void
FlameRegressionTest::CreateDevices ()
{
  int64_t streamsUsed = 0;
  // 1. setup WiFi
  YansWifiPhyHelper wifiPhy = YansWifiPhyHelper::Default ();
  // This test suite output was originally based on YansErrorRateModel
  wifiPhy.SetErrorRateModel ("ns3::YansErrorRateModel"); 
  YansWifiChannelHelper wifiChannel = YansWifiChannelHelper::Default ();
  Ptr<YansWifiChannel> chan = wifiChannel.Create ();
  wifiPhy.SetChannel (chan);
  // 2. setup mesh
  MeshHelper mesh = MeshHelper::Default ();
  mesh.SetStackInstaller ("ns3::FlameStack");
  mesh.SetMacType ("RandomStart", TimeValue (Seconds (0.1)));
  mesh.SetNumberOfInterfaces (1);
  NetDeviceContainer meshDevices = mesh.Install (wifiPhy, *m_nodes);
  // Three devices, two streams per device
  streamsUsed += mesh.AssignStreams (meshDevices, streamsUsed);
  NS_TEST_ASSERT_MSG_EQ (streamsUsed, (meshDevices.GetN () * 2), "Stream assignment unexpected value");
  streamsUsed += wifiChannel.AssignStreams (chan, streamsUsed);
  NS_TEST_ASSERT_MSG_EQ (streamsUsed, (meshDevices.GetN () * 2), "Stream assignment unexpected value");
  // 3. setup TCP/IP
  InternetStackHelper internetStack;
  internetStack.Install (*m_nodes);
  Ipv4AddressHelper address;
  address.SetBase ("10.1.1.0", "255.255.255.0");
  m_interfaces = address.Assign (meshDevices);
  // 4. write PCAP if needed
  wifiPhy.EnablePcapAll (CreateTempDirFilename (PREFIX));

}
Exemple #2
0
int 
main (int argc, char *argv[])
{
  NodeContainer nodes;
  nodes.Create (2);

  PointToPointHelper pointToPoint;
  NetDeviceContainer devices;
  devices = pointToPoint.Install (nodes);

  InternetStackHelper stack;
  stack.Install (nodes);
  Ipv4AddressHelper address;
  address.SetBase ("10.1.1.0", "255.255.255.252");
  Ipv4InterfaceContainer interfaces = address.Assign (devices);

  uint16_t sinkPort = 8080;
  Address sinkAddress (InetSocketAddress (interfaces.GetAddress (1), sinkPort));

  Ptr<PacketSink> receiverApplication = CreateObject<PacketSink> ();
  receiverApplication->SetAttribute ("Local", AddressValue (InetSocketAddress (Ipv4Address::GetAny(), 8080)));
  receiverApplication->SetAttribute ("Protocol", TypeIdValue(TcpSocketFactory::GetTypeId()));
  receiverApplication->TraceConnectWithoutContext ("Rx", MakeCallback (&CountRx));
  nodes.Get(1)->AddApplication(receiverApplication);

  Ptr<MyApp> app = CreateObject<MyApp> (nodes.Get (0), sinkAddress);
  nodes.Get (0)->AddApplication (app);

  Simulator::Stop ();
  Simulator::Run ();
  Simulator::Destroy ();

  return 0;
}
int main (int argc, char *argv[])
{
#ifdef NS3_CLICK
  NodeContainer csmaNodes;
  csmaNodes.Create (2);

  // Setup CSMA channel between the nodes
  CsmaHelper csma;
  csma.SetChannelAttribute ("DataRate", DataRateValue (DataRate (5000000)));
  csma.SetChannelAttribute ("Delay", TimeValue (MilliSeconds (2)));
  NetDeviceContainer csmaDevices = csma.Install (csmaNodes);

  // Install normal internet stack on node B
  InternetStackHelper internet;
  internet.Install (csmaNodes.Get (1));

  // Install Click on node A
  ClickInternetStackHelper clickinternet;
  clickinternet.SetClickFile (csmaNodes.Get (0), "src/click/examples/nsclick-lan-single-interface.click");
  clickinternet.SetRoutingTableElement (csmaNodes.Get (0), "rt");
  clickinternet.Install (csmaNodes.Get (0));

  // Configure IP addresses for the nodes
  Ipv4AddressHelper ipv4;
  ipv4.SetBase ("172.16.1.0", "255.255.255.0");
  ipv4.Assign (csmaDevices);

  // Configure traffic application and sockets
  Address LocalAddress (InetSocketAddress (Ipv4Address::GetAny (), 50000));
  PacketSinkHelper packetSinkHelper ("ns3::TcpSocketFactory", LocalAddress);
  ApplicationContainer recvapp = packetSinkHelper.Install (csmaNodes.Get (1));
  recvapp.Start (Seconds (5.0));
  recvapp.Stop (Seconds (10.0));

  OnOffHelper onOffHelper ("ns3::TcpSocketFactory", Address ());
  onOffHelper.SetAttribute ("OnTime", StringValue ("ns3::ConstantRandomVariable[Constant=1]"));
  onOffHelper.SetAttribute ("OffTime", StringValue ("ns3::ConstantRandomVariable[Constant=0]"));

  ApplicationContainer appcont;

  AddressValue remoteAddress (InetSocketAddress (Ipv4Address ("172.16.1.2"), 50000));
  onOffHelper.SetAttribute ("Remote", remoteAddress);
  appcont.Add (onOffHelper.Install (csmaNodes.Get (0)));

  appcont.Start (Seconds (5.0));
  appcont.Stop (Seconds (10.0));

  // For tracing
  csma.EnablePcap ("nsclick-simple-lan", csmaDevices, false);

  Simulator::Stop (Seconds (20.0));
  Simulator::Run ();

  Simulator::Destroy ();
  return 0;
#else
  NS_FATAL_ERROR ("Can't use ns-3-click without NSCLICK compiled in");
#endif
}
//
// Network topology
//    (sender)         (receiver)
//       n0    n1   n2   n3
//       |     |    |    |
//     =====================
//
// Node n0 sends data to node n3 over a raw IP socket.  The protocol
// number used is 2.
//
void
CsmaRawIpSocketTestCase::DoRun (void)
{
  // Here, we will explicitly create four nodes.
  NodeContainer c;
  c.Create (4);

  // connect all our nodes to a shared channel.
  CsmaHelper csma;
  csma.SetChannelAttribute ("DataRate", DataRateValue (DataRate (5000000)));
  csma.SetChannelAttribute ("Delay", TimeValue (MilliSeconds (2)));
  csma.SetDeviceAttribute ("EncapsulationMode", StringValue ("Llc"));
  NetDeviceContainer devs = csma.Install (c);

  // add an ip stack to all nodes.
  InternetStackHelper ipStack;
  ipStack.Install (c);

  // assign ip addresses
  Ipv4AddressHelper ip;
  ip.SetBase ("192.168.1.0", "255.255.255.0");
  Ipv4InterfaceContainer addresses = ip.Assign (devs);

  // IP protocol configuration
  //
  // Make packets be sent about every DefaultPacketSize / DataRate = 
  // 4096 bits / (5000 bits/second) = 0.82 second.
  Config::SetDefault ("ns3::Ipv4RawSocketImpl::Protocol", StringValue ("2"));
  InetSocketAddress dst = InetSocketAddress (addresses.GetAddress (3));
  OnOffHelper onoff = OnOffHelper ("ns3::Ipv4RawSocketFactory", dst);
  onoff.SetConstantRate (DataRate (5000));

  ApplicationContainer apps = onoff.Install (c.Get (0));
  apps.Start (Seconds (1.0));
  apps.Stop (Seconds (10.0));

  PacketSinkHelper sink = PacketSinkHelper ("ns3::Ipv4RawSocketFactory", dst);
  apps = sink.Install (c.Get (3));
  apps.Start (Seconds (0.0));
  apps.Stop (Seconds (12.0));

  // Trace receptions
  Config::ConnectWithoutContext ("/NodeList/3/ApplicationList/0/$ns3::PacketSink/Rx", 
                                 MakeCallback (&CsmaRawIpSocketTestCase::SinkRx, this));

  Simulator::Run ();
  Simulator::Destroy ();

  // We should have sent and received 10 packets
  NS_TEST_ASSERT_MSG_EQ (m_count, 10, "Node 3 should have received 10 packets");
}
Exemple #5
0
void
AodvExample::InstallInternetStack ()
{
  AodvHelper aodv;
  // you can configure AODV attributes here using aodv.Set(name, value)
  InternetStackHelper stack;
  stack.SetRoutingHelper (aodv); // has effect on the next Install ()
  stack.Install (nodes);
  Ipv4AddressHelper address;
  address.SetBase ("10.0.0.0", "255.0.0.0");
  interfaces = address.Assign (devices);

  if (printRoutes)
    {
      Ptr<OutputStreamWrapper> routingStream = Create<OutputStreamWrapper> ("aodv.routes", std::ios::out);
      aodv.PrintRoutingTableAllAt (Seconds (8), routingStream);
    }
}
Exemple #6
0
int
main (int argc, char *argv[])
{
  Time::SetResolution (Time::NS);
  LogComponentEnable ("UdpEchoClientApplication", LOG_LEVEL_INFO);
  LogComponentEnable ("UdpEchoServerApplication", LOG_LEVEL_INFO);

  NodeContainer nodes;
  nodes.Create (2);

  PointToPointHelper pointToPoint;
  pointToPoint.SetDeviceAttribute ("DataRate", StringValue ("5Mbps"));
  pointToPoint.SetChannelAttribute ("Delay", StringValue ("2ms"));

  NetDeviceContainer devices;
  devices = pointToPoint.Install (nodes);

  InternetStackHelper stack;
  stack.Install (nodes);

  Ipv4AddressHelper address;
  address.SetBase ("10.1.1.0", "255.255.255.0");

  Ipv4InterfaceContainer interfaces = address.Assign (devices);

  UdpEchoServerHelper echoServer (9);

  ApplicationContainer serverApps = echoServer.Install (nodes.Get (1));
  serverApps.Start (Seconds (1.0));
  serverApps.Stop (Seconds (10.0));

  UdpEchoClientHelper echoClient (interfaces.GetAddress (1), 9);
  echoClient.SetAttribute ("MaxPackets", UintegerValue (1));
  echoClient.SetAttribute ("Interval", TimeValue (Seconds (1.0)));
  echoClient.SetAttribute ("PacketSize", UintegerValue (1024));

  ApplicationContainer clientApps = echoClient.Install (nodes.Get (0));
  clientApps.Start (Seconds (2.0));
  clientApps.Stop (Seconds (10.0));

  Simulator::Run ();
  Simulator::Destroy ();
  return 0;
}
// Network topology (default)
//
//            n2     +          +     n3          .
//             | ... |\        /| ... |           .
//             ======= \      / =======           .
//              CSMA    \    /   CSMA             .
//                       \  /                     .
//            n1     +--- n0 ---+     n4          .
//             | ... |   /  \   | ... |           .
//             =======  /    \  =======           .
//              CSMA   /      \  CSMA             .
//                    /        \                  .
//            n6     +          +     n5          .
//             | ... |          | ... |           .
//             =======          =======           .
//              CSMA             CSMA             .
//
void
CsmaStarTestCase::DoRun (void)
{
  //
  // Default number of nodes in the star.
  //
  uint32_t nSpokes = 7;

  CsmaHelper csma;
  csma.SetChannelAttribute ("DataRate", StringValue ("100Mbps"));
  csma.SetChannelAttribute ("Delay", StringValue ("1ms"));
  CsmaStarHelper star (nSpokes, csma);

  NodeContainer fillNodes;

  //
  // Just to be nasy, hang some more nodes off of the CSMA channel for each
  // spoke, so that there are a total of 16 nodes on each channel.  Stash
  // all of these new devices into a container.
  //
  NetDeviceContainer fillDevices;

  uint32_t nFill = 14;
  for (uint32_t i = 0; i < star.GetSpokeDevices ().GetN (); ++i)
    {
      Ptr<Channel> channel = star.GetSpokeDevices ().Get (i)->GetChannel ();
      Ptr<CsmaChannel> csmaChannel = channel->GetObject<CsmaChannel> ();
      NodeContainer newNodes;
      newNodes.Create (nFill);
      fillNodes.Add (newNodes);
      fillDevices.Add (csma.Install (newNodes, csmaChannel));
    }

  InternetStackHelper internet;
  star.InstallStack (internet);
  internet.Install (fillNodes);

  star.AssignIpv4Addresses (Ipv4AddressHelper ("10.1.0.0", "255.255.255.0"));

  //
  // We assigned addresses to the logical hub and the first "drop" of the 
  // CSMA network that acts as the spoke, but we also have a number of fill
  // devices (nFill) also hanging off the CSMA network.  We have got to 
  // assign addresses to them as well.  We put all of the fill devices into
  // a single device container, so the first nFill devices are associated
  // with the channel connected to spokeDevices.Get (0), the second nFill
  // devices afe associated with the channel connected to spokeDevices.Get (1)
  // etc.
  //
  Ipv4AddressHelper address;
  for(uint32_t i = 0; i < star.SpokeCount (); ++i)
    {
      std::ostringstream subnet;
      subnet << "10.1." << i << ".0";
      address.SetBase (subnet.str ().c_str (), "255.255.255.0", "0.0.0.3");

      for (uint32_t j = 0; j < nFill; ++j)
        {
          address.Assign (fillDevices.Get (i * nFill + j));
        }
    }

  //
  // Create a packet sink on the star "hub" to receive packets.
  // 
  uint16_t port = 50000;
  Address hubLocalAddress (InetSocketAddress (Ipv4Address::GetAny (), port));
  PacketSinkHelper packetSinkHelper ("ns3::TcpSocketFactory", hubLocalAddress);
  ApplicationContainer hubApp = packetSinkHelper.Install (star.GetHub ());
  hubApp.Start (Seconds (1.0));
  hubApp.Stop (Seconds (10.0));

  //
  // Create OnOff applications to send TCP to the hub, one on each spoke node.
  //
  // Make packets be sent about every DefaultPacketSize / DataRate = 
  // 4096 bits / (5000 bits/second) = 0.82 second.
  OnOffHelper onOffHelper ("ns3::TcpSocketFactory", Address ());
  onOffHelper.SetConstantRate (DataRate (5000));

  ApplicationContainer spokeApps;

  for (uint32_t i = 0; i < star.SpokeCount (); ++i)
    {
      AddressValue remoteAddress (InetSocketAddress (star.GetHubIpv4Address (i), port));
      onOffHelper.SetAttribute ("Remote", remoteAddress);
      spokeApps.Add (onOffHelper.Install (star.GetSpokeNode (i)));
    }

  spokeApps.Start (Seconds (1.0));
  spokeApps.Stop (Seconds (10.0));

  //
  // Because we are evil, we also add OnOff applications to send TCP to the hub 
  // from the fill devices on each CSMA link.  The first nFill nodes in the 
  // fillNodes container are on the CSMA network talking to the zeroth device
  // on the hub node.  The next nFill nodes are on the CSMA network talking to
  // the first device on the hub node, etc.  So the ith fillNode is associated
  // with the hub address found on the (i / nFill)th device on the hub node.
  //
  ApplicationContainer fillApps;

  for (uint32_t i = 0; i < fillNodes.GetN (); ++i)
    {
      AddressValue remoteAddress (InetSocketAddress (star.GetHubIpv4Address (i / nFill), port));
      onOffHelper.SetAttribute ("Remote", remoteAddress);
      fillApps.Add (onOffHelper.Install (fillNodes.Get (i)));
    }

  fillApps.Start (Seconds (1.0));
  fillApps.Stop (Seconds (10.0));

  //
  // Turn on global static routing so we can actually be routed across the star.
  //
  Ipv4GlobalRoutingHelper::PopulateRoutingTables ();

  // Trace receptions
  Config::ConnectWithoutContext ("/NodeList/0/ApplicationList/*/$ns3::PacketSink/Rx", 
                                 MakeCallback (&CsmaStarTestCase::SinkRx, this));

  Simulator::Run ();
  Simulator::Destroy ();

  // The hub node should have received 10 packets from the nFill + 1
  // nodes on each spoke.
  NS_TEST_ASSERT_MSG_EQ (m_count, 10 * ( nSpokes * (nFill + 1)), "Hub node did not receive the proper number of packets");
}
// Network topology
//
//        n0     n1
//        |      | 
//       ----------
//       | Switch |
//       ----------
//        |      | 
//        n2     n3
//
// - CBR/UDP test flow from n0 to n1; test that packets received on n1 
//
void
CsmaBridgeTestCase::DoRun (void)
{
  NodeContainer terminals;
  terminals.Create (4);

  NodeContainer csmaSwitch;
  csmaSwitch.Create (1);

  CsmaHelper csma;
  csma.SetChannelAttribute ("DataRate", DataRateValue (5000000));
  csma.SetChannelAttribute ("Delay", TimeValue (MilliSeconds (2)));

  NetDeviceContainer terminalDevices;
  NetDeviceContainer switchDevices;

  for (int i = 0; i < 4; i++)
    {
      NetDeviceContainer link = csma.Install (NodeContainer (terminals.Get (i), csmaSwitch));
      terminalDevices.Add (link.Get (0));
      switchDevices.Add (link.Get (1));
    }

  // Create the bridge netdevice, which will do the packet switching
  Ptr<Node> switchNode = csmaSwitch.Get (0);
  BridgeHelper bridge;
  bridge.Install (switchNode, switchDevices);

