bool PDFullSpaceSolver::SolveOnce(bool resolve_with_better_quality, bool pretend_singular, const SymMatrix& W, const Matrix& J_c, const Matrix& J_d, const Matrix& Px_L, const Matrix& Px_U, const Matrix& Pd_L, const Matrix& Pd_U, const Vector& z_L, const Vector& z_U, const Vector& v_L, const Vector& v_U, const Vector& slack_x_L, const Vector& slack_x_U, const Vector& slack_s_L, const Vector& slack_s_U, const Vector& sigma_x, const Vector& sigma_s, Number alpha, Number beta, const IteratesVector& rhs, IteratesVector& res) { // TO DO LIST: // // 1. decide for reasonable return codes (e.g. fatal error, too // ill-conditioned...) // 2. Make constants parameters that can be set from the outside // 3. Get Information out of Ipopt structures // 4. add heuristic for structurally singular problems // 5. see if it makes sense to distinguish delta_x and delta_s, // or delta_c and delta_d // 6. increase pivot tolerance if number of get evals so too small DBG_START_METH("PDFullSpaceSolver::SolveOnce",dbg_verbosity); IpData().TimingStats().PDSystemSolverSolveOnce().Start(); // Compute the right hand side for the augmented system formulation SmartPtr<Vector> augRhs_x = rhs.x()->MakeNewCopy(); Px_L.AddMSinvZ(1.0, slack_x_L, *rhs.z_L(), *augRhs_x); Px_U.AddMSinvZ(-1.0, slack_x_U, *rhs.z_U(), *augRhs_x); SmartPtr<Vector> augRhs_s = rhs.s()->MakeNewCopy(); Pd_L.AddMSinvZ(1.0, slack_s_L, *rhs.v_L(), *augRhs_s); Pd_U.AddMSinvZ(-1.0, slack_s_U, *rhs.v_U(), *augRhs_s); // Get space into which we can put the solution of the augmented system SmartPtr<IteratesVector> sol = res.MakeNewIteratesVector(true); // Now check whether any data has changed std::vector<const TaggedObject*> deps(13); deps[0] = &W; deps[1] = &J_c; deps[2] = &J_d; deps[3] = &z_L; deps[4] = &z_U; deps[5] = &v_L; deps[6] = &v_U; deps[7] = &slack_x_L; deps[8] = &slack_x_U; deps[9] = &slack_s_L; deps[10] = &slack_s_U; deps[11] = &sigma_x; deps[12] = &sigma_s; void* dummy; bool uptodate = dummy_cache_.GetCachedResult(dummy, deps); if (!uptodate) { dummy_cache_.AddCachedResult(dummy, deps); augsys_improved_ = false; } // improve_current_solution can only be true, if that system has // been solved before DBG_ASSERT((!resolve_with_better_quality && !pretend_singular) || uptodate); ESymSolverStatus retval; if (uptodate && !pretend_singular) { // Get the perturbation values Number delta_x; Number delta_s; Number delta_c; Number delta_d; perturbHandler_->CurrentPerturbation(delta_x, delta_s, delta_c, delta_d); // No need to go through the pain of finding the appropriate // values for the deltas, because the matrix hasn't changed since // the last call. So, just call the Solve Method // // Note: resolve_with_better_quality is true, then the Solve // method has already asked the augSysSolver to increase the // quality at the end solve, and we are now getting the solution // with that better quality retval = augSysSolver_->Solve(&W, 1.0, &sigma_x, delta_x, &sigma_s, delta_s, &J_c, NULL, delta_c, &J_d, NULL, delta_d, *augRhs_x, *augRhs_s, *rhs.y_c(), *rhs.y_d(), *sol->x_NonConst(), *sol->s_NonConst(), *sol->y_c_NonConst(), *sol->y_d_NonConst(), false, 0); if (retval!