue; if ( !get_seed( seeds, *it, sit ) ) continue; if ( fabs( src[ ind ] - src[ (*sit).index ] ) >= tolerance ) continue; for ( i = 0; i < nx * ny; i++ ) if ( tgt[ i ] == *it ) tgt[ i ] = res; seeds.erase( sit ); } return res; }
void WQQuiz::addToList(int aCol, int bCol) { //build a list of row numbers containing text in both columns typedef QValueList<int> IntList; IntList tempList; for (int current = 0; current < m_table ->numRows(); ++current) { if (!m_table->text(current, 0).isEmpty() && !m_table->text(current, 1).isEmpty()) { tempList.append(current); } } KRandomSequence *rs = new KRandomSequence(0); int count = tempList.count(); IntList::ConstIterator it; for ( it = tempList.begin(); it != tempList.end(); ++it ) { WQListItem *li; li = new WQListItem(); li->setQuestion(aCol); li->setCorrect(1); li->setOneOp(*it); if (count > 2) { int a, b; do a = rs->getLong(count); //rand() % count; while(a==*it); li->setTwoOp(a); do b = rs->getLong(count); //rand() % count; while(b == *it || b == a /*|| b < 0*/); li->setThreeOp(b); } m_quizList.append(*li); } }
int main () { std::cout << "Radix sort program" << std::endl; const IntList::value_type data[] = { 624, 852, 426, 987, 269, 146, 415, 301, 730, 78, 593 }; IntList values (data, data + sizeof data / sizeof *data); radixSort (values); std::copy (values.begin (), values.end (), OstreamIter (std::cout, " ")); std::cout << std::endl << "End radix sort program" << std::endl; return 0; }
// Given a list of lists of possible cage values: // [[1,2,3], [3,4,5]] // Recursively generates tuples of combinations from each of the lists as // follows: // [1,3] // [1,4] // [1,5] // [2,3] // [2,4] // ... etc // Each of these is checked against the target sum, and pushed into a result // vector if they match. // Note: The algorithm assumes that the list of possibles/candidates are // ordered. This allows it to bail out early if it detects there's no point // going further. static void subsetSum(const std::vector<IntList> &possible_lists, const std::size_t p_size, IntList &tuple, unsigned tuple_sum, std::vector<IntList> &subsets, const unsigned target_sum, unsigned list_idx) { for (unsigned p = list_idx; p < p_size; ++p) { for (auto &poss : possible_lists[p]) { // Optimization for small target sums: if the candidate is bigger than // the target itself then it can't be valid, neither can any candidate // after it (ordered). if (target_sum < static_cast<unsigned>(poss)) { break; } // Can't repeat a value inside a cage if (std::find(tuple.begin(), tuple.end(), poss) != tuple.end()) { continue; } // Pre-calculate the new tuple values to avoid spurious // insertions/deletions to the vector. const auto new_tuple_sum = tuple_sum + poss; const auto new_tuple_size = tuple.size() + 1; // If we've added too much then we can bail out (ordered). if (new_tuple_sum > target_sum) { break; } // If there are fewer spots left in the tuple than there are options for // the sum to reach the target, bail. // TODO: This could be more sophisticated (can't have more than one 1, so // it's more like the N-1 sum that it should be greater than. if ((p_size - new_tuple_size) > (target_sum - new_tuple_sum)) { break; } if (new_tuple_size == p_size) { // If we've reached our target size then we can stop searching other // possiblities from this list (ordered). if (new_tuple_sum == target_sum) { tuple.push_back(poss); subsets.push_back(tuple); tuple.pop_back(); break; } // Else, move on to the next candidate in the list. continue; } tuple_sum += poss; tuple.push_back(poss); subsetSum(possible_lists, p_size, tuple, tuple_sum, subsets, target_sum, p + 1); tuple.pop_back(); tuple_sum -= poss; } } }