  InternetStackHelper internet;
  internet.Install (terminals);

  Ipv4AddressHelper ipv4;
  ipv4.SetBase ("10.1.1.0", "255.255.255.0");
  ipv4.Assign (terminalDevices);

  uint16_t port = 9;   // Discard port (RFC 863)

  // Create the OnOff application to send UDP datagrams from n0 to n1.
  //
  // Make packets be sent about every DefaultPacketSize / DataRate = 
  // 4096 bits / (5000 bits/second) = 0.82 second.
  OnOffHelper onoff ("ns3::UdpSocketFactory", 
                     Address (InetSocketAddress (Ipv4Address ("10.1.1.2"), port)));
  onoff.SetConstantRate (DataRate (5000));

  ApplicationContainer app = onoff.Install (terminals.Get (0));
  app.Start (Seconds (1.0));
  app.Stop (Seconds (10.0));

  PacketSinkHelper sink ("ns3::UdpSocketFactory",
                         Address (InetSocketAddress (Ipv4Address::GetAny (), port)));
  app = sink.Install (terminals.Get (1));
  app.Start (Seconds (0.0));

  // Trace receptions
  Config::ConnectWithoutContext ("/NodeList/1/ApplicationList/0/$ns3::PacketSink/Rx", MakeCallback (&CsmaBridgeTestCase::SinkRx, this));

  Simulator::Run ();
  Simulator::Destroy ();

  // We should have sent and received 10 packets
  NS_TEST_ASSERT_MSG_EQ (m_count, 10, "Bridge should have passed 10 packets");
}
int 
main (int argc, char *argv[])
{
  //
  // Users may find it convenient to turn on explicit debugging
  // for selected modules; the below lines suggest how to do this
  //
  // LogComponentEnable ("CsmaMulticastExample", LOG_LEVEL_INFO);

  //
  // Set up default values for the simulation.
  //
  // Select DIX/Ethernet II-style encapsulation (no LLC/Snap header)
  Config::SetDefault ("ns3::CsmaNetDevice::EncapsulationMode", StringValue ("Dix"));

  // Allow the user to override any of the defaults at
  // run-time, via command-line arguments
  CommandLine cmd;
  cmd.Parse (argc, argv);

  NS_LOG_INFO ("Create nodes.");
  NodeContainer c;
  c.Create (5);
  // We will later want two subcontainers of these nodes, for the two LANs
  NodeContainer c0 = NodeContainer (c.Get (0), c.Get (1), c.Get (2));
  NodeContainer c1 = NodeContainer (c.Get (2), c.Get (3), c.Get (4));

  NS_LOG_INFO ("Build Topology.");
  CsmaHelper csma;
  csma.SetChannelAttribute ("DataRate", DataRateValue (DataRate (5000000)));
  csma.SetChannelAttribute ("Delay", TimeValue (MilliSeconds (2)));
 
  // We will use these NetDevice containers later, for IP addressing
  NetDeviceContainer nd0 = csma.Install (c0);  // First LAN
  NetDeviceContainer nd1 = csma.Install (c1);  // Second LAN

  NS_LOG_INFO ("Add IP Stack.");
  InternetStackHelper internet;
  internet.Install (c);

  NS_LOG_INFO ("Assign IP Addresses.");
  Ipv4AddressHelper ipv4Addr;
  ipv4Addr.SetBase ("10.1.1.0", "255.255.255.0");
  ipv4Addr.Assign (nd0);
  ipv4Addr.SetBase ("10.1.2.0", "255.255.255.0");
  ipv4Addr.Assign (nd1);

  NS_LOG_INFO ("Configure multicasting.");
  //
  // Now we can configure multicasting.  As described above, the multicast 
  // source is at node zero, which we assigned the IP address of 10.1.1.1 
  // earlier.  We need to define a multicast group to send packets to.  This
  // can be any multicast address from 224.0.0.0 through 239.255.255.255
  // (avoiding the reserved routing protocol addresses).
  //

  Ipv4Address multicastSource ("10.1.1.1");
  Ipv4Address multicastGroup ("225.1.2.4");

  // Now, we will set up multicast routing.  We need to do three things:
  // 1) Configure a (static) multicast route on node n2
  // 2) Set up a default multicast route on the sender n0 
  // 3) Have node n4 join the multicast group
  // We have a helper that can help us with static multicast
  Ipv4StaticRoutingHelper multicast;

  // 1) Configure a (static) multicast route on node n2 (multicastRouter)
  Ptr<Node> multicastRouter = c.Get (2);  // The node in question
  Ptr<NetDevice> inputIf = nd0.Get (2);  // The input NetDevice
  NetDeviceContainer outputDevices;  // A container of output NetDevices
  outputDevices.Add (nd1.Get (0));  // (we only need one NetDevice here)

  multicast.AddMulticastRoute (multicastRouter, multicastSource, 
                               multicastGroup, inputIf, outputDevices);

  // 2) Set up a default multicast route on the sender n0 
  Ptr<Node> sender = c.Get (0);
  Ptr<NetDevice> senderIf = nd0.Get (0);
  multicast.SetDefaultMulticastRoute (sender, senderIf);

  //
  // Create an OnOff application to send UDP datagrams from node zero to the
  // multicast group (node four will be listening).
  //
  NS_LOG_INFO ("Create Applications.");

  uint16_t multicastPort = 9;   // Discard port (RFC 863)

  // Configure a multicast packet generator that generates a packet
  // every few seconds
  OnOffHelper onoff ("ns3::UdpSocketFactory", 
                     Address (InetSocketAddress (multicastGroup, multicastPort)));
  onoff.SetConstantRate (DataRate ("255b/s"));
  onoff.SetAttribute ("PacketSize", UintegerValue (128));

  ApplicationContainer srcC = onoff.Install (c0.Get (0));

  //
  // Tell the application when to start and stop.
  //
  srcC.Start (Seconds (1.));
  srcC.Stop (Seconds (10.));

  // Create an optional packet sink to receive these packets
  PacketSinkHelper sink ("ns3::UdpSocketFactory",
                         InetSocketAddress (Ipv4Address::GetAny (), multicastPort));

  ApplicationContainer sinkC = sink.Install (c1.Get (2)); // Node n4 
  // Start the sink
  sinkC.Start (Seconds (1.0));
  sinkC.Stop (Seconds (10.0));

  NS_LOG_INFO ("Configure Tracing.");
  //
  // Configure tracing of all enqueue, dequeue, and NetDevice receive events.
  // Ascii trace output will be sent to the file "csma-multicast.tr"
  //
  AsciiTraceHelper ascii;
  csma.EnableAsciiAll (ascii.CreateFileStream ("csma-multicast.tr"));

  // Also configure some tcpdump traces; each interface will be traced.
  // The output files will be named:
  //     csma-multicast-<nodeId>-<interfaceId>.pcap
  // and can be read by the "tcpdump -r" command (use "-tt" option to
  // display timestamps correctly)
  csma.EnablePcapAll ("csma-multicast", false);

  //
  // Now, do the actual simulation.
  //
  NS_LOG_INFO ("Run Simulation.");
  Simulator::Run ();
  Simulator::Destroy ();
  NS_LOG_INFO ("Done.");
}
// Network topology
//
//       n0    n1   n2   n3
//       |     |    |    |
//       =================
//              LAN
//
// - CBR/UDP flows from n0 to n1 and from n3 to n0
// - DropTail queues 
//
void
CsmaOneSubnetTestCase::DoRun (void)
{
  NodeContainer nodes;
  nodes.Create (4);

  CsmaHelper csma;
  csma.SetChannelAttribute ("DataRate", DataRateValue (5000000));
  csma.SetChannelAttribute ("Delay", TimeValue (MilliSeconds (2)));
  //
  // Now fill out the topology by creating the net devices required to connect
  // the nodes to the channels and hooking them up.
  //
  NetDeviceContainer devices = csma.Install (nodes);

  InternetStackHelper internet;
  internet.Install (nodes);

  // We've got the "hardware" in place.  Now we need to add IP addresses.
  //
  Ipv4AddressHelper ipv4;
  ipv4.SetBase ("10.1.1.0", "255.255.255.0");
  Ipv4InterfaceContainer interfaces = ipv4.Assign (devices);

  uint16_t port = 9;   // Discard port (RFC 863)

  //
  // Create an OnOff application to send UDP datagrams from node zero
  // to node 1.
  //
  // Make packets be sent about every defaultPacketSize / dataRate = 
  // 4096 bits / (5000 bits/second) = 0.82 second.
  OnOffHelper onoff ("ns3::UdpSocketFactory", 
                     Address (InetSocketAddress (interfaces.GetAddress (1), port)));
  onoff.SetConstantRate (DataRate (5000));

  ApplicationContainer app = onoff.Install (nodes.Get (0));
  // Start the application
  app.Start (Seconds (1.0));
  app.Stop (Seconds (10.0));

  // Create an optional packet sink to receive these packets
  PacketSinkHelper sink ("ns3::UdpSocketFactory",
                         Address (InetSocketAddress (Ipv4Address::GetAny (), port)));
  app = sink.Install (nodes.Get (1));
  app.Start (Seconds (0.0));

  // 
  // Create a similar flow from n3 to n0, starting at time 1.1 seconds
  //
  onoff.SetAttribute ("Remote", 
                      AddressValue (InetSocketAddress (interfaces.GetAddress (0), port)));
  app = onoff.Install (nodes.Get (3));
  app.Start (Seconds (1.1));
  app.Stop (Seconds (10.0));

  app = sink.Install (nodes.Get (0));
  app.Start (Seconds (0.0));

  // Trace receptions
  Config::ConnectWithoutContext ("/NodeList/0/ApplicationList/1/$ns3::PacketSink/Rx", MakeCallback (&CsmaOneSubnetTestCase::SinkRxNode0, this));
  Config::ConnectWithoutContext ("/NodeList/1/ApplicationList/0/$ns3::PacketSink/Rx", MakeCallback (&CsmaOneSubnetTestCase::SinkRxNode1, this));

  //
  // Now, do the actual simulation.
  //
  Simulator::Run ();
  Simulator::Destroy ();

  // We should have sent and received 10 packets
  NS_TEST_ASSERT_MSG_EQ (m_countNode0, 10, "Node 0 should have received 10 packets");
  NS_TEST_ASSERT_MSG_EQ (m_countNode1, 10, "Node 1 should have received 10 packets");
}
// Test derived from examples/routing/dynamic-global-routing.cc
//
// Network topology
//
//  n0
//     \ p-p
//      \          (shared csma/cd)
//       n2 -------------------------n3
//      /            |        | 
//     / p-p        n4        n5 ---------- n6
//   n1                             p-p
//   |                                      |
//   ----------------------------------------
//                p-p
//
// Test that for node n6, the interface facing n5 receives packets at
// times (1-2), (4-6), (8-10), (11-12), (14-16) and the interface
// facing n1 receives packets at times (2-4), (6-8), (12-13)
//
void
DynamicGlobalRoutingTestCase::DoRun (void)
{
  // The below value configures the default behavior of global routing.
  // By default, it is disabled.  To respond to interface events, set to true
  Config::SetDefault ("ns3::Ipv4GlobalRouting::RespondToInterfaceEvents", BooleanValue (true));

  NodeContainer c;
  c.Create (7);
  NodeContainer n0n2 = NodeContainer (c.Get (0), c.Get (2));
  NodeContainer n1n2 = NodeContainer (c.Get (1), c.Get (2));
  NodeContainer n5n6 = NodeContainer (c.Get (5), c.Get (6));
  NodeContainer n1n6 = NodeContainer (c.Get (1), c.Get (6));
  NodeContainer n2345 = NodeContainer (c.Get (2), c.Get (3), c.Get (4), c.Get (5));

  InternetStackHelper internet;
  internet.Install (c);

  // We create the channels first without any IP addressing information
  PointToPointHelper p2p;
  p2p.SetDeviceAttribute ("DataRate", StringValue ("5Mbps"));
  p2p.SetChannelAttribute ("Delay", StringValue ("2ms"));
  NetDeviceContainer d0d2 = p2p.Install (n0n2);
  NetDeviceContainer d1d6 = p2p.Install (n1n6);

  NetDeviceContainer d1d2 = p2p.Install (n1n2);

  p2p.SetDeviceAttribute ("DataRate", StringValue ("1500kbps"));
  p2p.SetChannelAttribute ("Delay", StringValue ("10ms"));
  NetDeviceContainer d5d6 = p2p.Install (n5n6);

  // We create the channels first without any IP addressing information
  CsmaHelper csma;
  csma.SetChannelAttribute ("DataRate", StringValue ("5Mbps"));
  csma.SetChannelAttribute ("Delay", StringValue ("2ms"));
  NetDeviceContainer d2345 = csma.Install (n2345);

  // Later, we add IP addresses.
  Ipv4AddressHelper ipv4;
  ipv4.SetBase ("10.1.1.0", "255.255.255.0");
  ipv4.Assign (d0d2);

  ipv4.SetBase ("10.1.2.0", "255.255.255.0");
  ipv4.Assign (d1d2);

  ipv4.SetBase ("10.1.3.0", "255.255.255.0");
  Ipv4InterfaceContainer i5i6 = ipv4.Assign (d5d6);

  ipv4.SetBase ("10.250.1.0", "255.255.255.0");
  ipv4.Assign (d2345);

  ipv4.SetBase ("172.16.1.0", "255.255.255.0");
  Ipv4InterfaceContainer i1i6 = ipv4.Assign (d1d6);

  // Create router nodes, initialize routing database and set up the routing
  // tables in the nodes.
  Ipv4GlobalRoutingHelper::PopulateRoutingTables ();

  // Create the OnOff application to send UDP datagrams of size
  // 210 bytes at a rate of 448 Kb/s
  uint16_t port = 9;   // Discard port (RFC 863)
  OnOffHelper onoff ("ns3::UdpSocketFactory",
                     InetSocketAddress (i5i6.GetAddress (1), port));
  onoff.SetConstantRate (DataRate ("2kbps"));
  onoff.SetAttribute ("PacketSize", UintegerValue (50));

  ApplicationContainer apps = onoff.Install (c.Get (1));
  apps.Start (Seconds (1.0));
  apps.Stop (Seconds (10.0));

  // Create a second OnOff application to send UDP datagrams of size
  // 210 bytes at a rate of 448 Kb/s
  OnOffHelper onoff2 ("ns3::UdpSocketFactory",
                      InetSocketAddress (i1i6.GetAddress (1), port));
  onoff2.SetAttribute ("OnTime", StringValue ("ns3::ConstantRandomVariable[Constant=1]"));
  onoff2.SetAttribute ("OffTime", StringValue ("ns3::ConstantRandomVariable[Constant=0]"));
  onoff2.SetAttribute ("DataRate", StringValue ("2kbps"));
  onoff2.SetAttribute ("PacketSize", UintegerValue (50));

  ApplicationContainer apps2 = onoff2.Install (c.Get (1));
  apps2.Start (Seconds (11.0));
  apps2.Stop (Seconds (16.0));

  // Create an optional packet sink to receive these packets
  TypeId tid = TypeId::LookupByName ("ns3::UdpSocketFactory");
  Ptr<Socket> sink2 = Socket::CreateSocket (c.Get (6), tid);
  sink2->Bind (Address (InetSocketAddress (Ipv4Address::GetAny (), port)));
  sink2->Listen ();
  sink2->ShutdownSend ();

  sink2->SetRecvPktInfo (true);
  sink2->SetRecvCallback (MakeCallback (&DynamicGlobalRoutingTestCase::HandleRead, this));

  Ptr<Node> n1 = c.Get (1);
  Ptr<Ipv4> ipv41 = n1->GetObject<Ipv4> ();
  // The first ifIndex is 0 for loopback, then the first p2p is numbered 1,
  // then the next p2p is numbered 2
  uint32_t ipv4ifIndex1 = 2;

  // Trace receptions
  Config::Connect ("/NodeList/6/ApplicationList/*/$ns3::PacketSink/Rx",
                   MakeCallback (&DynamicGlobalRoutingTestCase::SinkRx, this));

  Simulator::Schedule (Seconds (2),&Ipv4::SetDown,ipv41, ipv4ifIndex1);
  Simulator::Schedule (Seconds (4),&Ipv4::SetUp,ipv41, ipv4ifIndex1);

  Ptr<Node> n6 = c.Get (6);
  Ptr<Ipv4> ipv46 = n6->GetObject<Ipv4> ();
  // The first ifIndex is 0 for loopback, then the first p2p is numbered 1,
  // then the next p2p is numbered 2
  uint32_t ipv4ifIndex6 = 2;
  Simulator::Schedule (Seconds (6),&Ipv4::SetDown,ipv46, ipv4ifIndex6);
  Simulator::Schedule (Seconds (8),&Ipv4::SetUp,ipv46, ipv4ifIndex6);

  Simulator::Schedule (Seconds (12),&Ipv4::SetDown,ipv41, ipv4ifIndex1);
  Simulator::Schedule (Seconds (14),&Ipv4::SetUp,ipv41, ipv4ifIndex1);

  Simulator::Run ();