=SYMSOLVER_SUCCESS) { IpData().TimingStats().PDSystemSolverSolveOnce().End(); return false; } } else { const Index numberOfEVals=rhs.y_c()->Dim()+rhs.y_d()->Dim(); // counter for the number of trial evaluations // (ToDo is not at the correct place) Index count = 0; // Get the very first perturbation values from the perturbation // Handler Number delta_x; Number delta_s; Number delta_c; Number delta_d; perturbHandler_->ConsiderNewSystem(delta_x, delta_s, delta_c, delta_d); retval = SYMSOLVER_SINGULAR; bool fail = false; while (retval!= SYMSOLVER_SUCCESS && !fail) { if (pretend_singular) { retval = SYMSOLVER_SINGULAR; pretend_singular = false; } else { count++; Jnlst().Printf(J_MOREDETAILED, J_LINEAR_ALGEBRA, "Solving system with delta_x=%e delta_s=%e\n delta_c=%e delta_d=%e\n", delta_x, delta_s, delta_c, delta_d); bool check_inertia = true; if (neg_curv_test_tol_ > 0.) { check_inertia = false; } retval = augSysSolver_->Solve(&W, 1.0, &sigma_x, delta_x, &sigma_s, delta_s, &J_c, NULL, delta_c, &J_d, NULL, delta_d, *augRhs_x, *augRhs_s, *rhs.y_c(), *rhs.y_d(), *sol->x_NonConst(), *sol->s_NonConst(), *sol->y_c_NonConst(), *sol->y_d_NonConst(), check_inertia, numberOfEVals); } if (retval==SYMSOLVER_FATAL_ERROR) return false; if (retval==SYMSOLVER_SINGULAR && (rhs.y_c()->Dim()+rhs.y_d()->Dim() > 0) ) { // Get new perturbation factors from the perturbation // handlers for the singular case bool pert_return = perturbHandler_->PerturbForSingularity(delta_x, delta_s, delta_c, delta_d); if (!pert_return) { Jnlst().Printf(J_DETAILED, J_LINEAR_ALGEBRA, "PerturbForSingularity can't be done\n"); IpData().TimingStats().PDSystemSolverSolveOnce().End(); return false; } } else if (retval==SYMSOLVER_WRONG_INERTIA && augSysSolver_->NumberOfNegEVals() < numberOfEVals) { Jnlst().Printf(J_DETAILED, J_LINEAR_ALGEBRA, "Number of negative eigenvalues too small!\n"); // If the number of negative eigenvalues is too small, then // we first try to remedy this by asking for better quality // solution (e.g. increasing pivot tolerance), and if that // doesn't help, we assume that the system is singular bool assume_singular = true; if (!augsys_improved_) { Jnlst().Printf(J_DETAILED, J_LINEAR_ALGEBRA, "Asking augmented system solver to improve quality of its solutions.\n"); augsys_improved_ = augSysSolver_->IncreaseQuality(); if (augsys_improved_) { IpData().Append_info_string("q"); assume_singular = false; } else { Jnlst().Printf(J_DETAILED, J_LINEAR_ALGEBRA, "Quality could not be improved\n"); } } if (assume_singular) { bool pert_return = perturbHandler_->PerturbForSingularity(delta_x, delta_s, delta_c, delta_d); if (!pert_return) { Jnlst().Printf(J_DETAILED, J_LINEAR_ALGEBRA, "PerturbForSingularity can't be done for assume singular.