void KisPaintDeviceTest::testCreation() { const KoColorSpace * cs = KoColorSpaceRegistry::instance()->rgb8(); KisPaintDeviceSP dev = new KisPaintDevice(cs); QVERIFY(dev->objectName().isEmpty()); dev = new KisPaintDevice(cs); QVERIFY(*dev->colorSpace() == *cs); QVERIFY(dev->x() == 0); QVERIFY(dev->y() == 0); QVERIFY(dev->pixelSize() == cs->pixelSize()); QVERIFY(dev->channelCount() == cs->channelCount()); QVERIFY(dev->dataManager() != 0); KisImageSP image = new KisImage(0, 1000, 1000, cs, "merge test"); KisPaintLayerSP layer = new KisPaintLayer(image, "bla", 125); dev = new KisPaintDevice(layer.data(), cs); QVERIFY(*dev->colorSpace() == *cs); QVERIFY(dev->x() == 0); QVERIFY(dev->y() == 0); QVERIFY(dev->pixelSize() == cs->pixelSize()); QVERIFY(dev->channelCount() == cs->channelCount()); QVERIFY(dev->dataManager() != 0); // Let the layer go out of scope and see what happens { KisPaintLayerSP l2 = new KisPaintLayer(image, "blabla", 250); dev = new KisPaintDevice(l2.data(), cs); } }
void KisPaintDeviceTest::testPlanarReadWrite() { const KoColorSpace * cs = KoColorSpaceRegistry::instance()->rgb8(); KisPaintDeviceSP dev = new KisPaintDevice(cs); quint8* pixel = new quint8[cs->pixelSize()]; cs->fromQColor(QColor(255, 200, 155, 100), pixel); dev->fill(0, 0, 5000, 5000, pixel); delete[] pixel; QColor c1; dev->pixel(5, 5, &c1); QVector<quint8*> planes = dev->readPlanarBytes(500, 500, 100, 100); QVector<quint8*> swappedPlanes; QCOMPARE((int)planes.size(), (int)dev->channelCount()); for (int i = 0; i < 100*100; i++) { // BGRA encoded QVERIFY(planes.at(2)[i] == 255); QVERIFY(planes.at(1)[i] == 200); QVERIFY(planes.at(0)[i] == 155); QVERIFY(planes.at(3)[i] == 100); } for (uint i = 1; i < dev->channelCount() + 1; ++i) { swappedPlanes.append(planes[dev->channelCount() - i]); } dev->writePlanarBytes(swappedPlanes, 0, 0, 100, 100); dev->convertToQImage(0, 0, 0, 1000, 1000).save("planar.png"); dev->pixel(5, 5, &c1); QVERIFY(c1.red() == 200); QVERIFY(c1.green() == 255); QVERIFY(c1.blue() == 100); QVERIFY(c1.alpha() == 155); dev->pixel(75, 50, &c1); QVERIFY(c1.red() == 200); QVERIFY(c1.green() == 255); QVERIFY(c1.blue() == 100); QVERIFY(c1.alpha() == 155); // check if one of the planes is Null. Q_ASSERT(planes.size() == 4); delete planes[2]; planes[2] = 0; dev->writePlanarBytes(planes, 0, 0, 100, 100); dev->convertToQImage(0, 0, 0, 1000, 1000).save("planar_noR.png"); dev->pixel(75, 50, &c1); QCOMPARE(c1.red(), 200); QCOMPARE(c1.green(), 200); QCOMPARE(c1.blue(), 155); QCOMPARE(c1.alpha(), 100); qDeleteAll(planes); swappedPlanes.clear(); }