  NS_TEST_ASSERT_MSG_EQ (m_count, 68, "Dynamic global routing did not deliver all packets");
// Test that for node n6, the interface facing n5 receives packets at
// times (1-2), (4-6), (8-10), (11-12), (14-16) and the interface
// facing n1 receives packets at times (2-4), (6-8), (12-13)
  NS_TEST_ASSERT_MSG_EQ (m_firstInterface[1], 4, "Dynamic global routing did not deliver all packets");
  NS_TEST_ASSERT_MSG_EQ (m_secondInterface[2], 5, "Dynamic global routing did not deliver all packets");
  NS_TEST_ASSERT_MSG_EQ (m_secondInterface[3], 5, "Dynamic global routing did not deliver all packets");
  NS_TEST_ASSERT_MSG_EQ (m_firstInterface[4], 5, "Dynamic global routing did not deliver all packets");
  NS_TEST_ASSERT_MSG_EQ (m_firstInterface[5], 5, "Dynamic global routing did not deliver all packets");
  NS_TEST_ASSERT_MSG_EQ (m_secondInterface[6], 5, "Dynamic global routing did not deliver all packets");
  NS_TEST_ASSERT_MSG_EQ (m_secondInterface[7], 5, "Dynamic global routing did not deliver all packets");
  NS_TEST_ASSERT_MSG_EQ (m_firstInterface[8], 5, "Dynamic global routing did not deliver all packets");
  NS_TEST_ASSERT_MSG_EQ (m_firstInterface[9], 5, "Dynamic global routing did not deliver all packets");
  NS_TEST_ASSERT_MSG_EQ (m_firstInterface[10], 0, "Dynamic global routing did not deliver all packets");
  NS_TEST_ASSERT_MSG_EQ (m_firstInterface[11], 4, "Dynamic global routing did not deliver all packets");
  NS_TEST_ASSERT_MSG_EQ (m_secondInterface[12], 5, "Dynamic global routing did not deliver all packets");
  NS_TEST_ASSERT_MSG_EQ (m_secondInterface[13], 5, "Dynamic global routing did not deliver all packets");
  NS_TEST_ASSERT_MSG_EQ (m_firstInterface[14], 5, "Dynamic global routing did not deliver all packets");
  NS_TEST_ASSERT_MSG_EQ (m_firstInterface[15], 5, "Dynamic global routing did not deliver all packets");
  Simulator::Destroy ();
}
int main (int argc, char *argv[])
{
  std::string phyMode ("DsssRate1Mbps");
  double rss = -80;  // -dBm
  uint32_t packetSize = 1000; // bytes
  uint32_t numPackets = 1;
  double interval = 1.0; // seconds
  bool verbose = false;

  CommandLine cmd;

  cmd.AddValue ("phyMode", "Wifi Phy mode", phyMode);
  cmd.AddValue ("rss", "received signal strength", rss);
  cmd.AddValue ("packetSize", "size of application packet sent", packetSize);
  cmd.AddValue ("numPackets", "number of packets generated", numPackets);
  cmd.AddValue ("interval", "interval (seconds) between packets", interval);
  cmd.AddValue ("verbose", "turn on all WifiNetDevice log components", verbose);

  cmd.Parse (argc, argv);
  // Convert to time object
  Time interPacketInterval = Seconds (interval);

  // disable fragmentation for frames below 2200 bytes
  Config::SetDefault ("ns3::WifiRemoteStationManager::FragmentationThreshold", StringValue ("2200"));
  // turn off RTS/CTS for frames below 2200 bytes
  Config::SetDefault ("ns3::WifiRemoteStationManager::RtsCtsThreshold", StringValue ("2200"));
  // Fix non-unicast data rate to be the same as that of unicast
  Config::SetDefault ("ns3::WifiRemoteStationManager::NonUnicastMode", 
                      StringValue (phyMode));

  NodeContainer c;
  c.Create (2);

  // The below set of helpers will help us to put together the wifi NICs we want
  WifiHelper wifi;
  if (verbose)
    {
      wifi.EnableLogComponents ();  // Turn on all Wifi logging
    }
  wifi.SetStandard (WIFI_PHY_STANDARD_80211b);

  YansWifiPhyHelper wifiPhy =  YansWifiPhyHelper::Default ();
  // This is one parameter that matters when using FixedRssLossModel
  // set it to zero; otherwise, gain will be added
  wifiPhy.Set ("RxGain", DoubleValue (0) ); 
  // ns-3 supports RadioTap and Prism tracing extensions for 802.11b
  wifiPhy.SetPcapDataLinkType (YansWifiPhyHelper::DLT_IEEE802_11_RADIO); 

  YansWifiChannelHelper wifiChannel;
  wifiChannel.SetPropagationDelay ("ns3::ConstantSpeedPropagationDelayModel");
  // The below FixedRssLossModel will cause the rss to be fixed regardless
  // of the distance between the two stations, and the transmit power
  wifiChannel.AddPropagationLoss ("ns3::FixedRssLossModel","Rss",DoubleValue (rss));
  wifiPhy.SetChannel (wifiChannel.Create ());

  // Add a non-QoS upper mac, and disable rate control
  NqosWifiMacHelper wifiMac = NqosWifiMacHelper::Default ();
  wifi.SetRemoteStationManager ("ns3::ConstantRateWifiManager",
                                "DataMode",StringValue (phyMode),
                                "ControlMode",StringValue (phyMode));
  // Set it to adhoc mode
  wifiMac.SetType ("ns3::AdhocWifiMac");
  NetDeviceContainer devices = wifi.Install (wifiPhy, wifiMac, c);

  // Note that with FixedRssLossModel, the positions below are not 
  // used for received signal strength. 
  MobilityHelper mobility;
  Ptr<ListPositionAllocator> positionAlloc = CreateObject<ListPositionAllocator> ();
  positionAlloc->Add (Vector (0.0, 0.0, 0.0));
  positionAlloc->Add (Vector (5.0, 0.0, 0.0));
  mobility.SetPositionAllocator (positionAlloc);
  mobility.SetMobilityModel ("ns3::ConstantPositionMobilityModel");
  mobility.Install (c);

  InternetStackHelper internet;
  internet.Install (c);

  Ipv4AddressHelper ipv4;
  NS_LOG_INFO ("Assign IP Addresses.");
  ipv4.SetBase ("10.1.1.0", "255.255.255.0");
  Ipv4InterfaceContainer i = ipv4.Assign (devices);

  TypeId tid = TypeId::LookupByName ("ns3::UdpSocketFactory");
  Ptr<Socket> recvSink = Socket::CreateSocket (c.Get (0), tid);
  InetSocketAddress local = InetSocketAddress (Ipv4Address::GetAny (), 80);
  recvSink->Bind (local);
  recvSink->SetRecvCallback (MakeCallback (&ReceivePacket));

  Ptr<Socket> source = Socket::CreateSocket (c.Get (1), tid);
  InetSocketAddress remote = InetSocketAddress (Ipv4Address ("255.255.255.255"), 80);
  source->SetAllowBroadcast (true);
  source->Connect (remote);

  // Tracing
  wifiPhy.EnablePcap ("wifi-simple-adhoc", devices);

  // Output what we are doing
  NS_LOG_UNCOND ("Testing " << numPackets  << " packets sent with receiver rss " << rss );

  Simulator::ScheduleWithContext (source->GetNode ()->GetId (),
                                  Seconds (1.0), &GenerateTraffic, 
                                  source, packetSize, numPackets, interPacketInterval);

  Simulator::Run ();
  Simulator::Destroy ();

  return 0;
}
void 
EpcS1uDlTestCase::DoRun ()
{
  Ptr<PointToPointEpcHelper> epcHelper = CreateObject<PointToPointEpcHelper> ();
  Ptr<Node> pgw = epcHelper->GetPgwNode ();

  // allow jumbo packets
  Config::SetDefault ("ns3::CsmaNetDevice::Mtu", UintegerValue (30000));
  Config::SetDefault ("ns3::PointToPointNetDevice::Mtu", UintegerValue (30000));
  epcHelper->SetAttribute ("S1uLinkMtu", UintegerValue (30000));
  
  // Create a single RemoteHost
  NodeContainer remoteHostContainer;
  remoteHostContainer.Create (1);
  Ptr<Node> remoteHost = remoteHostContainer.Get (0);
  InternetStackHelper internet;
  internet.Install (remoteHostContainer);

  // Create the internet
  PointToPointHelper p2ph;
  p2ph.SetDeviceAttribute ("DataRate",  DataRateValue (DataRate ("100Gb/s")));
  NetDeviceContainer internetDevices = p2ph.Install (pgw, remoteHost);  
  Ipv4AddressHelper ipv4h;
  ipv4h.SetBase ("1.0.0.0", "255.0.0.0");
  ipv4h.Assign (internetDevices);
  
  // setup default gateway for the remote hosts
  Ipv4StaticRoutingHelper ipv4RoutingHelper;
  Ptr<Ipv4StaticRouting> remoteHostStaticRouting = ipv4RoutingHelper.GetStaticRouting (remoteHost->GetObject<Ipv4> ());

  // hardcoded UE addresses for now
  remoteHostStaticRouting->AddNetworkRouteTo (Ipv4Address ("7.0.0.0"), Ipv4Mask ("255.255.255.0"), 1);
  



  NodeContainer enbs;
  uint16_t cellIdCounter = 0;

  for (std::vector<EnbDlTestData>::iterator enbit = m_enbDlTestData.begin ();
       enbit < m_enbDlTestData.end ();
       ++enbit)
    {
      Ptr<Node> enb = CreateObject<Node> ();
      enbs.Add (enb);

      // we test EPC without LTE, hence we use:
      // 1) a CSMA network to simulate the cell
      // 2) a raw socket opened on the CSMA device to simulate the LTE socket

      uint16_t cellId = ++cellIdCounter;

      NodeContainer ues;
      ues.Create (enbit->ues.size ());

      NodeContainer cell;
      cell.Add (ues);
      cell.Add (enb);

      CsmaHelper csmaCell;      
      NetDeviceContainer cellDevices = csmaCell.Install (cell);

      // the eNB's CSMA NetDevice acting as an LTE NetDevice. 
      Ptr<NetDevice> enbDevice = cellDevices.Get (cellDevices.GetN () - 1);

      // Note that the EpcEnbApplication won't care of the actual NetDevice type
      epcHelper->AddEnb (enb, enbDevice, cellId);      

      // Plug test RRC entity
      Ptr<EpcEnbApplication> enbApp = enb->GetApplication (0)->GetObject<EpcEnbApplication> ();
      NS_ASSERT_MSG (enbApp != 0, "cannot retrieve EpcEnbApplication");
      Ptr<EpcTestRrc> rrc = CreateObject<EpcTestRrc> ();
      rrc->SetS1SapProvider (enbApp->GetS1SapProvider ());
      enbApp->SetS1SapUser (rrc->GetS1SapUser ());
      
      // we install the IP stack on UEs only
      InternetStackHelper internet;
      internet.Install (ues);

      // assign IP address to UEs, and install applications
      for (uint32_t u = 0; u < ues.GetN (); ++u)
        {
          Ptr<NetDevice> ueLteDevice = cellDevices.Get (u);
          Ipv4InterfaceContainer ueIpIface = epcHelper->AssignUeIpv4Address (NetDeviceContainer (ueLteDevice));

          Ptr<Node> ue = ues.Get (u);

          // disable IP Forwarding on the UE. This is because we use
          // CSMA broadcast MAC addresses for this test. The problem
          // won't happen with a LteUeNetDevice. 
          ue->GetObject<Ipv4> ()->SetAttribute ("IpForward", BooleanValue (false));
          
          uint16_t port = 1234;
          PacketSinkHelper packetSinkHelper ("ns3::UdpSocketFactory", InetSocketAddress (Ipv4Address::GetAny (), port));
          ApplicationContainer apps = packetSinkHelper.Install (ue);
          apps.Start (Seconds (1.0));
          apps.Stop (Seconds (10.0));
          enbit->ues[u].serverApp = apps.Get (0)->GetObject<PacketSink> ();
          
          Time interPacketInterval = Seconds (0.01);
          UdpEchoClientHelper client (ueIpIface.GetAddress (0), port);
          client.SetAttribute ("MaxPackets", UintegerValue (enbit->ues[u].numPkts));
          client.SetAttribute ("Interval", TimeValue (interPacketInterval));
          client.SetAttribute ("PacketSize", UintegerValue (enbit->ues[u].pktSize));
          apps = client.Install (remoteHost);
          apps.Start (Seconds (2.0));
          apps.Stop (Seconds (10.0));   
          enbit->ues[u].clientApp = apps.Get (0);

          uint64_t imsi = u+1;
          epcHelper->AddUe (ueLteDevice, imsi);
          epcHelper->ActivateEpsBearer (ueLteDevice, imsi, EpcTft::Default (), EpsBearer (EpsBearer::NGBR_VIDEO_TCP_DEFAULT));
          enbApp->GetS1SapProvider ()->InitialUeMessage (imsi, (uint16_t) imsi);
        } 
            
    } 
  
  Simulator::Run ();

  for (std::vector<EnbDlTestData>::iterator enbit = m_enbDlTestData.begin ();
       enbit < m_enbDlTestData.end ();
       ++enbit)
    {
      for (std::vector<UeDlTestData>::iterator ueit = enbit->ues.begin ();
           ueit < enbit->ues.end ();
           ++ueit)
        {
          NS_TEST_ASSERT_MSG_EQ (ueit->serverApp->GetTotalRx (), (ueit->numPkts) * (ueit->pktSize), "wrong total received bytes");
        }      
    }
  
  Simulator::Destroy ();
}
void
Ns3TcpNoDelayTestCase::DoRun (void)
{
  uint16_t sinkPort = 50000;
  double sinkStopTime = 8;  // sec; will trigger Socket::Close
  double writerStopTime = 5;  // sec; will trigger Socket::Close
  double simStopTime = 10;  // sec
  Time sinkStopTimeObj = Seconds (sinkStopTime);
  Time writerStopTimeObj = Seconds (writerStopTime);
  Time simStopTimeObj= Seconds (simStopTime);

  Ptr<Node> n0 = CreateObject<Node> ();
  Ptr<Node> n1 = CreateObject<Node> ();

  PointToPointHelper pointToPoint;
  pointToPoint.SetDeviceAttribute ("DataRate", StringValue ("5Mbps"));
  pointToPoint.SetChannelAttribute ("Delay", StringValue ("2ms"));

  NetDeviceContainer devices;
  devices = pointToPoint.Install (n0, n1);

  InternetStackHelper internet;
  internet.InstallAll ();

  Ipv4AddressHelper address;
  address.SetBase ("10.1.1.0", "255.255.255.252");
  Ipv4InterfaceContainer ifContainer = address.Assign (devices);

  Ptr<SocketWriter> socketWriter = CreateObject<SocketWriter> ();
  Address sinkAddress (InetSocketAddress (ifContainer.GetAddress (1), sinkPort));
  socketWriter->Setup (n0, sinkAddress);
  n0->AddApplication (socketWriter);
  socketWriter->SetStartTime (Seconds (0.));
  socketWriter->SetStopTime (writerStopTimeObj);

  PacketSinkHelper sink ("ns3::TcpSocketFactory",
                         InetSocketAddress (Ipv4Address::GetAny (), sinkPort));
  ApplicationContainer apps = sink.Install (n1);
  // Start the sink application at time zero, and stop it at sinkStopTime
  apps.Start (Seconds (0.0));
  apps.Stop (sinkStopTimeObj);

  Config::Connect ("/NodeList/*/ApplicationList/*/$ns3::PacketSink/Rx",
                   MakeCallback (&Ns3TcpNoDelayTestCase::SinkRx, this));

  // Enable or disable TCP no delay option
  Config::SetDefault ("ns3::TcpSocket::TcpNoDelay", BooleanValue (m_noDelay));

  // Connect the socket writer
  Simulator::Schedule (Seconds (1), &SocketWriter::Connect, socketWriter);

  // Write 5 packets to get some bytes in flight and some acks going
  Simulator::Schedule (Seconds (2), &SocketWriter::Write, socketWriter, 2680);
  m_inputs.Add (536);
  m_inputs.Add (536);
  m_inputs.Add (536);
  m_inputs.Add (536);
  m_inputs.Add (536);

  // Write one byte after 10 ms to ensure that some data is outstanding 
  // and the window is big enough
  Simulator::Schedule (Seconds (2.010), &SocketWriter::Write, socketWriter, 1);

  // If Nagle is not enabled, i.e. no delay is on, add an input for a 1-byte 
  // packet to be received
  if (m_noDelay)
    {
      m_inputs.Add (1);
    }

  // One ms later, write 535 bytes, i.e. one segment size - 1
  Simulator::Schedule (Seconds (2.012), &SocketWriter::Write, socketWriter, 535);

  // If Nagle is not enabled, add an input for a 535 byte packet,
  // otherwise, we should get a single "full" packet of 536 bytes
  if (m_noDelay)
    {
      m_inputs.Add (535);
    }
  else
    {
      m_inputs.Add (536);
    }

  // Close down the socket
  Simulator::Schedule (writerStopTimeObj, &SocketWriter::Close, socketWriter);

  if (m_writeResults)
    {
      std::ostringstream oss;
      if (m_noDelay)
        {
          oss << "tcp-no-delay-on-test-case";
          pointToPoint.EnablePcapAll (oss.str ());
        }
      else
        {
          oss << "tcp-no-delay-off-test-case";
          pointToPoint.EnablePcapAll (oss.str ());
        }
    }

  Simulator::Stop (simStopTimeObj);
  Simulator::Run ();
  Simulator::Destroy ();