\n"); IpData().TimingStats().PDSystemSolverSolveOnce().End(); return false; } IpData().Append_info_string("a"); } } else if (retval==SYMSOLVER_WRONG_INERTIA || retval==SYMSOLVER_SINGULAR) { // Get new perturbation factors from the perturbation // handlers for the case of wrong inertia bool pert_return = perturbHandler_->PerturbForWrongInertia(delta_x, delta_s, delta_c, delta_d); if (!pert_return) { Jnlst().Printf(J_DETAILED, J_LINEAR_ALGEBRA, "PerturbForWrongInertia can't be done for wrong interia or singular.\n"); IpData().TimingStats().PDSystemSolverSolveOnce().End(); return false; } } else if (neg_curv_test_tol_ > 0.) { DBG_ASSERT(augSysSolver_->ProvidesInertia()); // we now check if the inertia is possible wrong Index neg_values = augSysSolver_->NumberOfNegEVals(); if (neg_values != numberOfEVals) { // check if we have a direction of sufficient positive curvature SmartPtr<Vector> x_tmp = sol->x()->MakeNew(); W.MultVector(1., *sol->x(), 0., *x_tmp); Number xWx = x_tmp->Dot(*sol->x()); x_tmp->Copy(*sol->x()); x_tmp->ElementWiseMultiply(sigma_x); xWx += x_tmp->Dot(*sol->x()); SmartPtr<Vector> s_tmp = sol->s()->MakeNewCopy(); s_tmp->ElementWiseMultiply(sigma_s); xWx += s_tmp->Dot(*sol->s()); if (neg_curv_test_reg_) { x_tmp->Copy(*sol->x()); x_tmp->Scal(delta_x); xWx += x_tmp->Dot(*sol->x()); s_tmp->Copy(*sol->s()); s_tmp->Scal(delta_s); xWx += s_tmp->Dot(*sol->s()); } Number xs_nrmsq = pow(sol->x()->Nrm2(),2) + pow(sol->s()->Nrm2(),2); Jnlst().Printf(J_DETAILED, J_LINEAR_ALGEBRA, "In inertia heuristic: xWx = %e xx = %e\n", xWx, xs_nrmsq); if (xWx < neg_curv_test_tol_*xs_nrmsq) { Jnlst().Printf(J_DETAILED, J_LINEAR_ALGEBRA, " -> Redo with modified matrix.\n"); bool pert_return = perturbHandler_->PerturbForWrongInertia(delta_x, delta_s, delta_c, delta_d); if (!pert_return) { Jnlst().Printf(J_DETAILED, J_LINEAR_ALGEBRA, "PerturbForWrongInertia can't be done for inertia heuristic.\n"); IpData().TimingStats().PDSystemSolverSolveOnce().End(); return false; } retval = SYMSOLVER_WRONG_INERTIA; } } } } // while (retval!=SYMSOLVER_SUCCESS && !fail) { // Some output Jnlst().Printf(J_DETAILED, J_LINEAR_ALGEBRA, "Number of trial factorizations performed: %d\n", count); Jnlst().Printf(J_DETAILED, J_LINEAR_ALGEBRA, "Perturbation parameters: delta_x=%e delta_s=%e\n delta_c=%e delta_d=%e\n", delta_x, delta_s, delta_c, delta_d); // Set the perturbation values in the Data object IpData().setPDPert(delta_x, delta_s, delta_c, delta_d); } // Compute the remaining sol Vectors Px_L.SinvBlrmZMTdBr(-1., slack_x_L, *rhs.z_L(), z_L, *sol->x(), *sol->z_L_NonConst()); Px_U.SinvBlrmZMTdBr(1., slack_x_U, *rhs.z_U(), z_U, *sol->x(), *sol->z_U_NonConst()); Pd_L.SinvBlrmZMTdBr(-1., slack_s_L, *rhs.v_L(), v_L, *sol->s(), *sol->v_L_NonConst()); Pd_U.SinvBlrmZMTdBr(1., slack_s_U, *rhs.v_U(), v_U, *sol->s(), *sol->v_U_NonConst()); // Finally let's assemble the res result vectors res.AddOneVector(alpha, *sol, beta); IpData().TimingStats().PDSystemSolverSolveOnce().End(); return true; }