/*----------------------------------------------------------------------- */ SEXP watershed (SEXP x, SEXP _tolerance, SEXP _ext) { SEXP res; int im, i, j, nx, ny, nz, ext, nprotect = 0; double tolerance; nx = INTEGER ( GET_DIM(x) )[0]; ny = INTEGER ( GET_DIM(x) )[1]; nz = getNumberOfFrames(x,0); tolerance = REAL( _tolerance )[0]; ext = INTEGER( _ext )[0]; PROTECT ( res = Rf_duplicate(x) ); nprotect++; int * index = new int[ nx * ny ]; for ( im = 0; im < nz; im++ ) { double * src = &( REAL(x)[ im * nx * ny ] ); double * tgt = &( REAL(res)[ im * nx * ny ] ); /* generate pixel index and negate the image -- filling wells */ for ( i = 0; i < nx * ny; i++ ) { tgt[ i ] = -src[ i ]; index[ i ] = i; } /* from R includes R_ext/Utils.h */ /* will resort tgt as well */ rsort_with_index( tgt, index, nx * ny ); /* reassign tgt as it was reset above but keep new index */ for ( i = 0; i < nx * ny; i++ ) tgt[ i ] = -src[ i ]; SeedList seeds; /* indexes of all seed starting points, i.e. lowest values */ IntList equals; /* queue of all pixels on the same gray level */ IntList nb; /* seed values of assigned neighbours */ int ind, indxy, nbseed, x, y, topseed = 0; IntList::iterator it; TheSeed newseed; PointXY pt; bool isin; /* loop through the sorted index */ for ( i = 0; i < nx * ny && src[ index[i] ] > BG; ) { /* pool a queue of equally lowest values */ ind = index[ i ]; equals.push_back( ind ); for ( i = i + 1; i < nx * ny; ) { if ( src[ index[i] ] != src[ ind ] ) break; equals.push_back( index[i] ); i++; } while ( !equals.empty() ) { /* first check through all the pixels if we can assign them to * existing objects, count checked and reset counter on each assigned * -- exit when counter equals queue length */ for ( j = 0; j < (int) equals.size(); ) { if ((j%1000)==0) R_CheckUserInterrupt(); ind = equals.front(); equals.pop_front(); /* check neighbours: * - if exists one, assign * - if two or more check what should be combined and assign to the steepest * - if none, push back */ /* reset j to 0 every time we assign another pixel to restart the loop */ nb.clear(); pt = pointFromIndex( ind, nx ); /* determine which neighbour we have, push them to nb */ for ( x = pt.x - ext; x <= pt.x + ext; x++ ) for ( y = pt.y - ext; y <= pt.y + ext; y++ ) { if ( x < 0 || y < 0 || x >= nx || y >= ny || (x == pt.x && y == pt.y) ) continue; indxy = x + y * nx; nbseed = (int) tgt[ indxy ]; if ( nbseed < 1 ) continue; isin = false; for ( it = nb.begin(); it != nb.end() && !isin; it++ ) if ( nbseed == *it ) isin = true; if ( !isin ) nb.push_back( nbseed ); } if ( nb.size() == 0 ) { /* push the pixel back and continue with the next one */ equals.push_back( ind ); j++; continue; } tgt[ ind ] = check_multiple(tgt, src, ind, nb, seeds, tolerance, nx, ny ); /* we assigned the