  // Compare inputs and outputs
  NS_TEST_ASSERT_MSG_EQ (m_inputs.GetN (), m_responses.GetN (), "Incorrect number of expected receive events");
  for (uint32_t i = 0; i < m_responses.GetN (); i++)
    {
      uint32_t in = m_inputs.Get (i);
      uint32_t out = m_responses.Get (i);
      NS_TEST_ASSERT_MSG_EQ (in, out, "Mismatch:  expected " << in << " bytes, got " << out << " bytes");
    }
}
Exemple #15
0
int main (int argc, char *argv[])
{
  uint32_t packetSize = 1000; // Application bytes per packet
  double interval = 1.0; // Time between events
  uint32_t generationSize = 3; // RLNC generation size
  double errorRateEncoderRecoder = 0.4; // Error rate for encoder-recoder link
  double errorRateRecoderDecoder = 0.2; // Error rate for recoder-decoder link
  bool recodingFlag = true; // Flag to control recoding

  Time interPacketInterval = Seconds (interval);

  CommandLine cmd;

  cmd.AddValue ("packetSize", "Size of application packet sent", packetSize);
  cmd.AddValue ("interval", "Interval (seconds) between packets", interval);
  cmd.AddValue ("generationSize", "Set the generation size to use",
                generationSize);
  cmd.AddValue ("errorRateEncoderRecoder",
                "Packet erasure rate for the encoder-recoder link",
                errorRateEncoderRecoder);
  cmd.AddValue ("errorRateRecoderDecoder",
                "Packet erasure rate for the recoder-decoder link",
                errorRateRecoderDecoder);
  cmd.AddValue ("recodingFlag", "Enable packet recoding", recodingFlag);
  cmd.Parse (argc, argv);

  Time::SetResolution (Time::NS);

  // Set the basic helper for a single link
  PointToPointHelper pointToPoint;

  // Create node containers
  NodeContainer nodes;
  nodes.Create (3);
  NodeContainer encoderRecoder = NodeContainer (nodes.Get (0), nodes.Get (1));
  NodeContainer recoderDecoder = NodeContainer (nodes.Get (1), nodes.Get (2));

  // Internet stack for the nodes
  InternetStackHelper internet;
  internet.Install (nodes);

  // Create net device containers
  NetDeviceContainer encoderRecoderDevs = pointToPoint.Install (encoderRecoder);
  NetDeviceContainer recoderDecoderDevs = pointToPoint.Install (recoderDecoder);

  NetDeviceContainer devices = NetDeviceContainer (encoderRecoderDevs,
                                                   recoderDecoderDevs);
  // Set IP addresses
  Ipv4AddressHelper ipv4("10.1.1.0", "255.255.255.0");
  ipv4.Assign (devices);

  // Turn on global static routing so we can actually be routed across the hops
  Ipv4GlobalRoutingHelper::PopulateRoutingTables ();

  // Do pcap tracing on all point-to-point devices on all nodes. File naming
  // convention is: multihop-[NODE_NUMBER]-[DEVICE_NUMBER].pcap
  pointToPoint.EnablePcapAll ("multihop");

  // Set error model for the net devices
  Config::SetDefault ("ns3::RateErrorModel::ErrorUnit",
                      StringValue ("ERROR_UNIT_PACKET"));

  Ptr<RateErrorModel> errorEncoderRecoder = CreateObject<RateErrorModel> ();
  errorEncoderRecoder->SetAttribute ("ErrorRate",
                                     DoubleValue (errorRateEncoderRecoder));
  devices.Get (1)->SetAttribute ("ReceiveErrorModel",
                                 PointerValue (errorEncoderRecoder));

  Ptr<RateErrorModel> errorRecoderDecoder = CreateObject<RateErrorModel> ();
  errorRecoderDecoder->SetAttribute ("ErrorRate",
                                     DoubleValue (errorRateRecoderDecoder));
  devices.Get (3)->SetAttribute ("ReceiveErrorModel",
                                 PointerValue (errorRecoderDecoder));
  errorEncoderRecoder->Enable ();
  errorRecoderDecoder->Enable ();

  // Creation of RLNC encoder and decoder objects
  rlnc_encoder::factory encoder_factory(generationSize, packetSize);
  rlnc_decoder::factory decoder_factory(generationSize, packetSize);

  // The member build function creates differents instances of each object
  KodoSimulation kodoSimulator(encoder_factory.build(),
                               decoder_factory.build(),
                               decoder_factory.build(),
                               recodingFlag);

  // Setting up application sockets for recoder and decoder
  uint16_t port = 80;
  TypeId tid = TypeId::LookupByName ("ns3::UdpSocketFactory");

  // Get node Ipv4 addresses
  Ipv4Address recoderAddress = nodes.Get (1)->GetObject<Ipv4>()->
                                 GetAddress(1,0).GetLocal();
  Ipv4Address decoderAddress = nodes.Get (2)->GetObject<Ipv4>()->
                                 GetAddress(1,0).GetLocal();
  // Socket connection addresses
  InetSocketAddress recoderSocketAddress = InetSocketAddress (recoderAddress,
                                                              port);
  InetSocketAddress decoderSocketAddress = InetSocketAddress (decoderAddress,
                                                              port);
  // Socket bind address
  InetSocketAddress local = InetSocketAddress (Ipv4Address::GetAny(), port);

  // Encoder
  Ptr<Socket> encoderSocket = Socket::CreateSocket (nodes.Get (0), tid);
  encoderSocket->Connect (recoderSocketAddress);

  // Recoder
  Ptr<Socket> recoderSocket = Socket::CreateSocket (nodes.Get (1), tid);
  recoderSocket->Bind(local);
  recoderSocket->Connect (decoderSocketAddress);

  recoderSocket->
    SetRecvCallback (MakeCallback (&KodoSimulation::ReceivePacketRecoder,
                                   &kodoSimulator));
  // Decoder
  Ptr<Socket> decoderSocket = Socket::CreateSocket (nodes.Get (2), tid);
  decoderSocket->Bind(local);
  decoderSocket->
    SetRecvCallback (MakeCallback (&KodoSimulation::ReceivePacketDecoder,
                                   &kodoSimulator));
  // Simulation setup

  // Schedule encoding process
  Simulator::ScheduleWithContext (encoderSocket->GetNode ()->GetId (),
                                  Seconds (1.0),
                                  &KodoSimulation::SendPacketEncoder,
                                  &kodoSimulator, encoderSocket,
                                  interPacketInterval);

  Simulator::ScheduleWithContext (recoderSocket->GetNode ()->GetId (),
                                  Seconds (1.5),
                                  &KodoSimulation::SendPacketRecoder,
                                  &kodoSimulator, recoderSocket,
                                  interPacketInterval);

  Simulator::Run ();
  Simulator::Destroy ();

  return 0;
}
int main (int argc, char *argv[])
{
  std::string phyMode ("DsssRate1Mbps");
  double distance = 500;  // m
  uint32_t packetSize = 1000; // bytes
  uint32_t numPackets = 1;
  uint32_t numNodes = 25;  // by default, 5x5
  uint32_t sinkNode = 0;
  uint32_t sourceNode = 24;
  double interval = 1.0; // seconds
  bool verbose = false;
  bool tracing = false;

  CommandLine cmd;

  cmd.AddValue ("phyMode", "Wifi Phy mode", phyMode);
  cmd.AddValue ("distance", "distance (m)", distance);
  cmd.AddValue ("packetSize", "size of application packet sent", packetSize);
  cmd.AddValue ("numPackets", "number of packets generated", numPackets);
  cmd.AddValue ("interval", "interval (seconds) between packets", interval);
  cmd.AddValue ("verbose", "turn on all WifiNetDevice log components", verbose);
  cmd.AddValue ("tracing", "turn on ascii and pcap tracing", tracing);
  cmd.AddValue ("numNodes", "number of nodes", numNodes);
  cmd.AddValue ("sinkNode", "Receiver node number", sinkNode);
  cmd.AddValue ("sourceNode", "Sender node number", sourceNode);

  cmd.Parse (argc, argv);
  // Convert to time object
  Time interPacketInterval = Seconds (interval);

  // disable fragmentation for frames below 2200 bytes
  Config::SetDefault ("ns3::WifiRemoteStationManager::FragmentationThreshold", StringValue ("2200"));
  // turn off RTS/CTS for frames below 2200 bytes
  Config::SetDefault ("ns3::WifiRemoteStationManager::RtsCtsThreshold", StringValue ("2200"));
  // Fix non-unicast data rate to be the same as that of unicast
  Config::SetDefault ("ns3::WifiRemoteStationManager::NonUnicastMode", 
                      StringValue (phyMode));

  NodeContainer c;
  c.Create (numNodes);

  // The below set of helpers will help us to put together the wifi NICs we want
  WifiHelper wifi;
  if (verbose)
    {
      wifi.EnableLogComponents ();  // Turn on all Wifi logging
    }

  YansWifiPhyHelper wifiPhy =  YansWifiPhyHelper::Default ();
  // set it to zero; otherwise, gain will be added
  wifiPhy.Set ("RxGain", DoubleValue (-10) ); 
  // ns-3 supports RadioTap and Prism tracing extensions for 802.11b
  wifiPhy.SetPcapDataLinkType (YansWifiPhyHelper::DLT_IEEE802_11_RADIO); 

  YansWifiChannelHelper wifiChannel;
  wifiChannel.SetPropagationDelay ("ns3::ConstantSpeedPropagationDelayModel");
  wifiChannel.AddPropagationLoss ("ns3::FriisPropagationLossModel");
  wifiPhy.SetChannel (wifiChannel.Create ());

  // Add a non-QoS upper mac, and disable rate control
  NqosWifiMacHelper wifiMac = NqosWifiMacHelper::Default ();
  wifi.SetStandard (WIFI_PHY_STANDARD_80211b);
  wifi.SetRemoteStationManager ("ns3::ConstantRateWifiManager",
                                "DataMode",StringValue (phyMode),
                                "ControlMode",StringValue (phyMode));
  // Set it to adhoc mode
  wifiMac.SetType ("ns3::AdhocWifiMac");
  NetDeviceContainer devices = wifi.Install (wifiPhy, wifiMac, c);

  MobilityHelper mobility;
  mobility.SetPositionAllocator ("ns3::GridPositionAllocator",
                                 "MinX", DoubleValue (0.0),
                                 "MinY", DoubleValue (0.0),
                                 "DeltaX", DoubleValue (distance),
                                 "DeltaY", DoubleValue (distance),
                                 "GridWidth", UintegerValue (5),
                                 "LayoutType", StringValue ("RowFirst"));
  mobility.SetMobilityModel ("ns3::ConstantPositionMobilityModel");
  mobility.Install (c);

  // Enable OLSR
  OlsrHelper olsr;
  Ipv4StaticRoutingHelper staticRouting;

  Ipv4ListRoutingHelper list;
  list.Add (staticRouting, 0);
  list.Add (olsr, 10);

  InternetStackHelper internet;
  internet.SetRoutingHelper (list); // has effect on the next Install ()
  internet.Install (c);

  Ipv4AddressHelper ipv4;
  NS_LOG_INFO ("Assign IP Addresses.");
  ipv4.SetBase ("10.1.1.0", "255.255.255.0");
  Ipv4InterfaceContainer i = ipv4.Assign (devices);

  TypeId tid = TypeId::LookupByName ("ns3::UdpSocketFactory");
  Ptr<Socket> recvSink = Socket::CreateSocket (c.Get (sinkNode), tid);
  InetSocketAddress local = InetSocketAddress (Ipv4Address::GetAny (), 80);
  recvSink->Bind (local);
  recvSink->SetRecvCallback (MakeCallback (&ReceivePacket));

  Ptr<Socket> source = Socket::CreateSocket (c.Get (sourceNode), tid);
  InetSocketAddress remote = InetSocketAddress (i.GetAddress (sinkNode, 0), 80);
  source->Connect (remote);

  if (tracing == true)
    {
      AsciiTraceHelper ascii;
      wifiPhy.EnableAsciiAll (ascii.CreateFileStream ("wifi-simple-adhoc-grid.tr"));
      wifiPhy.EnablePcap ("wifi-simple-adhoc-grid", devices);
      // Trace routing tables
      Ptr<OutputStreamWrapper> routingStream = Create<OutputStreamWrapper> ("wifi-simple-adhoc-grid.routes", std::ios::out);
      olsr.PrintRoutingTableAllEvery (Seconds (2), routingStream);

      // To do-- enable an IP-level trace that shows forwarding events only
    }

  // Give OLSR time to converge-- 30 seconds perhaps
  Simulator::Schedule (Seconds (30.0), &GenerateTraffic, 
                       source, packetSize, numPackets, interPacketInterval);

  // Output what we are doing
  NS_LOG_UNCOND ("Testing from node " << sourceNode << " to " << sinkNode << " with grid distance " << distance);

  Simulator::Stop (Seconds (32.0));
  Simulator::Run ();
  Simulator::Destroy ();

  return 0;
}
int main (int argc, char *argv[])
{
  uint32_t nWifis = 2;
  uint32_t nStas = 2;
  bool sendIp = true;
  bool writeMobility = false;

  CommandLine cmd;
  cmd.AddValue ("nWifis", "Number of wifi networks", nWifis);
  cmd.AddValue ("nStas", "Number of stations per wifi network", nStas);
  cmd.AddValue ("SendIp", "Send Ipv4 or raw packets", sendIp);
  cmd.AddValue ("writeMobility", "Write mobility trace", writeMobility);
  cmd.Parse (argc, argv);

  NodeContainer backboneNodes;
  NetDeviceContainer backboneDevices;
  Ipv4InterfaceContainer backboneInterfaces;
  std::vector<NodeContainer> staNodes;
  std::vector<NetDeviceContainer> staDevices;
  std::vector<NetDeviceContainer> apDevices;
  std::vector<Ipv4InterfaceContainer> staInterfaces;
  std::vector<Ipv4InterfaceContainer> apInterfaces;

  InternetStackHelper stack;
  CsmaHelper csma;
  Ipv4AddressHelper ip;
  ip.SetBase ("192.168.0.0", "255.255.255.0");

  backboneNodes.Create (nWifis);
  stack.Install (backboneNodes);

  backboneDevices = csma.Install (backboneNodes);

  double wifiX = 0.0;

  YansWifiPhyHelper wifiPhy = YansWifiPhyHelper::Default ();
  wifiPhy.SetPcapDataLinkType (YansWifiPhyHelper::DLT_IEEE802_11_RADIO); 

  for (uint32_t i = 0; i < nWifis; ++i)
    {
      // calculate ssid for wifi subnetwork
      std::ostringstream oss;
      oss << "wifi-default-" << i;
      Ssid ssid = Ssid (oss.str ());

      NodeContainer sta;
      NetDeviceContainer staDev;
      NetDeviceContainer apDev;
      Ipv4InterfaceContainer staInterface;
      Ipv4InterfaceContainer apInterface;
      MobilityHelper mobility;
      BridgeHelper bridge;
      WifiHelper wifi = WifiHelper::Default ();
      NqosWifiMacHelper wifiMac = NqosWifiMacHelper::Default ();
      YansWifiChannelHelper wifiChannel = YansWifiChannelHelper::Default ();
      wifiPhy.SetChannel (wifiChannel.Create ());

      sta.Create (nStas);
      mobility.SetPositionAllocator ("ns3::GridPositionAllocator",
                                     "MinX", DoubleValue (wifiX),
                                     "MinY", DoubleValue (0.0),
                                     "DeltaX", DoubleValue (5.0),
                                     "DeltaY", DoubleValue (5.0),
                                     "GridWidth", UintegerValue (1),
                                     "LayoutType", StringValue ("RowFirst"));


      // setup the AP.
      mobility.SetMobilityModel ("ns3::ConstantPositionMobilityModel");
      mobility.Install (backboneNodes.Get (i));
      wifiMac.SetType ("ns3::ApWifiMac",
                       "Ssid", SsidValue (ssid));
      apDev = wifi.Install (wifiPhy, wifiMac, backboneNodes.Get (i));

      NetDeviceContainer bridgeDev;
      bridgeDev = bridge.Install (backboneNodes.Get (i), NetDeviceContainer (apDev, backboneDevices.Get (i)));

      // assign AP IP address to bridge, not wifi
      apInterface = ip.Assign (bridgeDev);

      // setup the STAs
      stack.Install (sta);
      mobility.SetMobilityModel ("ns3::RandomWalk2dMobilityModel",
                                 "Mode", StringValue ("Time"),
                                 "Time", StringValue ("2s"),
                                 "Speed", StringValue ("ns3::ConstantRandomVariable[Constant=1.0]"),
                                 "Bounds", RectangleValue (Rectangle (wifiX, wifiX+5.0,0.0, (nStas+1)*5.0)));
      mobility.Install (sta);
      wifiMac.SetType ("ns3::StaWifiMac",
                       "Ssid", SsidValue (ssid),
                       "ActiveProbing", BooleanValue (false));
      staDev = wifi.Install (wifiPhy, wifiMac, sta);
      staInterface = ip.Assign (staDev);

      // save everything in containers.
      staNodes.push_back (sta);
      apDevices.push_back (apDev);
      apInterfaces.push_back (apInterface);
      staDevices.push_back (staDev);
      staInterfaces.push_back (staInterface);

      wifiX += 20.0;
    }

  Address dest;
  std::string protocol;
  if (sendIp)
    {
      dest = InetSocketAddress (staInterfaces[1].GetAddress (1), 1025);
      protocol = "ns3::UdpSocketFactory";
    }
  else
    {
      PacketSocketAddress tmp;
      tmp.SetSingleDevice (staDevices[0].Get (0)->GetIfIndex ());
      tmp.SetPhysicalAddress (staDevices[1].Get (0)->GetAddress ());
      tmp.SetProtocol (0x807);
      dest = tmp;
      protocol = "ns3::PacketSocketFactory";
    }