void PDFullSpaceSolver::ComputeResiduals( const SymMatrix& W, const Matrix& J_c, const Matrix& J_d, const Matrix& Px_L, const Matrix& Px_U, const Matrix& Pd_L, const Matrix& Pd_U, const Vector& z_L, const Vector& z_U, const Vector& v_L, const Vector& v_U, const Vector& slack_x_L, const Vector& slack_x_U, const Vector& slack_s_L, const Vector& slack_s_U, const Vector& sigma_x, const Vector& sigma_s, Number alpha, Number beta, const IteratesVector& rhs, const IteratesVector& res, IteratesVector& resid) { DBG_START_METH("PDFullSpaceSolver::ComputeResiduals", dbg_verbosity); DBG_PRINT_VECTOR(2, "res", res); IpData().TimingStats().ComputeResiduals().Start(); // Get the current sizes of the perturbation factors Number delta_x; Number delta_s; Number delta_c; Number delta_d; perturbHandler_->CurrentPerturbation(delta_x, delta_s, delta_c, delta_d); SmartPtr<Vector> tmp; // x W.MultVector(1., *res.x(), 0., *resid.x_NonConst()); J_c.TransMultVector(1., *res.y_c(), 1., *resid.x_NonConst()); J_d.TransMultVector(1., *res.y_d(), 1., *resid.x_NonConst()); Px_L.MultVector(-1., *res.z_L(), 1., *resid.x_NonConst()); Px_U.MultVector(1., *res.z_U(), 1., *resid.x_NonConst()); resid.x_NonConst()->AddTwoVectors(delta_x, *res.x(), -1., *rhs.x(), 1.); // s Pd_U.MultVector(1., *res.v_U(), 0., *resid.s_NonConst()); Pd_L.MultVector(-1., *res.v_L(), 1., *resid.s_NonConst()); resid.s_NonConst()->AddTwoVectors(-1., *res.y_d(), -1., *rhs.s(), 1.); if (delta_s!=0.) { resid.s_NonConst()->Axpy(delta_s, *res.s()); } // c J_c.MultVector(1., *res.x(), 0., *resid.y_c_NonConst()); resid.y_c_NonConst()->AddTwoVectors(-delta_c, *res.y_c(), -1., *rhs.y_c(), 1.); // d J_d.MultVector(1., *res.x(), 0., *resid.y_d_NonConst()); resid.y_d_NonConst()->AddTwoVectors(-1., *res.s(), -1., *rhs.y_d(), 1.); if (delta_d!=0.) { resid.y_d_NonConst()->Axpy(-delta_d, *res.y_d()); } // zL resid.z_L_NonConst()->Copy(*res.z_L()); resid.z_L_NonConst()->ElementWiseMultiply(slack_x_L); tmp = z_L.MakeNew(); Px_L.TransMultVector(1., *res.x(), 0., *tmp); tmp->ElementWiseMultiply(z_L); resid.z_L_NonConst()->AddTwoVectors(1., *tmp, -1., *rhs.z_L(), 1.); // zU resid.z_U_NonConst()->Copy(*res.z_U()); resid.z_U_NonConst()->ElementWiseMultiply(slack_x_U); tmp = z_U.MakeNew(); Px_U.TransMultVector(1., *res.x(), 0., *tmp); tmp->ElementWiseMultiply(z_U); resid.z_U_NonConst()->AddTwoVectors(-1., *tmp, -1., *rhs.z_U(), 1.); // vL resid.v_L_NonConst()->Copy(*res.v_L()); resid.v_L_NonConst()->ElementWiseMultiply(slack_s_L); tmp = v_L.MakeNew(); Pd_L.TransMultVector(1., *res.s(), 0., *tmp); tmp->ElementWiseMultiply(v_L); resid.v_L_NonConst()->AddTwoVectors(1., *tmp, -1., *rhs.v_L(), 1.); // vU resid.v_U_NonConst()->Copy(*res.v_U()); resid.v_U_NonConst()->ElementWiseMultiply(slack_s_U); tmp = v_U.MakeNew(); Pd_U.TransMultVector(1., *res.s(), 0., *tmp); tmp->ElementWiseMultiply(v_U); resid.v_U_NonConst()->AddTwoVectors(-1., *tmp, -1., *rhs.v_U(), 1.); DBG_PRINT_VECTOR(2, "resid", resid); if (Jnlst().ProduceOutput(J_MOREVECTOR, J_LINEAR_ALGEBRA)) { resid.Print(Jnlst(), J_MOREVECTOR, J_LINEAR_ALGEBRA, "resid"); } if (Jnlst().ProduceOutput(J_MOREDETAILED, J_LINEAR_ALGEBRA)) { Jnlst().Printf(J_MOREDETAILED, J_LINEAR_ALGEBRA, "max-norm