static void StaticallyLink(CodeSegment& cs, const LinkData& linkData, ExclusiveContext* cx) { for (LinkData::InternalLink link : linkData.internalLinks) { uint8_t* patchAt = cs.base() + link.patchAtOffset; void* target = cs.base() + link.targetOffset; if (link.isRawPointerPatch()) *(void**)(patchAt) = target; else Assembler::PatchInstructionImmediate(patchAt, PatchedImmPtr(target)); } for (auto imm : MakeEnumeratedRange(SymbolicAddress::Limit)) { const Uint32Vector& offsets = linkData.symbolicLinks[imm]; for (size_t i = 0; i < offsets.length(); i++) { uint8_t* patchAt = cs.base() + offsets[i]; void* target = AddressOf(imm, cx); Assembler::PatchDataWithValueCheck(CodeLocationLabel(patchAt), PatchedImmPtr(target), PatchedImmPtr((void*)-1)); } } // These constants are logically part of the code: *(double*)(cs.globalData() + NaN64GlobalDataOffset) = GenericNaN(); *(float*)(cs.globalData() + NaN32GlobalDataOffset) = GenericNaN(); }
Module::Module(UniqueModuleData module) : module_(Move(module)), staticallyLinked_(false), interrupt_(nullptr), outOfBounds_(nullptr), dynamicallyLinked_(false), profilingEnabled_(false) { *(double*)(globalData() + NaN64GlobalDataOffset) = GenericNaN(); *(float*)(globalData() + NaN32GlobalDataOffset) = GenericNaN(); }
double js::ecmaPow(double x, double y) { /* * Use powi if the exponent is an integer-valued double. We don't have to * check for NaN since a comparison with NaN is always false. */ int32_t yi; if (NumberEqualsInt32(y, &yi)) return powi(x, yi); /* * Because C99 and ECMA specify different behavior for pow(), * we need to wrap the libm call to make it ECMA compliant. */ if (!IsFinite(y) && (x == 1.0 || x == -1.0)) return GenericNaN(); /* pow(x, +-0) is always 1, even for x = NaN (MSVC gets this wrong). */ if (y == 0) return 1; /* * Special case for square roots. Note that pow(x, 0.5) != sqrt(x) * when x = -0.0, so we have to guard for this. */ if (IsFinite(x) && x != 0.0) { if (y == 0.5) return sqrt(x); if (y == -0.5) return 1.0 / sqrt(x); } return pow(x, y); }
static double sign(double x) { if (mozilla::IsNaN(x)) return GenericNaN(); return x == 0 ? x : x < 0 ? -1 : 1; }
bool js::math_hypot(JSContext *cx, unsigned argc, Value *vp) { CallArgs args = CallArgsFromVp(argc, vp); bool isInfinite = false; bool isNaN = false; double scale = 0; double sumsq = 1; for (unsigned i = 0; i < args.length(); i++) { double x; if (!ToNumber(cx, args[i], &x)) return false; isInfinite |= mozilla::IsInfinite(x); isNaN |= mozilla::IsNaN(x); double xabs = mozilla::Abs(x); if (scale < xabs) { sumsq = 1 + sumsq * (scale / xabs) * (scale / xabs); scale = xabs; } else if (scale != 0) { sumsq += (xabs / scale) * (xabs / scale); } } double result = isInfinite ? PositiveInfinity() : isNaN ? GenericNaN() : scale * sqrt(sumsq); args.rval().setNumber(result); return true; }
static void SetXMMRegToNaN(bool isFloat32, T *xmm_reg) { if (isFloat32) { JS_STATIC_ASSERT(sizeof(T) == 4 * sizeof(float)); float *floats = reinterpret_cast<float*>(xmm_reg); floats[0] = GenericNaN(); floats[1] = 0; floats[2] = 0; floats[3] = 0; } else { JS_STATIC_ASSERT(sizeof(T) == 2 * sizeof(double)); double *dbls = reinterpret_cast<double*>(xmm_reg); dbls[0] = GenericNaN(); dbls[1] = 0; } }
bool TypedElementsHeader<T>::setElement(JSContext *cx, Handle<ObjectImpl*> obj, Handle<ObjectImpl*> receiver, uint32_t index, const Value &v, unsigned resolveFlags, bool *succeeded) { MOZ_ASSERT(this == &obj->elementsHeader()); uint32_t len = length(); if (index >= len) { /* * Silent ignore is better than an exception here, because at some * point we may want to support other properties on these objects. */ *succeeded = true; return true; } /* Convert the value being set to the element type. */ double d; if (v.isNumber()) { d = v.toNumber(); } else if (v.isNull()) { d = 0.0; } else if (v.isPrimitive()) { if (v.isString()) { if (!StringToNumber(cx, v.toString(), &d)) return false; } else if (v.isUndefined()) { d = GenericNaN(); } else { d = double(v.toBoolean()); } } else { // non-primitive assignments become NaN or 0 (for float/int arrays) d = GenericNaN(); } assign(index, d); *succeeded = true; return true; }