  OnOffHelper onoff = OnOffHelper (protocol, dest);
  onoff.SetConstantRate (DataRate ("500kb/s"));
  ApplicationContainer apps = onoff.Install (staNodes[0].Get (0));
  apps.Start (Seconds (0.5));
  apps.Stop (Seconds (3.0));

  wifiPhy.EnablePcap ("wifi-wired-bridging", apDevices[0]);
  wifiPhy.EnablePcap ("wifi-wired-bridging", apDevices[1]);

  if (writeMobility)
    {
      AsciiTraceHelper ascii;
      MobilityHelper::EnableAsciiAll (ascii.CreateFileStream ("wifi-wired-bridging.mob"));
    }

  Simulator::Stop (Seconds (5.0));
  Simulator::Run ();
  Simulator::Destroy ();
}
int 
main (int argc, char *argv[])
{
  std::string mode = "ConfigureLocal";
  std::string tapName = "thetap";

  CommandLine cmd;
  cmd.AddValue ("mode", "Mode setting of TapBridge", mode);
  cmd.AddValue ("tapName", "Name of the OS tap device", tapName);
  cmd.Parse (argc, argv);

  GlobalValue::Bind ("SimulatorImplementationType", StringValue ("ns3::RealtimeSimulatorImpl"));
  GlobalValue::Bind ("ChecksumEnabled", BooleanValue (true));

  //
  // The topology has a Wifi network of four nodes on the left side.  We'll make
  // node zero the AP and have the other three will be the STAs.
  //
  NodeContainer nodesLeft;
  nodesLeft.Create (4);

  YansWifiPhyHelper wifiPhy = YansWifiPhyHelper::Default ();
  YansWifiChannelHelper wifiChannel = YansWifiChannelHelper::Default ();
  wifiPhy.SetChannel (wifiChannel.Create ());

  Ssid ssid = Ssid ("left");
  WifiHelper wifi = WifiHelper::Default ();
  NqosWifiMacHelper wifiMac = NqosWifiMacHelper::Default ();
  wifi.SetRemoteStationManager ("ns3::ArfWifiManager");

  wifiMac.SetType ("ns3::ApWifiMac",
                   "Ssid", SsidValue (ssid));
  NetDeviceContainer devicesLeft = wifi.Install (wifiPhy, wifiMac, nodesLeft.Get (0));


  wifiMac.SetType ("ns3::StaWifiMac",
                   "Ssid", SsidValue (ssid),
                   "ActiveProbing", BooleanValue (false));
  devicesLeft.Add (wifi.Install (wifiPhy, wifiMac, NodeContainer (nodesLeft.Get (1), nodesLeft.Get (2), nodesLeft.Get (3))));

  MobilityHelper mobility;
  mobility.Install (nodesLeft);

  InternetStackHelper internetLeft;
  internetLeft.Install (nodesLeft);

  Ipv4AddressHelper ipv4Left;
  ipv4Left.SetBase ("10.1.1.0", "255.255.255.0");
  Ipv4InterfaceContainer interfacesLeft = ipv4Left.Assign (devicesLeft);

  TapBridgeHelper tapBridge (interfacesLeft.GetAddress (1));
  tapBridge.SetAttribute ("Mode", StringValue (mode));
  tapBridge.SetAttribute ("DeviceName", StringValue (tapName));
  tapBridge.Install (nodesLeft.Get (0), devicesLeft.Get (0));

  //
  // Now, create the right side.
  //
  NodeContainer nodesRight;
  nodesRight.Create (4);

  CsmaHelper csmaRight;
  csmaRight.SetChannelAttribute ("DataRate", DataRateValue (5000000));
  csmaRight.SetChannelAttribute ("Delay", TimeValue (MilliSeconds (2)));

  NetDeviceContainer devicesRight = csmaRight.Install (nodesRight);

  InternetStackHelper internetRight;
  internetRight.Install (nodesRight);

  Ipv4AddressHelper ipv4Right;
  ipv4Right.SetBase ("10.1.3.0", "255.255.255.0");
  Ipv4InterfaceContainer interfacesRight = ipv4Right.Assign (devicesRight);

  //
  // Stick in the point-to-point line between the sides.
  //
  PointToPointHelper p2p;
  p2p.SetDeviceAttribute ("DataRate", StringValue ("512kbps"));
  p2p.SetChannelAttribute ("Delay", StringValue ("10ms"));

  NodeContainer nodes = NodeContainer (nodesLeft.Get (3), nodesRight.Get (0));
  NetDeviceContainer devices = p2p.Install (nodes);

  Ipv4AddressHelper ipv4;
  ipv4.SetBase ("10.1.2.0", "255.255.255.192");
  Ipv4InterfaceContainer interfaces = ipv4.Assign (devices);

  //
  // Simulate some CBR traffic over the point-to-point link
  //
  uint16_t port = 9;   // Discard port (RFC 863)
  OnOffHelper onoff ("ns3::UdpSocketFactory", InetSocketAddress (interfaces.GetAddress (1), port));
  onoff.SetConstantRate (DataRate ("500kb/s"));

  ApplicationContainer apps = onoff.Install (nodesLeft.Get (3));
  apps.Start (Seconds (1.0));

  // Create a packet sink to receive these packets
  PacketSinkHelper sink ("ns3::UdpSocketFactory", InetSocketAddress (Ipv4Address::GetAny (), port));

  apps = sink.Install (nodesRight.Get (0));
  apps.Start (Seconds (1.0));

  wifiPhy.EnablePcapAll ("tap-wifi-dumbbell");

  csmaRight.EnablePcapAll ("tap-wifi-dumbbell", false);
  Ipv4GlobalRoutingHelper::PopulateRoutingTables ();

  Simulator::Stop (Seconds (60.));
  Simulator::Run ();
  Simulator::Destroy ();
}
int
main (int argc, char *argv[])
{
#ifdef NS3_MPI
  // Distributed simulation setup
  MpiInterface::Enable (&argc, &argv);
  GlobalValue::Bind ("SimulatorImplementationType",
                     StringValue ("ns3::DistributedSimulatorImpl"));

  LogComponentEnable ("BriteMPITest", LOG_LEVEL_ALL);
  LogComponentEnable ("TcpSocketBase", LOG_LEVEL_INFO);

  uint32_t systemId = MpiInterface::GetSystemId ();
  uint32_t systemCount = MpiInterface::GetSize ();

  // Check for valid distributed parameters.
  // For just this particular example, must have 2 and only 2 Logical Processors (LPs)
  NS_ASSERT_MSG (systemCount == 2, "This demonstration requires 2 and only 2 logical processors.");

  // BRITE needs a configuration file to build its graph. By default, this
  // example will use the TD_ASBarabasi_RTWaxman.conf file. There are many others
  // which can be found in the BRITE/conf_files directory
  std::string confFile = "src/brite/examples/conf_files/TD_ASBarabasi_RTWaxman.conf";
  bool tracing = false;
  bool nix = false;

  CommandLine cmd;
  cmd.AddValue ("confFile", "BRITE conf file", confFile);
  cmd.AddValue ("tracing", "Enable or disable ascii tracing", tracing);
  cmd.AddValue ("nix", "Enable or disable nix-vector routing", nix);

  cmd.Parse (argc,argv);

  // Invoke the BriteTopologyHelper and pass in a BRITE
  // configuration file and a seed file. This will use
  // BRITE to build a graph from which we can build the ns-3 topology
  BriteTopologyHelper bth (confFile);

  PointToPointHelper p2p;

  Ipv4StaticRoutingHelper staticRouting;
  Ipv4GlobalRoutingHelper globalRouting;
  Ipv4ListRoutingHelper listRouting;
  Ipv4NixVectorHelper nixRouting;

  InternetStackHelper stack;

  if (nix)
    {
      listRouting.Add (staticRouting, 0);
      listRouting.Add (nixRouting, 10);
    }
  else
    {
      listRouting.Add (staticRouting, 0);
      listRouting.Add (globalRouting, 10);
    }

  stack.SetRoutingHelper (listRouting);

  Ipv4AddressHelper address;
  address.SetBase ("10.0.0.0", "255.255.255.252");

  //build topology as normal but also pass systemCount
  bth.BuildBriteTopology (stack, systemCount);
  bth.AssignIpv4Addresses (address);

  NS_LOG_LOGIC ("Number of AS created " << bth.GetNAs ());

  uint16_t port = 5001;

  NodeContainer client;
  NodeContainer server;

  //For this example will use AS 0 and AS 1 which will be on seperate systems
  //due to the mod divide used to assign AS to system.

  //GetSystemNumberForAs (uint32_t) can be used to determine which system an
  //AS is assigned to
  NS_LOG_LOGIC ("AS 0 has been assigned to system " << bth.GetSystemNumberForAs (0));
  NS_LOG_LOGIC ("As 1 has been assigned to system " << bth.GetSystemNumberForAs (1));

  //install client node on last leaf node of AS 0
  client.Add (CreateObject<Node> (0));
  stack.Install (client);
  int numLeafNodesInAsZero = bth.GetNLeafNodesForAs (0);
  client.Add (bth.GetLeafNodeForAs (0, numLeafNodesInAsZero - 1));

  //install server node on last leaf node on AS 1
  server.Add (CreateObject<Node> (1));
  stack.Install (server);
  int numLeafNodesInAsOne = bth.GetNLeafNodesForAs (1);
  server.Add (bth.GetLeafNodeForAs (1, numLeafNodesInAsOne - 1));

  p2p.SetDeviceAttribute ("DataRate", StringValue ("5Mbps"));
  p2p.SetChannelAttribute ("Delay", StringValue ("2ms"));

  NetDeviceContainer p2pClientDevices;
  NetDeviceContainer p2pServerDevices;

  p2pClientDevices = p2p.Install (client);
  p2pServerDevices = p2p.Install (server);

  address.SetBase ("10.1.0.0", "255.255.0.0");
  Ipv4InterfaceContainer clientInterfaces;
  clientInterfaces = address.Assign (p2pClientDevices);

  address.SetBase ("10.2.0.0", "255.255.0.0");
  Ipv4InterfaceContainer serverInterfaces;
  serverInterfaces = address.Assign (p2pServerDevices);

  if (!nix)
    {
      Ipv4GlobalRoutingHelper::PopulateRoutingTables ();
    }

  //only has two systems in this example.  Install applications only on nodes in my system


  //Moved here to get totalRX at end
  ApplicationContainer sinkApps;

  if (systemId == 1)
    {

      Address sinkLocalAddress (InetSocketAddress (Ipv4Address::GetAny (), port));
      PacketSinkHelper packetSinkHelper ("ns3::TcpSocketFactory", sinkLocalAddress);
      sinkApps.Add (packetSinkHelper.Install (server.Get (0)));
      sinkApps.Start (Seconds (0.0));
      sinkApps.Stop (Seconds (10.0));
    }

  if (systemId == 0)
    {
      OnOffHelper clientHelper ("ns3::TcpSocketFactory", Address ());
      clientHelper.SetAttribute ("OnTime", StringValue ("ns3::ConstantRandomVariable[Constant=1]"));
      clientHelper.SetAttribute ("OffTime", StringValue ("ns3::ConstantRandomVariable[Constant=0]"));

      ApplicationContainer clientApps;
      AddressValue remoteAddress (InetSocketAddress (serverInterfaces.GetAddress (0), port));
      clientHelper.SetAttribute ("Remote", remoteAddress);
      clientApps.Add (clientHelper.Install (client.Get (0)));
      clientApps.Start (Seconds (1.0)); // Start 1 second after sink
      clientApps.Stop (Seconds (9.0)); // Stop before the sink
    }

  if (!nix)
    {
      Ipv4GlobalRoutingHelper::PopulateRoutingTables ();
    }

  if (tracing)
    {
      AsciiTraceHelper ascii;
      p2p.EnableAsciiAll (ascii.CreateFileStream ("briteLeaves.tr"));
    }

  // Run the simulator
  Simulator::Stop (Seconds (200.0));
  Simulator::Run ();
  Simulator::Destroy ();

  if (systemId == 1)
    {
      Ptr<PacketSink> sink1 = DynamicCast<PacketSink> (sinkApps.Get (0));
      NS_LOG_DEBUG ("Total Bytes Received: " << sink1->GetTotalRx ());
    }

  MpiInterface::Disable ();

  return 0;

#else
  NS_FATAL_ERROR ("Can't use distributed simulator without MPI compiled in");
#endif
}
Exemple #20
0
int 
main (int argc, char *argv[])
{
//
// Users may find it convenient to turn on explicit debugging
// for selected modules; the below lines suggest how to do this
//
#if 0
  LogComponentEnable ("UdpEchoExample", LOG_LEVEL_INFO);
  LogComponentEnable ("UdpEchoClientApplication", LOG_LEVEL_ALL);
  LogComponentEnable ("UdpEchoServerApplication", LOG_LEVEL_ALL);
#endif
//
// Allow the user to override any of the defaults and the above Bind() at
// run-time, via command-line arguments
//
  bool useV6 = false;
  Address serverAddress;

  CommandLine cmd;
  cmd.AddValue ("useIpv6", "Use Ipv6", useV6);
  cmd.Parse (argc, argv);
//
// Explicitly create the nodes required by the topology (shown above).
//
  NS_LOG_INFO ("Create nodes.");
  NodeContainer n;
  n.Create (4);

  InternetStackHelper internet;
  internet.Install (n);

  NS_LOG_INFO ("Create channels.");
//
// Explicitly create the channels required by the topology (shown above).
//
  CsmaHelper csma;
  csma.SetChannelAttribute ("DataRate", DataRateValue (DataRate (5000000)));
  csma.SetChannelAttribute ("Delay", TimeValue (MilliSeconds (2)));
  csma.SetDeviceAttribute ("Mtu", UintegerValue (1400));
  NetDeviceContainer d = csma.Install (n);

//
// We've got the "hardware" in place.  Now we need to add IP addresses.
//
  NS_LOG_INFO ("Assign IP Addresses.");
  if (useV6 == false)
    {
      Ipv4AddressHelper ipv4;
      ipv4.SetBase ("10.1.1.0", "255.255.255.0");
      Ipv4InterfaceContainer i = ipv4.Assign (d);
      serverAddress = Address(i.GetAddress (1));
    }
  else
    {
      Ipv6AddressHelper ipv6;
      ipv6.SetBase ("2001:0000:f00d:cafe::", Ipv6Prefix (64));
      Ipv6InterfaceContainer i6 = ipv6.Assign (d);
      serverAddress = Address(i6.GetAddress (1,1));
    }

  NS_LOG_INFO ("Create Applications.");
//
// Create a UdpEchoServer application on node one.
//
  uint16_t port = 9;  // well-known echo port number
  UdpEchoServerHelper server (port);
  ApplicationContainer apps = server.Install (n.Get (1));
  apps.Start (Seconds (1.0));
  apps.Stop (Seconds (10.0));

//
// Create a UdpEchoClient application to send UDP datagrams from node zero to
// node one.
//
  uint32_t packetSize = 1024;
  uint32_t maxPacketCount = 1;
  Time interPacketInterval = Seconds (1.);
  UdpEchoClientHelper client (serverAddress, port);
  client.SetAttribute ("MaxPackets", UintegerValue (maxPacketCount));
  client.SetAttribute ("Interval", TimeValue (interPacketInterval));
  client.SetAttribute ("PacketSize", UintegerValue (packetSize));
  apps = client.Install (n.Get (0));
  apps.Start (Seconds (2.0));
  apps.Stop (Seconds (10.0));

#if 0
//
// Users may find it convenient to initialize echo packets with actual data;
// the below lines suggest how to do this
//
  client.SetFill (apps.Get (0), "Hello World");

  client.SetFill (apps.Get (0), 0xa5, 1024);

  uint8_t fill[] = { 0, 1, 2, 3, 4, 5, 6};
  client.SetFill (apps.Get (0), fill, sizeof(fill), 1024);
#endif

  AsciiTraceHelper ascii;
  csma.EnableAsciiAll (ascii.CreateFileStream ("udp-echo.tr"));
  csma.EnablePcapAll ("udp-echo", false);

//
// Now, do the actual simulation.
//
  NS_LOG_INFO ("Run Simulation.");
  Simulator::Run ();
  Simulator::Destroy ();
  NS_LOG_INFO ("Done.");
}
int
main (int argc, char *argv[])
{

  CommandLine cmd;
  cmd.Parse (argc, argv);

  // Here, we will explicitly create four nodes.
  NS_LOG_INFO ("Create nodes.");
  NodeContainer c;
  c.Create (4);

  // connect all our nodes to a shared channel.
  NS_LOG_INFO ("Build Topology.");
  CsmaHelper csma;
  csma.SetChannelAttribute ("DataRate", DataRateValue (DataRate (5000000)));
  csma.SetChannelAttribute ("Delay", TimeValue (MilliSeconds (2)));
  csma.SetDeviceAttribute ("EncapsulationMode", StringValue ("Llc"));
  NetDeviceContainer devs = csma.Install (c);

  // add an ip stack to all nodes.
  NS_LOG_INFO ("Add ip stack.");
  InternetStackHelper ipStack;
  ipStack.Install (c);

  // assign ip addresses
  NS_LOG_INFO ("Assign ip addresses.");
  Ipv4AddressHelper ip;
  ip.SetBase ("192.168.1.0", "255.255.255.0");
  Ipv4InterfaceContainer addresses = ip.Assign (devs);