resid_x %e\n", resid.x()->Amax()); Jnlst().Printf(J_MOREDETAILED, J_LINEAR_ALGEBRA, "max-norm resid_s %e\n", resid.s()->Amax()); Jnlst().Printf(J_MOREDETAILED, J_LINEAR_ALGEBRA, "max-norm resid_c %e\n", resid.y_c()->Amax()); Jnlst().Printf(J_MOREDETAILED, J_LINEAR_ALGEBRA, "max-norm resid_d %e\n", resid.y_d()->Amax()); Jnlst().Printf(J_MOREDETAILED, J_LINEAR_ALGEBRA, "max-norm resid_zL %e\n", resid.z_L()->Amax()); Jnlst().Printf(J_MOREDETAILED, J_LINEAR_ALGEBRA, "max-norm resid_zU %e\n", resid.z_U()->Amax()); Jnlst().Printf(J_MOREDETAILED, J_LINEAR_ALGEBRA, "max-norm resid_vL %e\n", resid.v_L()->Amax()); Jnlst().Printf(J_MOREDETAILED, J_LINEAR_ALGEBRA, "max-norm resid_vU %e\n", resid.v_U()->Amax()); } IpData().TimingStats().ComputeResiduals().End(); }
bool PDFullSpaceSolver::Solve(Number alpha, Number beta, const IteratesVector& rhs, IteratesVector& res, bool allow_inexact, bool improve_solution /* = false */) { DBG_START_METH("PDFullSpaceSolver::Solve",dbg_verbosity); DBG_ASSERT(!allow_inexact || !improve_solution); DBG_ASSERT(!improve_solution || beta==0.); // Timing of PDSystem solver starts here IpData().TimingStats().PDSystemSolverTotal().Start(); DBG_PRINT_VECTOR(2, "rhs_x", *rhs.x()); DBG_PRINT_VECTOR(2, "rhs_s", *rhs.s()); DBG_PRINT_VECTOR(2, "rhs_c", *rhs.y_c()); DBG_PRINT_VECTOR(2, "rhs_d", *rhs.y_d()); DBG_PRINT_VECTOR(2, "rhs_zL", *rhs.z_L()); DBG_PRINT_VECTOR(2, "rhs_zU", *rhs.z_U()); DBG_PRINT_VECTOR(2, "rhs_vL", *rhs.v_L()); DBG_PRINT_VECTOR(2, "rhs_vU", *rhs.v_U()); DBG_PRINT_VECTOR(2, "res_x in", *res.x()); DBG_PRINT_VECTOR(2, "res_s in", *res.s()); DBG_PRINT_VECTOR(2, "res_c in", *res.y_c()); DBG_PRINT_VECTOR(2, "res_d in", *res.y_d()); DBG_PRINT_VECTOR(2, "res_zL in", *res.z_L()); DBG_PRINT_VECTOR(2, "res_zU in", *res.z_U()); DBG_PRINT_VECTOR(2, "res_vL in", *res.v_L()); DBG_PRINT_VECTOR(2, "res_vU in", *res.v_U()); // if beta is nonzero, keep a copy of the incoming values in res_ */ SmartPtr<IteratesVector> copy_res; if (beta != 0.) { copy_res = res.MakeNewIteratesVectorCopy(); } // Receive data about matrix SmartPtr<const Vector> x = IpData().curr()->x(); SmartPtr<const Vector> s = IpData().curr()->s(); SmartPtr<const SymMatrix> W = IpData().W(); SmartPtr<const Matrix> J_c = IpCq().curr_jac_c(); SmartPtr<const Matrix> J_d = IpCq().curr_jac_d(); SmartPtr<const Matrix> Px_L = IpNLP().Px_L(); SmartPtr<const Matrix> Px_U = IpNLP().Px_U(); SmartPtr<const Matrix> Pd_L = IpNLP().Pd_L(); SmartPtr<const Matrix> Pd_U = IpNLP().Pd_U(); SmartPtr<const Vector> z_L = IpData().curr()->z_L(); SmartPtr<const Vector> z_U = IpData().curr()->z_U(); SmartPtr<const Vector> v_L = IpData().curr()->v_L(); SmartPtr<const Vector> v_U = IpData().curr()->v_U(); SmartPtr<const Vector> slack_x_L = IpCq().curr_slack_x_L(); SmartPtr<const Vector> slack_x_U = IpCq().curr_slack_x_U(); SmartPtr<const Vector> slack_s_L = IpCq().curr_slack_s_L(); SmartPtr<const Vector> slack_s_U = IpCq().curr_slack_s_U(); SmartPtr<const Vector> sigma_x = IpCq().curr_sigma_x(); SmartPtr<const