bool js::math_hypot(JSContext *cx, unsigned argc, Value *vp) { CallArgs args = CallArgsFromVp(argc, vp); // IonMonkey calls the system hypot function directly if two arguments are // given. Do that here as well to get the same results. if (args.length() == 2) { double x, y; if (!ToNumber(cx, args[0], &x)) return false; if (!ToNumber(cx, args[1], &y)) return false; double result = ecmaHypot(x, y); args.rval().setNumber(result); return true; } bool isInfinite = false; bool isNaN = false; double scale = 0; double sumsq = 1; for (unsigned i = 0; i < args.length(); i++) { double x; if (!ToNumber(cx, args[i], &x)) return false; isInfinite |= mozilla::IsInfinite(x); isNaN |= mozilla::IsNaN(x); double xabs = mozilla::Abs(x); if (scale < xabs) { sumsq = 1 + sumsq * (scale / xabs) * (scale / xabs); scale = xabs; } else if (scale != 0) { sumsq += (xabs / scale) * (xabs / scale); } } double result = isInfinite ? PositiveInfinity<double>() : isNaN ? GenericNaN() : scale * sqrt(sumsq); args.rval().setNumber(result); return true; }
bool js::math_hypot_handle(JSContext* cx, HandleValueArray args, MutableHandleValue res) { // IonMonkey calls the system hypot function directly if two arguments are // given. Do that here as well to get the same results. if (args.length() == 2) { double x, y; if (!ToNumber(cx, args[0], &x)) return false; if (!ToNumber(cx, args[1], &y)) return false; double result = ecmaHypot(x, y); res.setNumber(result); return true; } bool isInfinite = false; bool isNaN = false; double scale = 0; double sumsq = 1; for (unsigned i = 0; i < args.length(); i++) { double x; if (!ToNumber(cx, args[i], &x)) return false; isInfinite |= mozilla::IsInfinite(x); isNaN |= mozilla::IsNaN(x); if (isInfinite || isNaN) continue; hypot_step(scale, sumsq, x); } double result = isInfinite ? PositiveInfinity<double>() : isNaN ? GenericNaN() : scale * sqrt(sumsq); res.setNumber(result); return true; }
static bool math_function(JSContext *cx, unsigned argc, Value *vp) { CallArgs args = CallArgsFromVp(argc, vp); if (args.length() == 0) { args.rval().setNumber(GenericNaN()); return true; } double x; if (!ToNumber(cx, args[0], &x)) return false; MathCache *mathCache = cx->runtime()->getMathCache(cx); if (!mathCache) return false; double z = F(mathCache, x); args.rval().setNumber(z); return true; }
double js::ecmaPow(double x, double y) { /* * Use powi if the exponent is an integer-valued double. We don't have to * check for NaN since a comparison with NaN is always false. */ int32_t yi; if (DoubleEqualsInt32(y, &yi)) return powi(x, yi); /* * Because C99 and ECMA specify different behavior for pow(), * we need to wrap the libm call to make it ECMA compliant. */ if (!IsFinite(y) && (x == 1.0 || x == -1.0)) return GenericNaN(); /* pow(x, +-0) is always 1, even for x = NaN (MSVC gets this wrong). */ if (y == 0) return 1; return pow(x, y); }
double js::hypot4(double x, double y, double z, double w) { /* Check for infinity or NaNs so that we can return immediatelly. * Does not need to be WIN_XP specific as ecmaHypot */ if (mozilla::IsInfinite(x) || mozilla::IsInfinite(y) || mozilla::IsInfinite(z) || mozilla::IsInfinite(w)) return mozilla::PositiveInfinity<double>(); if (mozilla::IsNaN(x) || mozilla::IsNaN(y) || mozilla::IsNaN(z) || mozilla::IsNaN(w)) return GenericNaN(); double scale = 0; double sumsq = 1; hypot_step(scale, sumsq, x); hypot_step(scale, sumsq, y); hypot_step(scale, sumsq, z); hypot_step(scale, sumsq, w); return scale * sqrt(sumsq); }