  NS_LOG_INFO ("Create Source");
  Config::SetDefault ("ns3::Ipv4RawSocketImpl::Protocol", StringValue ("2"));
  InetSocketAddress dst = InetSocketAddress (addresses.GetAddress (3));
  OnOffHelper onoff = OnOffHelper ("ns3::Ipv4RawSocketFactory", dst);
  onoff.SetConstantRate (DataRate (15000));
  onoff.SetAttribute ("PacketSize", UintegerValue (1200));


  ApplicationContainer apps = onoff.Install (c.Get (0));
  apps.Start (Seconds (1.0));
  apps.Stop (Seconds (10.0));

  NS_LOG_INFO ("Create Sink.");
  PacketSinkHelper sink = PacketSinkHelper ("ns3::Ipv4RawSocketFactory", dst);
  apps = sink.Install (c.Get (3));
  apps.Start (Seconds (0.0));
  apps.Stop (Seconds (11.0));

  NS_LOG_INFO ("Create pinger");
  V4PingHelper ping = V4PingHelper (addresses.GetAddress (2));
  NodeContainer pingers;
  pingers.Add (c.Get (0));
  pingers.Add (c.Get (1));
  pingers.Add (c.Get (3));
  apps = ping.Install (pingers);
  apps.Start (Seconds (2.0));
  apps.Stop (Seconds (5.0));

  NS_LOG_INFO ("Configure Tracing.");
  // first, pcap tracing in non-promiscuous mode
  csma.EnablePcapAll ("csma-ping", false);

  // then, print what the packet sink receives.
  Config::ConnectWithoutContext ("/NodeList/3/ApplicationList/0/$ns3::PacketSink/Rx", 
                                 MakeCallback (&SinkRx));
  // finally, print the ping rtts.
  Config::Connect ("/NodeList/*/ApplicationList/*/$ns3::V4Ping/Rtt",
                   MakeCallback (&PingRtt));

  Packet::EnablePrinting ();


  NS_LOG_INFO ("Run Simulation.");
  Simulator::Run ();
  Simulator::Destroy ();
  NS_LOG_INFO ("Done.");
}
int 
main (int argc, char *argv[])
{
  // Users may find it convenient to turn on explicit debugging
  // for selected modules; the below lines suggest how to do this
#if 0 
  LogComponentEnable ("SimpleGlobalRoutingExample", LOG_LEVEL_INFO);
#endif

  // Set up some default values for the simulation.  Use the 

  Config::SetDefault ("ns3::OnOffApplication::PacketSize", UintegerValue (210));
  Config::SetDefault ("ns3::OnOffApplication::DataRate", StringValue ("448kb/s"));

  //DefaultValue::Bind ("DropTailQueue::m_maxPackets", 30);

  // Allow the user to override any of the defaults and the above
  // DefaultValue::Bind ()s at run-time, via command-line arguments
  CommandLine cmd;
  cmd.Parse (argc, argv);

  // Here, we will explicitly create four nodes.  In more sophisticated
  // topologies, we could configure a node factory.
  NS_LOG_INFO ("Create nodes.");
  NodeContainer c;
  c.Create (5);
  NodeContainer n02 = NodeContainer (c.Get (0), c.Get (2));
  NodeContainer n12 = NodeContainer (c.Get (1), c.Get (2));
  NodeContainer n32 = NodeContainer (c.Get (3), c.Get (2));
  NodeContainer n34 = NodeContainer (c.Get (3), c.Get (4));

  // Enable OLSR
  NS_LOG_INFO ("Enabling OLSR Routing.");
  OlsrHelper olsr;

  Ipv4StaticRoutingHelper staticRouting;

  Ipv4ListRoutingHelper list;
  list.Add (staticRouting, 0);
  list.Add (olsr, 10);

  InternetStackHelper internet;
  internet.SetRoutingHelper (list); // has effect on the next Install ()
  internet.Install (c);

  // We create the channels first without any IP addressing information
  NS_LOG_INFO ("Create channels.");
  PointToPointHelper p2p;
  p2p.SetDeviceAttribute ("DataRate", StringValue ("5Mbps"));
  p2p.SetChannelAttribute ("Delay", StringValue ("2ms"));
  NetDeviceContainer nd02 = p2p.Install (n02);
  NetDeviceContainer nd12 = p2p.Install (n12);
  p2p.SetDeviceAttribute ("DataRate", StringValue ("1500kbps"));
  p2p.SetChannelAttribute ("Delay", StringValue ("10ms"));
  NetDeviceContainer nd32 = p2p.Install (n32);
  NetDeviceContainer nd34 = p2p.Install (n34);

  // Later, we add IP addresses.
  NS_LOG_INFO ("Assign IP Addresses.");
  Ipv4AddressHelper ipv4;
  ipv4.SetBase ("10.1.1.0", "255.255.255.0");
  Ipv4InterfaceContainer i02 = ipv4.Assign (nd02);

  ipv4.SetBase ("10.1.2.0", "255.255.255.0");
  Ipv4InterfaceContainer i12 = ipv4.Assign (nd12);

  ipv4.SetBase ("10.1.3.0", "255.255.255.0");
  Ipv4InterfaceContainer i32 = ipv4.Assign (nd32);

  ipv4.SetBase ("10.1.4.0", "255.255.255.0");
  Ipv4InterfaceContainer i34 = ipv4.Assign (nd34);

  // Create the OnOff application to send UDP datagrams of size
  // 210 bytes at a rate of 448 Kb/s from n0 to n4
  NS_LOG_INFO ("Create Applications.");
  uint16_t port = 9;   // Discard port (RFC 863)

  OnOffHelper onoff ("ns3::UdpSocketFactory", 
                     InetSocketAddress (i34.GetAddress (1), port));
  onoff.SetConstantRate (DataRate ("448kb/s"));

  ApplicationContainer apps = onoff.Install (c.Get (0));
  apps.Start (Seconds (1.0));
  apps.Stop (Seconds (10.0));

  // Create a packet sink to receive these packets
  PacketSinkHelper sink ("ns3::UdpSocketFactory",
                         InetSocketAddress (Ipv4Address::GetAny (), port));

  apps = sink.Install (c.Get (3));
  apps.Start (Seconds (1.0));
  apps.Stop (Seconds (10.0));

  // Create a similar flow from n3 to n1, starting at time 1.1 seconds
  onoff.SetAttribute ("Remote",
                      AddressValue (InetSocketAddress (i12.GetAddress (0), port)));
  apps = onoff.Install (c.Get (3));
  apps.Start (Seconds (1.1));
  apps.Stop (Seconds (10.0));

  // Create a packet sink to receive these packets
  apps = sink.Install (c.Get (1));
  apps.Start (Seconds (1.1));
  apps.Stop (Seconds (10.0));

  AsciiTraceHelper ascii;
  p2p.EnableAsciiAll (ascii.CreateFileStream ("simple-point-to-point-olsr.tr"));
  p2p.EnablePcapAll ("simple-point-to-point-olsr");

  Simulator::Stop (Seconds (30));

  NS_LOG_INFO ("Run Simulation.");
  Simulator::Run ();
  Simulator::Destroy ();
  NS_LOG_INFO ("Done.");

  return 0;
}
void part2() 
{
    cout << "Seting up Part B with C" << endl;
    
	string rateHR = "100Mbps";  //data rate b/w hosts and routers
	string latencyHR = "20ms";  //latency b/w hosts and routers
	string rateRR = "10Mbps";  //data rate b/w routers
	string latencyRR = "50ms"; //latenc b/w routers

	uint32_t packetSize = 1.2*1024;		//1.2KB
	uint32_t queueSizeHR = (100000*20)/packetSize;  //100Mbps
	uint32_t queueSizeRR = (10000*50)/packetSize;   //10Mbps

	uint32_t numSender = 3;

	double errorP = 0.000001;

	Config::SetDefault("ns3::DropTailQueue::Mode", StringValue("QUEUE_MODE_PACKETS"));

	//Creating channel without IP address
	PointToPointHelper p2pHR, p2pRR;
	
	p2pHR.SetDeviceAttribute("DataRate", StringValue(rateHR));
	p2pHR.SetChannelAttribute("Delay", StringValue(latencyHR));
	p2pHR.SetQueue("ns3::DropTailQueue", "MaxPackets", UintegerValue(queueSizeHR));

	p2pRR.SetDeviceAttribute("DataRate", StringValue(rateRR));
	p2pRR.SetChannelAttribute("Delay", StringValue(latencyRR));
	p2pRR.SetQueue("ns3::DropTailQueue", "MaxPackets", UintegerValue(queueSizeRR));

	//Adding some errorrate
	Ptr<RateErrorModel> em = CreateObjectWithAttributes<RateErrorModel> ("ErrorRate", DoubleValue (errorP));

    //create nodes(routers, senders and recievers)
	NodeContainer routers, senders, recievers;
	routers.Create(2);
	senders.Create(numSender);
	recievers.Create(numSender);

	NetDeviceContainer routerDevices = p2pRR.Install(routers);
	NetDeviceContainer leftRouterDevices, rightRouterDevices, senderDevices, recieverDevices;

	//Adding links
	for(uint32_t i = 0; i < numSender; ++i) 
	{
		NetDeviceContainer cleft = p2pHR.Install(routers.Get(0), senders.Get(i));
		leftRouterDevices.Add(cleft.Get(0));
		senderDevices.Add(cleft.Get(1));
		cleft.Get(0)->SetAttribute("ReceiveErrorModel", PointerValue(em));

		NetDeviceContainer cright = p2pHR.Install(routers.Get(1), recievers.Get(i));
		rightRouterDevices.Add(cright.Get(0));
		recieverDevices.Add(cright.Get(1));
		cright.Get(0)->SetAttribute("ReceiveErrorModel", PointerValue(em));
	}

	//Install Internet Stack
	InternetStackHelper stack;
	stack.Install(routers);
	stack.Install(senders);
	stack.Install(recievers);


	//Adding IP addresses
	Ipv4AddressHelper routerIP = Ipv4AddressHelper("10.3.0.0", "255.255.255.0");
	Ipv4AddressHelper senderIP = Ipv4AddressHelper("10.1.0.0", "255.255.255.0");
	Ipv4AddressHelper recieverIP = Ipv4AddressHelper("10.2.0.0", "255.255.255.0");
	

	Ipv4InterfaceContainer routerIFC, senderIFCs, recieverIFCs, leftRouterIFCs, rightRouterIFCs;

	routerIFC = routerIP.Assign(routerDevices);

	for(uint32_t i = 0; i < numSender; ++i) 
	{
		NetDeviceContainer senderDevice;
		senderDevice.Add(senderDevices.Get(i));
		senderDevice.Add(leftRouterDevices.Get(i));
		Ipv4InterfaceContainer senderIFC = senderIP.Assign(senderDevice);
		senderIFCs.Add(senderIFC.Get(0));
		leftRouterIFCs.Add(senderIFC.Get(1));
		senderIP.NewNetwork();

		NetDeviceContainer recieverDevice;
		recieverDevice.Add(recieverDevices.Get(i));
		recieverDevice.Add(rightRouterDevices.Get(i));
		Ipv4InterfaceContainer recieverIFC = recieverIP.Assign(recieverDevice);
		recieverIFCs.Add(recieverIFC.Get(0));
		rightRouterIFCs.Add(recieverIFC.Get(1));
		recieverIP.NewNetwork();
	}

	
	/********************************************************************
	PART (2)
	
	start 2 other flows while one is progress
	
	->	measure throughput and CWND of each flow at steady state
	->  Also find the max throuhput per flow
	
	********************************************************************/
	
	cout << "Part B Starting" << endl;
	
	double durationGap = 100;
	double oneFlowStart = 0;
	double otherFlowStart = 20;
	uint32_t port = 9000;
	uint32_t numPackets = 10000000;
	string transferSpeed = "400Mbps";
		
	
	//TCP Reno from H1 to H4
	cout << "Flow from H1 -> H4 : TcpReno" << endl;
	cout << "Writing to app6_h1_h4_b.cwnd (congestion window) and  app6_h1_h4_b.tp (throughput)" << endl;
	AsciiTraceHelper asciiTraceHelper;
	Ptr<OutputStreamWrapper> stream1CWND = asciiTraceHelper.CreateFileStream("app6_h1_h4_b.cwnd");
	Ptr<OutputStreamWrapper> stream1PD = asciiTraceHelper.CreateFileStream("app6_h1_h4_b.congestion_loss");
	Ptr<OutputStreamWrapper> stream1TP = asciiTraceHelper.CreateFileStream("app6_h1_h4_b.tp");
	Ptr<OutputStreamWrapper> stream1GP = asciiTraceHelper.CreateFileStream("app6_h1_h4_b.gp");
	Ptr<Socket> ns3TcpSocket1 = uniFlow(InetSocketAddress(recieverIFCs.GetAddress(0), port), port, "TcpReno", senders.Get(0), recievers.Get(0), oneFlowStart, oneFlowStart+durationGap, packetSize, numPackets, transferSpeed, oneFlowStart, oneFlowStart+durationGap);
	ns3TcpSocket1->TraceConnectWithoutContext("CongestionWindow", MakeBoundCallback (&CwndChange, stream1CWND, 0));
	ns3TcpSocket1->TraceConnectWithoutContext("Drop", MakeBoundCallback (&packetDrop, stream1PD, 0, 1));

	std::string sink_ = "/NodeList/5/ApplicationList/0/$ns3::PacketSink/Rx";
	Config::Connect(sink_, MakeBoundCallback(&ReceivedPacket, stream1TP, oneFlowStart));
	std::string sink = "/NodeList/5/ApplicationList/0/$ns3::PacketSink/Rx";
	Config::Connect(sink, MakeBoundCallback(&ReceivedPacket, stream1GP, 0));

	//TCP Tahoe from H2 to H5
	cout << "Flow from H2 -> H5 : TcpTahoe" << endl;
	cout << "Writing to app6_h2_h5_b.cwnd (congestion window) and  app6_h2_h5_b.tp (throughput)" << endl;
	Ptr<OutputStreamWrapper> stream2CWND = asciiTraceHelper.CreateFileStream("app6_h2_h5_b.cwnd");
	Ptr<OutputStreamWrapper> stream2PD = asciiTraceHelper.CreateFileStream("app6_h2_h5_b.congestion_loss");
	Ptr<OutputStreamWrapper> stream2TP = asciiTraceHelper.CreateFileStream("app6_h2_h5_b.tp");
	Ptr<OutputStreamWrapper> stream2GP = asciiTraceHelper.CreateFileStream("app6_h2_h5_b.gp");
	Ptr<Socket> ns3TcpSocket2 = uniFlow(InetSocketAddress(recieverIFCs.GetAddress(1), port), port, "TcpTahoe", senders.Get(1), recievers.Get(1), otherFlowStart, otherFlowStart+durationGap, packetSize, numPackets, transferSpeed, otherFlowStart, otherFlowStart+durationGap);
	ns3TcpSocket2->TraceConnectWithoutContext("CongestionWindow", MakeBoundCallback (&CwndChange, stream2CWND, 0));
	ns3TcpSocket2->TraceConnectWithoutContext("Drop", MakeBoundCallback (&packetDrop, stream2PD, 0, 2));

	sink_ = "/NodeList/6/ApplicationList/0/$ns3::PacketSink/Rx";
	Config::Connect(sink_, MakeBoundCallback(&ReceivedPacket, stream2TP, otherFlowStart));
	sink = "/NodeList/6/ApplicationList/0/$ns3::PacketSink/Rx";
	Config::Connect(sink, MakeBoundCallback(&ReceivedPacket, stream2GP, 0));

	//TCP WestWood from H3 to H6
	cout << "Flow from H3 -> H6 : TcpWestwood" << endl;
	cout << "Writing to app6_h3_h6_b.cwnd (congestion window) and  app6_h3_h6_b.tp (throughput)" << endl;
	Ptr<OutputStreamWrapper> stream3CWND = asciiTraceHelper.CreateFileStream("app6_h3_h6_b.cwnd");
	Ptr<OutputStreamWrapper> stream3PD = asciiTraceHelper.CreateFileStream("app6_h3_h6_b.congestion_loss");
	Ptr<OutputStreamWrapper> stream3TP = asciiTraceHelper.CreateFileStream("app6_h3_h6_b.tp");
	Ptr<OutputStreamWrapper> stream3GP = asciiTraceHelper.CreateFileStream("app6_h3_h6_b.gp");
	Ptr<Socket> ns3TcpSocket3 = uniFlow(InetSocketAddress(recieverIFCs.GetAddress(2), port), port, "TcpWestwood", senders.Get(2), recievers.Get(2), otherFlowStart, otherFlowStart+durationGap, packetSize, numPackets, transferSpeed, otherFlowStart, otherFlowStart+durationGap);
	ns3TcpSocket3->TraceConnectWithoutContext("CongestionWindow", MakeBoundCallback (&CwndChange, stream3CWND, 0));
	ns3TcpSocket3->TraceConnectWithoutContext("Drop", MakeBoundCallback (&packetDrop, stream3PD, 0, 3));

	sink = "/NodeList/7/ApplicationList/0/$ns3::PacketSink/Rx";
	Config::Connect(sink, MakeBoundCallback(&ReceivedPacket, stream3GP, 0));

	sink_ = "/NodeList/7/ApplicationList/0/$ns3::PacketSink/Rx";
	Config::Connect(sink_, MakeBoundCallback(&ReceivedPacket, stream3TP, otherFlowStart));



	//Turning on Static Global Routing
	Ipv4GlobalRoutingHelper::PopulateRoutingTables();