pixel, reset j to restart neighbours detection */ j = 0; } /* now we have assigned all that we could */ if ( !equals.empty() ) { /* create a new seed for one pixel only and go back to assigning neighbours */ topseed++; newseed.index = equals.front(); newseed.seed = topseed; equals.pop_front(); tgt[ newseed.index ] = topseed; seeds.push_back( newseed ); } } // assigning equals } // sorted index /* now we need to reassign indexes while some seeds could be removed */ double * finseed = new double[ topseed ]; for ( i = 0; i < topseed; i++ ) finseed[ i ] = 0; i = 0; while ( !seeds.empty() ) { newseed = seeds.front(); seeds.pop_front(); finseed[ newseed.seed - 1 ] = i + 1; i++; } for ( i = 0; i < nx * ny; i++ ) { j = (int) tgt[ i ]; if ( 0 < j && j <= topseed ) tgt[ i ] = finseed[ j - 1 ]; } delete[] finseed; } // loop through images delete[] index; UNPROTECT (nprotect); return res; }
TestList() { typedef List<char, DebugAllocator<int> > IntList; IntList a; a.push_back('1'); a.push_back('2'); a.push_back('3'); LIST_ASSERT(*a.begin() == '1'); LIST_ASSERT(*++a.begin() == '2'); LIST_ASSERT(*++++a.begin() == '3'); LIST_ASSERT(++++++a.begin() == a.end()); IntList b; b.push_back('a'); b.push_back('b'); b.push_back('c'); LIST_ASSERT(*b.begin() == 'a'); LIST_ASSERT(*++b.begin() == 'b'); LIST_ASSERT(*++++b.begin() == 'c'); LIST_ASSERT(++++++b.begin() == b.end()); // swap full lists a.swap(b); LIST_ASSERT(*a.begin() == 'a'); LIST_ASSERT(*++a.begin() == 'b'); LIST_ASSERT(*++++a.begin() == 'c'); LIST_ASSERT(++++++a.begin() == a.end()); LIST_ASSERT(*b.begin() == '1'); LIST_ASSERT(*++b.begin() == '2'); LIST_ASSERT(*++++b.begin() == '3'); LIST_ASSERT(++++++b.begin() == b.end()); // swap to/from empty list IntList c; c.swap(b); LIST_ASSERT(b.empty()); LIST_ASSERT(*c.begin() == '1'); LIST_ASSERT(*++c.begin() == '2'); LIST_ASSERT(*++++c.begin() == '3'); LIST_ASSERT(++++++c.begin() == c.end()); c.swap(b); LIST_ASSERT(c.empty()); LIST_ASSERT(*b.begin() == '1'); LIST_ASSERT(*++b.begin() == '2'); LIST_ASSERT(*++++b.begin() == '3'); LIST_ASSERT(++++++b.begin() == b.end()); IntList d; c.swap(d); LIST_ASSERT(c.empty()); LIST_ASSERT(d.empty()); c.splice(c.end(), d); LIST_ASSERT(c.empty()); LIST_ASSERT(d.empty()); // splice full with empty b.splice(b.end(), c); LIST_ASSERT(c.empty()); LIST_ASSERT(*b.begin() == '1'); LIST_ASSERT(*++b.begin() == '2'); LIST_ASSERT(*++++b.begin() == '3'); LIST_ASSERT(++++++b.begin() == b.end()); // splice empty with full c.splice(c.end(), b); LIST_ASSERT(b.empty()); LIST_ASSERT(*c.begin() == '1'); LIST_ASSERT(*++c.begin() == '2'); LIST_ASSERT(*++++c.begin() == '3'); LIST_ASSERT(++++++c.begin() == c.end()); // splice full with full c.splice(c.end(), a); LIST_ASSERT(a.empty()); LIST_ASSERT(*c.begin() == '1'); LIST_ASSERT(*++c.begin() == '2'); LIST_ASSERT(*++++c.begin() == '3'); LIST_ASSERT(*++++++c.begin() == 'a'); LIST_ASSERT(*++++++++c.begin() == 'b'); LIST_ASSERT(*++++++++++c.begin() == 'c'); LIST_ASSERT(++++++++++++c.begin() == c.end()); c.pop_back(); LIST_ASSERT(!c.empty()); c.pop_back(); LIST_ASSERT(!c.empty()); c.pop_back(); LIST_ASSERT(!c.empty()); c.pop_back(); LIST_ASSERT(!c.empty()); c.pop_back(); LIST_ASSERT(!c.empty()); c.pop_back(); LIST_ASSERT(c.empty()); }