Vector> sigma_s = IpCq().curr_sigma_s(); DBG_PRINT_VECTOR(2, "Sigma_x", *sigma_x); DBG_PRINT_VECTOR(2, "Sigma_s", *sigma_s); bool done = false; // The following flag is set to true, if we asked the linear // solver to improve the quality of the solution in // the next solve bool resolve_with_better_quality = false; // the following flag is set to true, if iterative refinement // failed and we want to try if a modified system is able to // remedy that problem by pretending the matrix is singular bool pretend_singular = false; bool pretend_singular_last_time = false; // Beginning of loop for solving the system (including all // modifications for the linear system to ensure good solution // quality) while (!done) { // if improve_solution is true, we are given already a solution // from the calling function, so we can skip the first solve bool solve_retval = true; if (!improve_solution) { solve_retval = SolveOnce(resolve_with_better_quality, pretend_singular, *W, *J_c, *J_d, *Px_L, *Px_U, *Pd_L, *Pd_U, *z_L, *z_U, *v_L, *v_U, *slack_x_L, *slack_x_U, *slack_s_L, *slack_s_U, *sigma_x, *sigma_s, 1., 0., rhs, res); resolve_with_better_quality = false; pretend_singular = false; } improve_solution = false; if (!solve_retval) { // If system seems not to be solvable, we return with false // and let the calling routine deal with it. IpData().TimingStats().PDSystemSolverTotal().End(); return false; } if (allow_inexact) { // no safety checks required if (Jnlst().ProduceOutput(J_MOREDETAILED, J_LINEAR_ALGEBRA)) { SmartPtr<IteratesVector> resid = res.MakeNewIteratesVector(true); ComputeResiduals(*W, *J_c, *J_d, *Px_L, *Px_U, *Pd_L, *Pd_U, *z_L, *z_U, *v_L, *v_U, *slack_x_L, *slack_x_U, *slack_s_L, *slack_s_U, *sigma_x, *sigma_s, alpha, beta, rhs, res, *resid); } break; } // Get space for the residual SmartPtr<IteratesVector> resid = res.MakeNewIteratesVector(true); // ToDo don't to that after max refinement? ComputeResiduals(*W, *J_c, *J_d, *Px_L, *Px_U, *Pd_L, *Pd_U, *z_L, *z_U, *v_L, *v_U, *slack_x_L, *slack_x_U, *slack_s_L, *slack_s_U, *sigma_x, *sigma_s, alpha, beta, rhs, res, *resid); Number residual_ratio = ComputeResidualRatio(rhs, res, *resid); Jnlst().Printf(J_DETAILED, J_LINEAR_ALGEBRA, "residual_ratio = %e\n", residual_ratio); Number residual_ratio_old = residual_ratio; // Beginning of loop for iterative refinement Index num_iter_ref = 0; bool quit_refinement = false; while (!allow_inexact && !quit_refinement && (num_iter_ref < min_refinement_steps_ || residual_ratio > residual_ratio_max_) ) { // To the next back solve solve_retval = SolveOnce(resolve_with_better_quality, false, *W, *J_c, *J_d, *Px_L, *Px_U, *Pd_L, *Pd_U, *z_L, *z_U, *v_L, *v_U, *slack_x_L, *slack_x_U, *slack_s_L, *slack_s_U, *sigma_x, *sigma_s, -1., 1., *resid, res); ASSERT_EXCEPTION(solve_retval, INTERNAL_ABORT, "SolveOnce returns false during iterative refinement."); ComputeResiduals(*W, *J_c, *J_d, *Px_L, *Px_U, *Pd_L, *Pd_U, *z_L, *z_U, *v_L, *v_U, *slack_x_L, *slack_x_U, *slack_s_L, *slack_s_U, *sigma_x, *sigma_s, alpha, beta, rhs, res, *resid); residual_ratio = ComputeResidualRatio(rhs, res, *resid); Jnlst().Printf(J_DETAILED, J_LINEAR_ALGEBRA, "residual_ratio = %e\n", residual_ratio); num_iter_ref++; // Check if we have to give up on iterative refinement if (residual_ratio > residual_ratio_max_ && num_iter_ref>min_refinement_steps_ && (num_iter_ref>max_refinement_steps_ || residual_ratio>residual_improvement_factor_*residual_ratio_old)) { Jnlst().Printf(J_DETAILED, J_LINEAR_ALGEBRA, "Iterative refinement failed with residual_ratio = %e\n", residual_ratio); quit_refinement = true; // Pretend singularity only once - if it didn't help, we // have to live with what we got so far resolve_with_better_quality = false; DBG_PRINT((1, "pretend_singular = %d\n", pretend_singular)); if (!pretend_singular_last_time) { // First try if we can ask the augmented system solver to // improve the quality of the solution (only if that hasn't // been done before for this linear system) if (!augsys_improved_) { Jnlst().Printf(J_DETAILED, J_LINEAR_ALGEBRA, "Asking augmented system solver to improve quality of its solutions.\n"); augsys_improved_ = augSysSolver_->IncreaseQuality(); if (augsys_improved_) { IpData().Append_info_string("q"); resolve_with_better_quality = true; } else { // solver said it cannot improve quality, so let // possibly conclude that the current modification is // singular pretend_singular = true; } } else { // we had already asked the solver before to improve the // quality of the solution, so let's now pretend that the // modification is possibly singular pretend_singular = true; } pretend_singular_last_time = pretend_singular; if (pretend_singular) { // let's only conclude that the current linear system // including modifications is singular, if the residual is // quite bad if (residual_ratio < residual_ratio_singular_) { pretend_singular = false; IpData().Append_info_string("S"); Jnlst().Printf(J_DETAILED, J_LINEAR_ALGEBRA, "Just accept current solution.\n"); } else { IpData().Append_info_string("s"); Jnlst().Printf(J_DETAILED, J_LINEAR_ALGEBRA, "Pretend that the current system (including modifications) is singular.\n"); } } } else { pretend_singular = false; DBG_PRINT((1,"Resetting pretend_singular to false.\n")); } } residual_ratio_old = residual_ratio; } // End of loop for iterative refinement done = !(resolve_with_better_quality) && !(pretend_singular); } // End of loop for solving the linear system (incl. modifications) // Finally let's assemble the res result vectors if (alpha != 0.) { res.Scal(alpha); } if (beta != 0.) { res.Axpy(beta, *copy_res); } DBG_PRINT_VECTOR(2, "res_x", *res.x()); DBG_PRINT_VECTOR(2, "res_s", *res.s()); DBG_PRINT_VECTOR(2, "res_c", *res.y_c()); DBG_PRINT_VECTOR(2, "res_d", *res.y_d()); DBG_PRINT_VECTOR(2, "res_zL", *res.z_L()); DBG_PRINT_VECTOR(2, "res_zU", *res.z_U()); DBG_PRINT_VECTOR(2, "res_vL", *res.v_L()); DBG_PRINT_VECTOR(2, "res_vU", *res.v_U()); IpData().TimingStats().PDSystemSolverTotal().End(); return true; }