	Ptr<FlowMonitor> flowmon;
	FlowMonitorHelper flowmonHelper;
	flowmon = flowmonHelper.InstallAll();
	Simulator::Stop(Seconds(durationGap+otherFlowStart));
	
	//animation("anim4.xml", routers, senders, recievers);    //animation 
	
	Simulator::Run();
	flowmon->CheckForLostPackets();

    cout << "Part b throughput into app6_b.tp" << endl;
	//Ptr<OutputStreamWrapper> streamTP = asciiTraceHelper.CreateFileStream("app6_b.tp");
	Ptr<Ipv4FlowClassifier> classifier = DynamicCast<Ipv4FlowClassifier>(flowmonHelper.GetClassifier());
	std::map<FlowId, FlowMonitor::FlowStats> stats = flowmon->GetFlowStats();
	for (std::map<FlowId, FlowMonitor::FlowStats>::const_iterator i = stats.begin(); i != stats.end(); ++i) 
	{
		Ipv4FlowClassifier::FiveTuple t = classifier->FindFlow (i->first);
		if(t.sourceAddress == "10.1.0.1") 
		{
			if(mapDrop.find(1)==mapDrop.end())
				mapDrop[1] = 0;
				
			*stream1PD->GetStream() << "TcpReno Flow " << i->first  << " (" << t.sourceAddress << " -> " << t.destinationAddress << ")\n";
			*stream1PD->GetStream()  << "Net Packet Lost: " << i->second.lostPackets << "\n";
			*stream1PD->GetStream()  << "Packet Lost due to buffer overflow: " << mapDrop[1] << "\n";
			*stream1PD->GetStream()  << "Packet Lost due to Congestion: " << i->second.lostPackets - mapDrop[1] << "\n";
			*stream1PD->GetStream() << "Max throughput: " << mapMaxThroughput["/NodeList/5/$ns3::Ipv4L3Protocol/Rx"] << std::endl;
		} 
		else if(t.sourceAddress == "10.1.1.1") 
		{
			if(mapDrop.find(2)==mapDrop.end())
				mapDrop[2] = 0;
				
			*stream2PD->GetStream() << "TcpTahoe Flow " << i->first  << " (" << t.sourceAddress << " -> " << t.destinationAddress << ")\n";
			*stream2PD->GetStream()  << "Net Packet Lost: " << i->second.lostPackets << "\n";
			*stream2PD->GetStream()  << "Packet Lost due to buffer overflow: " << mapDrop[2] << "\n";
			*stream2PD->GetStream()  << "Packet Lost due to Congestion: " << i->second.lostPackets - mapDrop[2] << "\n";
			*stream2PD->GetStream() << "Max throughput: " << mapMaxThroughput["/NodeList/6/$ns3::Ipv4L3Protocol/Rx"] << std::endl;
		} 
		else if(t.sourceAddress == "10.1.2.1") 
		{
			if(mapDrop.find(3)==mapDrop.end())
				mapDrop[3] = 0;
				
			*stream3PD->GetStream() << "TcpWestWood Flow " << i->first  << " (" << t.sourceAddress << " -> " << t.destinationAddress << ")\n";
			*stream3PD->GetStream()  << "Net Packet Lost: " << i->second.lostPackets << "\n";
			*stream3PD->GetStream()  << "Packet Lost due to buffer overflow: " << mapDrop[3] << "\n";
			*stream3PD->GetStream()  << "Packet Lost due to Congestion: " << i->second.lostPackets - mapDrop[3] << "\n";
			*stream3PD->GetStream() << "Max throughput: " << mapMaxThroughput["/NodeList/7/$ns3::Ipv4L3Protocol/Rx"] << std::endl;
		}	
	}

	//flowmon->SerializeToXmlFile("app6_b.flowmon", true, true);
	Simulator::Destroy();

}
int
main (int argc, char *argv[])
{
  GlobalValue::Bind ("ChecksumEnabled", BooleanValue (true));

  uint16_t sinkPort = 8000;
  uint32_t packetSize = 10000; // bytes
  std::string dataRate("10Mb/s");

  NS_LOG_INFO ("Create Node");
  NodeContainer nodes;
  nodes.Create (2);

  NS_LOG_INFO ("Create Device");
  FdNetDeviceHelper fd;
  NetDeviceContainer devices = fd.Install (nodes);

  int sv[2];
  if (socketpair (AF_UNIX, SOCK_DGRAM, 0, sv) < 0)
    {
      NS_FATAL_ERROR ("Error creating pipe=" << strerror (errno));
    }

  Ptr<NetDevice> d1 = devices.Get (0);
  Ptr<FdNetDevice> clientDevice = d1->GetObject<FdNetDevice> ();
  clientDevice->SetFileDescriptor (sv[0]);

  Ptr<NetDevice> d2 = devices.Get (1);
  Ptr<FdNetDevice> serverDevice = d2->GetObject<FdNetDevice> ();
  serverDevice->SetFileDescriptor (sv[1]);

  NS_LOG_INFO ("Add Internet Stack");
  InternetStackHelper internetStackHelper;
  internetStackHelper.SetIpv4StackInstall(true);
  internetStackHelper.Install (nodes);

  NS_LOG_INFO ("Create IPv4 Interface");
  Ipv4AddressHelper addresses;
  addresses.SetBase ("10.0.0.0", "255.255.255.0");
  Ipv4InterfaceContainer interfaces = addresses.Assign (devices);

  Ptr<Node> clientNode = nodes.Get (0);
  Ipv4Address serverIp = interfaces.GetAddress (1);
  Ptr<Node> serverNode = nodes.Get (1);

  // server
  Address sinkLocalAddress (InetSocketAddress (serverIp, sinkPort));
  PacketSinkHelper sinkHelper ("ns3::TcpSocketFactory", sinkLocalAddress);
  ApplicationContainer sinkApp = sinkHelper.Install (serverNode);
  sinkApp.Start (Seconds (0.0));
  sinkApp.Stop (Seconds (30.0));
  fd.EnablePcap ("fd2fd-onoff-server", serverDevice);

  // client
  AddressValue serverAddress (InetSocketAddress (serverIp, sinkPort));
  OnOffHelper onoff ("ns3::TcpSocketFactory", Address ());
  onoff.SetAttribute ("Remote", serverAddress);
  onoff.SetAttribute ("OnTime", StringValue ("ns3::ConstantRandomVariable[Constant=1]"));
  onoff.SetAttribute ("OffTime", StringValue ("ns3::ConstantRandomVariable[Constant=0]"));
  onoff.SetAttribute ("DataRate", DataRateValue (dataRate));
  onoff.SetAttribute ("PacketSize", UintegerValue (packetSize));
  ApplicationContainer clientApps = onoff.Install (clientNode);
  clientApps.Start (Seconds (2.0));
  clientApps.Stop (Seconds (29.0));
  fd.EnablePcap ("fd2fd-onoff-client", clientDevice);

  Simulator::Stop (Seconds (30.0));
  Simulator::Run ();
  Simulator::Destroy ();
}
//
// Example of the sending of a datagram to a broadcast address
//
// Network topology
//     ==============
//       |          |
//       n0    n1   n2
//       |     |
//     ==========
//
//   n0 originates UDP broadcast to 255.255.255.255/discard port, which 
//   is replicated and received on both n1 and n2
//
void
CsmaBroadcastTestCase::DoRun (void)
{
  NodeContainer c;
  c.Create (3);
  NodeContainer c0 = NodeContainer (c.Get (0), c.Get (1));
  NodeContainer c1 = NodeContainer (c.Get (0), c.Get (2));

  CsmaHelper csma;
  csma.SetChannelAttribute ("DataRate", DataRateValue (DataRate (5000000)));
  csma.SetChannelAttribute ("Delay", TimeValue (MilliSeconds (2)));

  NetDeviceContainer n0 = csma.Install (c0);
  NetDeviceContainer n1 = csma.Install (c1);

  InternetStackHelper internet;
  internet.Install (c);

  Ipv4AddressHelper ipv4;
  ipv4.SetBase ("10.1.0.0", "255.255.255.0");
  ipv4.Assign (n0);
  ipv4.SetBase ("192.168.1.0", "255.255.255.0");
  ipv4.Assign (n1);


  // RFC 863 discard port ("9") indicates packet should be thrown away
  // by the system.  We allow this silent discard to be overridden
  // by the PacketSink application.
  uint16_t port = 9;

  // Create the OnOff application to send UDP datagrams from n0.
  //
  // Make packets be sent about every DefaultPacketSize / DataRate = 
  // 4096 bits / (5000 bits/second) = 0.82 second.
  OnOffHelper onoff ("ns3::UdpSocketFactory", 
                     Address (InetSocketAddress (Ipv4Address ("255.255.255.255"), port)));
  onoff.SetConstantRate (DataRate (5000));

  ApplicationContainer app = onoff.Install (c0.Get (0));
  // Start the application
  app.Start (Seconds (1.0));
  app.Stop (Seconds (10.0));

  // Create an optional packet sink to receive these packets
  PacketSinkHelper sink ("ns3::UdpSocketFactory",
                         Address (InetSocketAddress (Ipv4Address::GetAny (), port)));
  app = sink.Install (c0.Get (1));
  app.Add (sink.Install (c1.Get (1)));
  app.Start (Seconds (1.0));
  app.Stop (Seconds (10.0));

  // Trace receptions
  Config::ConnectWithoutContext ("/NodeList/1/ApplicationList/0/$ns3::PacketSink/Rx", MakeCallback (&CsmaBroadcastTestCase::SinkRxNode1, this));
  Config::ConnectWithoutContext ("/NodeList/2/ApplicationList/0/$ns3::PacketSink/Rx", MakeCallback (&CsmaBroadcastTestCase::SinkRxNode2, this));

  Simulator::Run ();
  Simulator::Destroy ();

  // We should have sent and received 10 packets
  NS_TEST_ASSERT_MSG_EQ (m_countNode1, 10, "Node 1 should have received 10 packets");
  NS_TEST_ASSERT_MSG_EQ (m_countNode2, 10, "Node 2 should have received 10 packets");
}
// Test program for this 3-router scenario, using global routing
//
// (a.a.a.a/32)A<--x.x.x.0/30-->B<--y.y.y.0/30-->C(c.c.c.c/32)
//
void
GlobalRoutingSlash32TestCase::DoRun (void)
{
  Ptr<Node> nA = CreateObject<Node> ();
  Ptr<Node> nB = CreateObject<Node> ();
  Ptr<Node> nC = CreateObject<Node> ();

  NodeContainer c = NodeContainer (nA, nB, nC);

  InternetStackHelper internet;
  internet.Install (c);

  // Point-to-point links
  NodeContainer nAnB = NodeContainer (nA, nB);
  NodeContainer nBnC = NodeContainer (nB, nC);

  // We create the channels first without any IP addressing information
  PointToPointHelper p2p;
  p2p.SetDeviceAttribute ("DataRate", StringValue ("5Mbps"));
  p2p.SetChannelAttribute ("Delay", StringValue ("2ms"));
  NetDeviceContainer dAdB = p2p.Install (nAnB);

  NetDeviceContainer dBdC = p2p.Install (nBnC);;

  Ptr<CsmaNetDevice> deviceA = CreateObject<CsmaNetDevice> ();
  deviceA->SetAddress (Mac48Address::Allocate ());
  nA->AddDevice (deviceA);

  Ptr<CsmaNetDevice> deviceC = CreateObject<CsmaNetDevice> ();
  deviceC->SetAddress (Mac48Address::Allocate ());
  nC->AddDevice (deviceC);

  // Later, we add IP addresses.
  Ipv4AddressHelper ipv4;
  ipv4.SetBase ("10.1.1.0", "255.255.255.252");
  Ipv4InterfaceContainer iAiB = ipv4.Assign (dAdB);

  ipv4.SetBase ("10.1.1.4", "255.255.255.252");
  Ipv4InterfaceContainer iBiC = ipv4.Assign (dBdC);

  Ptr<Ipv4> ipv4A = nA->GetObject<Ipv4> ();
  Ptr<Ipv4> ipv4C = nC->GetObject<Ipv4> ();

  int32_t ifIndexA = ipv4A->AddInterface (deviceA);
  int32_t ifIndexC = ipv4C->AddInterface (deviceC);

  Ipv4InterfaceAddress ifInAddrA = Ipv4InterfaceAddress (Ipv4Address ("172.16.1.1"), Ipv4Mask ("255.255.255.255"));
  ipv4A->AddAddress (ifIndexA, ifInAddrA);
  ipv4A->SetMetric (ifIndexA, 1);
  ipv4A->SetUp (ifIndexA);

  Ipv4InterfaceAddress ifInAddrC = Ipv4InterfaceAddress (Ipv4Address ("192.168.1.1"), Ipv4Mask ("255.255.255.255"));
  ipv4C->AddAddress (ifIndexC, ifInAddrC);
  ipv4C->SetMetric (ifIndexC, 1);
  ipv4C->SetUp (ifIndexC);

  // Create router nodes, initialize routing database and set up the routing
  // tables in the nodes.
  Ipv4GlobalRoutingHelper::PopulateRoutingTables ();

  // Create the OnOff application to send UDP datagrams of size
  // 210 bytes at a rate of 448 Kb/s
  uint16_t port = 9;   // Discard port (RFC 863)
  OnOffHelper onoff ("ns3::UdpSocketFactory",
                     Address (InetSocketAddress (ifInAddrC.GetLocal (), port)));
  onoff.SetConstantRate (DataRate (6000));
  ApplicationContainer apps = onoff.Install (nA);
  apps.Start (Seconds (1.0));
  apps.Stop (Seconds (10.0));

  // Create a packet sink to receive these packets
  PacketSinkHelper sink ("ns3::UdpSocketFactory",
                         Address (InetSocketAddress (Ipv4Address::GetAny (), port)));
  apps = sink.Install (nC);
  apps.Start (Seconds (1.0));
  apps.Stop (Seconds (10.0));

  Simulator::Run ();
  // Check that we received 13 * 512 = 6656 bytes
  Ptr<PacketSink> sinkPtr = DynamicCast <PacketSink> (apps.Get (0));
  NS_TEST_ASSERT_MSG_EQ (sinkPtr->GetTotalRx (), 6656, "Static routing with /32 did not deliver all packets");
  Simulator::Destroy ();
}
// Network topology
//
//                     Lan1
//                 ===========
//                 |    |    | 
//       n0   n1   n2   n3   n4
//       |    |    |
//       ===========
//           Lan0
//
// - Multicast source is at node n0;
// - Multicast forwarded by node n2 onto LAN1;
// - Nodes n0, n1, n2, n3, and n4 receive the multicast frame.
// - Node n4 listens for the data 
//
void
CsmaMulticastTestCase::DoRun (void)
{
  //
  // Set up default values for the simulation.
  //
  // Select DIX/Ethernet II-style encapsulation (no LLC/Snap header)
  Config::SetDefault ("ns3::CsmaNetDevice::EncapsulationMode", StringValue ("Dix"));

  NodeContainer c;
  c.Create (5);
  // We will later want two subcontainers of these nodes, for the two LANs
  NodeContainer c0 = NodeContainer (c.Get (0), c.Get (1), c.Get (2));
  NodeContainer c1 = NodeContainer (c.Get (2), c.Get (3), c.Get (4));

  CsmaHelper csma;
  csma.SetChannelAttribute ("DataRate", DataRateValue (DataRate (5000000)));
  csma.SetChannelAttribute ("Delay", TimeValue (MilliSeconds (2)));
 
  // We will use these NetDevice containers later, for IP addressing
  NetDeviceContainer nd0 = csma.Install (c0);  // First LAN
  NetDeviceContainer nd1 = csma.Install (c1);  // Second LAN

  InternetStackHelper internet;
  internet.Install (c);

  Ipv4AddressHelper ipv4Addr;
  ipv4Addr.SetBase ("10.1.1.0", "255.255.255.0");
  ipv4Addr.Assign (nd0);
  ipv4Addr.SetBase ("10.1.2.0", "255.255.255.0");
  ipv4Addr.Assign (nd1);

  //
  // Now we can configure multicasting.  As described above, the multicast 
  // source is at node zero, which we assigned the IP address of 10.1.1.1 
  // earlier.  We need to define a multicast group to send packets to.  This
  // can be any multicast address from 224.0.0.0 through 239.255.255.255
  // (avoiding the reserved routing protocol addresses).
  //

  Ipv4Address multicastSource ("10.1.1.1");
  Ipv4Address multicastGroup ("225.1.2.4");

  // Now, we will set up multicast routing.  We need to do three things:
  // 1) Configure a (static) multicast route on node n2
  // 2) Set up a default multicast route on the sender n0 
  // 3) Have node n4 join the multicast group
  // We have a helper that can help us with static multicast
  Ipv4StaticRoutingHelper multicast;

  // 1) Configure a (static) multicast route on node n2 (multicastRouter)
  Ptr<Node> multicastRouter = c.Get (2);  // The node in question
  Ptr<NetDevice> inputIf = nd0.Get (2);  // The input NetDevice
  NetDeviceContainer outputDevices;  // A container of output NetDevices
  outputDevices.Add (nd1.Get (0));  // (we only need one NetDevice here)

  multicast.AddMulticastRoute (multicastRouter, multicastSource, 
                               multicastGroup, inputIf, outputDevices);

  // 2) Set up a default multicast route on the sender n0 
  Ptr<Node> sender = c.Get (0);
  Ptr<NetDevice> senderIf = nd0.Get (0);
  multicast.SetDefaultMulticastRoute (sender, senderIf);