bool KisTIFFWriterVisitor::saveLayerProjection(KisLayer *layer) { dbgFile << "visiting on layer" << layer->name() << ""; KisPaintDeviceSP pd = layer->projection(); // Save depth int depth = 8 * pd->pixelSize() / pd->channelCount(); TIFFSetField(image(), TIFFTAG_BITSPERSAMPLE, depth); // Save number of samples if (m_options->alpha) { TIFFSetField(image(), TIFFTAG_SAMPLESPERPIXEL, pd->channelCount()); uint16 sampleinfo[1] = { EXTRASAMPLE_UNASSALPHA }; TIFFSetField(image(), TIFFTAG_EXTRASAMPLES, 1, sampleinfo); } else { TIFFSetField(image(), TIFFTAG_SAMPLESPERPIXEL, pd->channelCount() - 1); TIFFSetField(image(), TIFFTAG_EXTRASAMPLES, 0); } // Save colorspace information uint16 color_type; uint16 sample_format = SAMPLEFORMAT_UINT; if (!writeColorSpaceInformation(image(), pd->colorSpace(), color_type, sample_format)) { // unsupported colorspace return false; } TIFFSetField(image(), TIFFTAG_PHOTOMETRIC, color_type); TIFFSetField(image(), TIFFTAG_SAMPLEFORMAT, sample_format); TIFFSetField(image(), TIFFTAG_IMAGEWIDTH, layer->image()->width()); TIFFSetField(image(), TIFFTAG_IMAGELENGTH, layer->image()->height()); // Set the compression options TIFFSetField(image(), TIFFTAG_COMPRESSION, m_options->compressionType); TIFFSetField(image(), TIFFTAG_FAXMODE, m_options->faxMode); TIFFSetField(image(), TIFFTAG_JPEGQUALITY, m_options->jpegQuality); TIFFSetField(image(), TIFFTAG_ZIPQUALITY, m_options->deflateCompress); TIFFSetField(image(), TIFFTAG_PIXARLOGQUALITY, m_options->pixarLogCompress); // Set the predictor TIFFSetField(image(), TIFFTAG_PREDICTOR, m_options->predictor); // Use contiguous configuration TIFFSetField(image(), TIFFTAG_PLANARCONFIG, PLANARCONFIG_CONTIG); // Use 8 rows per strip TIFFSetField(image(), TIFFTAG_ROWSPERSTRIP, 8); // Save profile if (m_options->saveProfile) { const KoColorProfile* profile = pd->colorSpace()->profile(); if (profile && profile->type() == "icc" && !profile->rawData().isEmpty()) { QByteArray ba = profile->rawData(); TIFFSetField(image(), TIFFTAG_ICCPROFILE, ba.size(), ba.constData()); } } tsize_t stripsize = TIFFStripSize(image()); tdata_t buff = _TIFFmalloc(stripsize); qint32 height = layer->image()->height(); qint32 width = layer->image()->width(); bool r = true; for (int y = 0; y < height; y++) { KisHLineConstIteratorSP it = pd->createHLineConstIteratorNG(0, y, width); switch (color_type) { case PHOTOMETRIC_MINISBLACK: { quint8 poses[] = { 0, 1 }; r = copyDataToStrips(it, buff, depth, sample_format, 1, poses); } break; case PHOTOMETRIC_RGB: { quint8 poses[4]; if (sample_format == SAMPLEFORMAT_IEEEFP) { poses[2] = 2; poses[1] = 1; poses[0] = 0; poses[3] = 3; } else { poses[0] = 2; poses[1] = 1; poses[2] = 0; poses[3] = 3; } r = copyDataToStrips(it, buff, depth, sample_format, 3, poses); } break; case PHOTOMETRIC_SEPARATED: { quint8 poses[] = { 0, 1, 2, 3, 4 }; r = copyDataToStrips(it, buff, depth, sample_format, 4, poses); } break; case PHOTOMETRIC_ICCLAB: { quint8 poses[] = { 0, 1, 2, 3 }; r = copyDataToStrips(it, buff, depth, sample_format, 3, poses); } break; return false; } if (!r) return false; TIFFWriteScanline(image(), buff, y, (tsample_t) - 1); } _TIFFfree(buff); TIFFWriteDirectory(image()); return true; }