  //
  // Create an OnOff application to send UDP datagrams from node zero to the
  // multicast group (node four will be listening).
  //

  uint16_t multicastPort = 9;   // Discard port (RFC 863)

  // Configure a multicast packet generator.
  //
  // Make packets be sent about every defaultPacketSize / dataRate = 
  // 4096 bits / (5000 bits/second) = 0.82 second.
  OnOffHelper onoff ("ns3::UdpSocketFactory", 
                     Address (InetSocketAddress (multicastGroup, multicastPort)));
  onoff.SetConstantRate (DataRate (5000));

  ApplicationContainer srcC = onoff.Install (c0.Get (0));

  //
  // Tell the application when to start and stop.
  //
  srcC.Start (Seconds (1.));
  srcC.Stop (Seconds (10.));

  // Create an optional packet sink to receive these packets
  PacketSinkHelper sink ("ns3::UdpSocketFactory",
                         InetSocketAddress (Ipv4Address::GetAny (), multicastPort));

  ApplicationContainer sinkC = sink.Install (c1.Get (2)); // Node n4 
  // Start the sink
  sinkC.Start (Seconds (1.0));
  sinkC.Stop (Seconds (10.0));

  // Trace receptions
  Config::ConnectWithoutContext ("/NodeList/4/ApplicationList/0/$ns3::PacketSink/Rx", MakeCallback (&CsmaMulticastTestCase::SinkRx, this));

  //
  // Now, do the actual simulation.
  //
  Simulator::Run ();
  Simulator::Destroy ();

  // We should have sent and received 10 packets
  NS_TEST_ASSERT_MSG_EQ (m_count, 10, "Node 4 should have received 10 packets");
}
void
LenaPssFfMacSchedulerTestCase2::DoRun (void)
{

  if (!m_errorModelEnabled)
    {
      Config::SetDefault ("ns3::LteSpectrumPhy::CtrlErrorModelEnabled", BooleanValue (false));
      Config::SetDefault ("ns3::LteSpectrumPhy::DataErrorModelEnabled", BooleanValue (false));
    }

  Config::SetDefault ("ns3::LteHelper::UseIdealRrc", BooleanValue (true));


  Ptr<LteHelper> lteHelper = CreateObject<LteHelper> ();
  Ptr<PointToPointEpcHelper>  epcHelper = CreateObject<PointToPointEpcHelper> ();
  lteHelper->SetEpcHelper (epcHelper);

  Ptr<Node> pgw = epcHelper->GetPgwNode ();

  // Create a single RemoteHost
  NodeContainer remoteHostContainer;
  remoteHostContainer.Create (1);
  Ptr<Node> remoteHost = remoteHostContainer.Get (0);
  InternetStackHelper internet;
  internet.Install (remoteHostContainer);

  // Create the Internet
  PointToPointHelper p2ph;
  p2ph.SetDeviceAttribute ("DataRate", DataRateValue (DataRate ("100Gb/s")));
  p2ph.SetDeviceAttribute ("Mtu", UintegerValue (1500));
  p2ph.SetChannelAttribute ("Delay", TimeValue (Seconds (0.001)));
  NetDeviceContainer internetDevices = p2ph.Install (pgw, remoteHost);
  Ipv4AddressHelper ipv4h;
  ipv4h.SetBase ("1.0.0.0", "255.0.0.0");
  Ipv4InterfaceContainer internetIpIfaces = ipv4h.Assign (internetDevices);
  // interface 0 is localhost, 1 is the p2p device
  Ipv4Address remoteHostAddr = internetIpIfaces.GetAddress (1);

  Ipv4StaticRoutingHelper ipv4RoutingHelper;
  Ptr<Ipv4StaticRouting> remoteHostStaticRouting = ipv4RoutingHelper.GetStaticRouting (remoteHost->GetObject<Ipv4> ());
  remoteHostStaticRouting->AddNetworkRouteTo (Ipv4Address ("7.0.0.0"), Ipv4Mask ("255.0.0.0"), 1);


//   LogComponentDisableAll (LOG_LEVEL_ALL);
  //LogComponentEnable ("LenaTestPssFfMacCheduler", LOG_LEVEL_ALL);
   
  lteHelper->SetAttribute ("PathlossModel", StringValue ("ns3::FriisSpectrumPropagationLossModel"));

  // Create Nodes: eNodeB and UE
  NodeContainer enbNodes;
  NodeContainer ueNodes;
  enbNodes.Create (1);
  ueNodes.Create (m_nUser);

  // Install Mobility Model
  MobilityHelper mobility;
  mobility.SetMobilityModel ("ns3::ConstantPositionMobilityModel");
  mobility.Install (enbNodes);
  mobility.SetMobilityModel ("ns3::ConstantPositionMobilityModel");
  mobility.Install (ueNodes);

  // Create Devices and install them in the Nodes (eNB and UE)
  NetDeviceContainer enbDevs;
  NetDeviceContainer ueDevs;
  lteHelper->SetSchedulerType ("ns3::PssFfMacScheduler");
  enbDevs = lteHelper->InstallEnbDevice (enbNodes);
  ueDevs = lteHelper->InstallUeDevice (ueNodes);

  Ptr<LteEnbNetDevice> lteEnbDev = enbDevs.Get (0)->GetObject<LteEnbNetDevice> ();
  Ptr<LteEnbPhy> enbPhy = lteEnbDev->GetPhy ();
  enbPhy->SetAttribute ("TxPower", DoubleValue (30.0));
  enbPhy->SetAttribute ("NoiseFigure", DoubleValue (5.0));

  // Set UEs' position and power
  for (int i = 0; i < m_nUser; i++)
    {
      Ptr<ConstantPositionMobilityModel> mm = ueNodes.Get (i)->GetObject<ConstantPositionMobilityModel> ();
      mm->SetPosition (Vector (m_dist.at (i), 0.0, 0.0));
      Ptr<LteUeNetDevice> lteUeDev = ueDevs.Get (i)->GetObject<LteUeNetDevice> ();
      Ptr<LteUePhy> uePhy = lteUeDev->GetPhy ();
      uePhy->SetAttribute ("TxPower", DoubleValue (23.0));
      uePhy->SetAttribute ("NoiseFigure", DoubleValue (9.0));
    }

  // Install the IP stack on the UEs
  internet.Install (ueNodes);
  Ipv4InterfaceContainer ueIpIface;
  ueIpIface = epcHelper->AssignUeIpv4Address (NetDeviceContainer (ueDevs));

  // Assign IP address to UEs
  for (uint32_t u = 0; u < ueNodes.GetN (); ++u)
    {
      Ptr<Node> ueNode = ueNodes.Get (u);
      // Set the default gateway for the UE
      Ptr<Ipv4StaticRouting> ueStaticRouting = ipv4RoutingHelper.GetStaticRouting (ueNode->GetObject<Ipv4> ());
      ueStaticRouting->SetDefaultRoute (epcHelper->GetUeDefaultGatewayAddress (), 1);
    }

  // Attach a UE to a eNB
  lteHelper->Attach (ueDevs, enbDevs.Get (0));

  // Activate an EPS bearer on all UEs

  for (uint32_t u = 0; u < ueNodes.GetN (); ++u)
    {
      Ptr<NetDevice> ueDevice = ueDevs.Get (u);
      GbrQosInformation qos;
      qos.gbrDl = (m_packetSize.at (u) + 32) * (1000 / m_interval) * 8;  // bit/s, considering IP, UDP, RLC, PDCP header size
      qos.gbrUl = (m_packetSize.at (u) + 32) * (1000 / m_interval) * 8;
      qos.mbrDl = qos.gbrDl;
      qos.mbrUl = qos.gbrUl;
  
      enum EpsBearer::Qci q = EpsBearer::GBR_CONV_VOICE;
      EpsBearer bearer (q, qos);
      lteHelper->ActivateDedicatedEpsBearer (ueDevice, bearer, EpcTft::Default ());  
    }


  // Install downlind and uplink applications
  uint16_t dlPort = 1234;
  uint16_t ulPort = 2000;
  PacketSinkHelper dlPacketSinkHelper ("ns3::UdpSocketFactory", InetSocketAddress (Ipv4Address::GetAny (), dlPort));
  PacketSinkHelper ulPacketSinkHelper ("ns3::UdpSocketFactory", InetSocketAddress (Ipv4Address::GetAny (), ulPort));
  ApplicationContainer clientApps;
  ApplicationContainer serverApps;
  for (uint32_t u = 0; u < ueNodes.GetN (); ++u)
    {
      ++ulPort;
      serverApps.Add (dlPacketSinkHelper.Install (ueNodes.Get (u))); // receive packets from remotehost
      serverApps.Add (ulPacketSinkHelper.Install (remoteHost));  // receive packets from UEs

      UdpClientHelper dlClient (ueIpIface.GetAddress (u), dlPort); // uplink packets generator
      dlClient.SetAttribute ("Interval", TimeValue (MilliSeconds (m_interval)));
      dlClient.SetAttribute ("MaxPackets", UintegerValue (1000000));
      dlClient.SetAttribute ("PacketSize", UintegerValue (m_packetSize.at (u)));

      UdpClientHelper ulClient (remoteHostAddr, ulPort);           // downlink packets generator
      ulClient.SetAttribute ("Interval", TimeValue (MilliSeconds (m_interval)));
      ulClient.SetAttribute ("MaxPackets", UintegerValue (1000000));
      ulClient.SetAttribute ("PacketSize", UintegerValue (m_packetSize.at (u)));

      clientApps.Add (dlClient.Install (remoteHost));
      clientApps.Add (ulClient.Install (ueNodes.Get (u)));
   }

  serverApps.Start (Seconds (0.030));
  clientApps.Start (Seconds (0.030));

  double statsStartTime = 0.04; // need to allow for RRC connection establishment + SRS
  double statsDuration = 0.5;
  double tolerance = 0.1;
  Simulator::Stop (Seconds (statsStartTime + statsDuration - 0.0001));

  lteHelper->EnableRlcTraces ();
  Ptr<RadioBearerStatsCalculator> rlcStats = lteHelper->GetRlcStats ();
  rlcStats->SetAttribute ("StartTime", TimeValue (Seconds (statsStartTime)));
  rlcStats->SetAttribute ("EpochDuration", TimeValue (Seconds (statsDuration)));


  Simulator::Run ();

  /**
   * Check that the downlink assignation is done in a "token bank fair queue" manner
   */

  NS_LOG_INFO ("DL - Test with " << m_nUser << " user(s)");
  std::vector <uint64_t> dlDataRxed;
  for (int i = 0; i < m_nUser; i++)
    {
      // get the imsi
      uint64_t imsi = ueDevs.Get (i)->GetObject<LteUeNetDevice> ()->GetImsi ();
      // get the lcId
      uint8_t lcId = 4;
      dlDataRxed.push_back (rlcStats->GetDlRxData (imsi, lcId));
      NS_LOG_INFO ("\tUser " << i << " dist " << m_dist.at (i) << " imsi " << imsi << " bytes rxed " << (double)dlDataRxed.at (i) << "  thr " << (double)dlDataRxed.at (i) / statsDuration << " ref " << m_estThrPssDl.at (i));
    }

  for (int i = 0; i < m_nUser; i++)
    {
      NS_TEST_ASSERT_MSG_EQ_TOL ((double)dlDataRxed.at (i) / statsDuration, m_estThrPssDl.at (i), m_estThrPssDl.at (i) * tolerance, " Unfair Throughput!");
    }

  Simulator::Destroy ();

}
int 
main (int argc, char *argv[])
{
  //
  // Users may find it convenient to turn on explicit debugging
  // for selected modules; the below lines suggest how to do this
  //
#if 0 
  LogComponentEnable ("CsmaBridgeOneHopExample", LOG_LEVEL_INFO);
#endif

  //
  // Allow the user to override any of the defaults and the above Bind() at
  // run-time, via command-line arguments
  //
  CommandLine cmd;
  cmd.Parse (argc, argv);

  //
  // Explicitly create the nodes required by the topology (shown above).
  //
  NS_LOG_INFO ("Create nodes.");

  Ptr<Node> n0 = CreateObject<Node> ();
  Ptr<Node> n1 = CreateObject<Node> ();
  Ptr<Node> n2 = CreateObject<Node> ();
  Ptr<Node> n3 = CreateObject<Node> ();
  Ptr<Node> n4 = CreateObject<Node> ();

  Ptr<Node> bridge1 = CreateObject<Node> ();
  Ptr<Node> bridge2 = CreateObject<Node> ();

  NS_LOG_INFO ("Build Topology");
  CsmaHelper csma;
  csma.SetChannelAttribute ("DataRate", DataRateValue (5000000));
  csma.SetChannelAttribute ("Delay", TimeValue (MilliSeconds (2)));

  // Create the csma links, from each terminal to the bridge
  // This will create six network devices; we'll keep track separately
  // of the devices on and off the bridge respectively, for later configuration 
  NetDeviceContainer topLanDevices;
  NetDeviceContainer topBridgeDevices;

  // It is easier to iterate the nodes in C++ if we put them into a container
  NodeContainer topLan (n2, n0, n1);

  for (int i = 0; i < 3; i++)
    {
      // install a csma channel between the ith toplan node and the bridge node
      NetDeviceContainer link = csma.Install (NodeContainer (topLan.Get (i), bridge1));
      topLanDevices.Add (link.Get (0));
      topBridgeDevices.Add (link.Get (1));
    }

  //
  // Now, Create the bridge netdevice, which will do the packet switching.  The
  // bridge lives on the node bridge1 and bridges together the topBridgeDevices
  // which are the three CSMA net devices on the node in the diagram above.
  //
  BridgeHelper bridge;
  bridge.Install (bridge1, topBridgeDevices);

  // Add internet stack to the router nodes
  NodeContainer routerNodes (n0, n1, n2, n3, n4);
  InternetStackHelper internet;
  internet.Install (routerNodes);

  // Repeat for bottom bridged LAN
  NetDeviceContainer bottomLanDevices;
  NetDeviceContainer bottomBridgeDevices;
  NodeContainer bottomLan (n2, n3, n4);
  for (int i = 0; i < 3; i++)
    {
      NetDeviceContainer link = csma.Install (NodeContainer (bottomLan.Get (i), bridge2));
      bottomLanDevices.Add (link.Get (0));
      bottomBridgeDevices.Add (link.Get (1));
    }
  bridge.Install (bridge2, bottomBridgeDevices);

  // We've got the "hardware" in place.  Now we need to add IP addresses.
  NS_LOG_INFO ("Assign IP Addresses.");
  Ipv4AddressHelper ipv4;
  ipv4.SetBase ("10.1.1.0", "255.255.255.0");
  ipv4.Assign (topLanDevices);
  ipv4.SetBase ("10.1.2.0", "255.255.255.0");
  ipv4.Assign (bottomLanDevices);

  // 
  // Create router nodes, initialize routing database and set up the routing
  // tables in the nodes.  We excuse the bridge nodes from having to serve as
  // routers, since they don't even have internet stacks on them.
  //
  Ipv4GlobalRoutingHelper::PopulateRoutingTables ();

  //
  // Create an OnOff application to send UDP datagrams from node zero to node 1.
  //
  NS_LOG_INFO ("Create Applications.");
  uint16_t port = 9;   // Discard port (RFC 863)

  OnOffHelper onoff ("ns3::UdpSocketFactory", 
                     Address (InetSocketAddress (Ipv4Address ("10.1.1.3"), port)));
  onoff.SetConstantRate (DataRate ("500kb/s"));

  ApplicationContainer app = onoff.Install (n0);
  // Start the application
  app.Start (Seconds (1.0));
  app.Stop (Seconds (10.0));

  // Create an optional packet sink to receive these packets
  PacketSinkHelper sink ("ns3::UdpSocketFactory",
                         Address (InetSocketAddress (Ipv4Address::GetAny (), port)));
  ApplicationContainer sink1 = sink.Install (n1);
  sink1.Start (Seconds (1.0));
  sink1.Stop (Seconds (10.0));

  // 
  // Create a similar flow from n3 to n0, starting at time 1.1 seconds
  //
  onoff.SetAttribute ("Remote", 
                      AddressValue (InetSocketAddress (Ipv4Address ("10.1.1.2"), port)));
  ApplicationContainer app2 = onoff.Install (n3);
  app2.Start (Seconds (1.1));
  app2.Stop (Seconds (10.0));

  ApplicationContainer sink2 = sink.Install (n0);
  sink2.Start (Seconds (1.1));
  sink2.Stop (Seconds (10.0));

  NS_LOG_INFO ("Configure Tracing.");

  //
  // Configure tracing of all enqueue, dequeue, and NetDevice receive events.
  // Trace output will be sent to the file "csma-bridge-one-hop.tr"
  //
  AsciiTraceHelper ascii;
  csma.EnableAsciiAll (ascii.CreateFileStream ("csma-bridge-one-hop.tr"));

  //
  // Also configure some tcpdump traces; each interface will be traced.
  // The output files will be named:
  //     csma-bridge-one-hop-<nodeId>-<interfaceId>.pcap
  // and can be read by the "tcpdump -r" command (use "-tt" option to
  // display timestamps correctly)
  //
  csma.EnablePcapAll ("csma-bridge-one-hop", false);

  //
  // Now, do the actual simulation.
  //
  NS_LOG_INFO ("Run Simulation.");
  Simulator::Run ();
  Simulator::Destroy ();
  NS_LOG_INFO ("Done.");
}