int main (int nNumberofArgs,char *argv[]) { //Test for correct input arguments if (nNumberofArgs!=7) { cout << "FATAL ERROR: wrong number of inputs. The program needs the path (with trailing slash), the filename prefix, window radius, "; cout << "basin order, a switch to use or exclude floodplains and a switch to write rasters if desired." << endl; exit(EXIT_SUCCESS); } //load input arguments string path = argv[1]; string filename = argv[2]; float window_radius = atof(argv[3]); //6 int BasinOrder = atoi(argv[4]); //2 int FloodplainSwitch = atoi(argv[5]); int WriteRasters = atoi(argv[6]); //0 (do not write rasters) or 1 (write rasters) //set boundary conditions vector<string> BoundaryConditions(4, "No Flux"); //load dem LSDRaster DEM((path+filename+"_dem"), "flt"); //Fill float MinSlope = 0.0001; LSDRaster FilledDEM = DEM.fill(MinSlope); //surface fitting vector<int> raster_selection; raster_selection.push_back(0); raster_selection.push_back(1); //slope raster_selection.push_back(1); //aspect raster_selection.push_back(1); //curvature raster_selection.push_back(1); //plan curvature raster_selection.push_back(0); raster_selection.push_back(0); raster_selection.push_back(0); vector<LSDRaster> Surfaces = FilledDEM.calculate_polyfit_surface_metrics(window_radius, raster_selection); LSDRaster slope = Surfaces[1]; LSDRaster aspect = Surfaces[2]; cout << "\nGetting drainage network and basins\n" << endl; // get a flow info object LSDFlowInfo FlowInfo(BoundaryConditions,FilledDEM); //get stream net from channel heads vector<int> sources = FlowInfo.Ingest_Channel_Heads((path+filename+"_dem_CH"), "flt"); //swap to csv? LSDJunctionNetwork ChanNetwork(sources, FlowInfo); LSDIndexRaster StreamNetwork = ChanNetwork.StreamOrderArray_to_LSDIndexRaster(); //load floodplain and merge with the channel network if required, otherwise the //floodplain mask will only contain the channel data LSDIndexRaster ChannelAndFloodplain; if (FloodplainSwitch == 1){ LSDIndexRaster Floodplains((path+filename+"_FloodPlain"), "flt"); ChannelAndFloodplain = StreamNetwork.MergeChannelWithFloodplain(Floodplains); } else{ ChannelAndFloodplain = StreamNetwork; } //Extract basins based on input stream order vector< int > basin_junctions = ChanNetwork.ExtractBasinJunctionOrder(BasinOrder, FlowInfo); LSDIndexRaster Basin_Raster = ChanNetwork.extract_basins_from_junction_vector(basin_junctions, FlowInfo); cout << "\nExtracting hilltops and hilltop curvature" << endl; // extract hilltops - no critical slope filtering is performed here LSDRaster hilltops = ChanNetwork.ExtractRidges(FlowInfo); //get hilltop curvature using filter to remove positive curvatures LSDRaster cht_raster = FilledDEM.get_hilltop_curvature(Surfaces[3], hilltops); LSDRaster CHT = FilledDEM.remove_positive_hilltop_curvature(cht_raster); //get d infinity flowdirection and flow area Array2D<float> dinf = FilledDEM.D_inf_FlowDir(); LSDRaster dinf_rast = FilledDEM.LSDRasterTemplate(dinf); LSDRaster DinfArea = FilledDEM.D_inf_units(); cout << "Starting hilltop flow routing\n" << endl; //start of Hilltop flow routing string prefix = (path+filename+"_dreich_"); //set a path to write the hillslope length data to, based on the input path and filename given by the user // these params do not need changed during normal use of the HFR algorithm bool print_paths_switch = false; int thinning = 1; string trace_path = ""; bool basin_filter_switch = false; vector<int> Target_Basin_Vector; //run HFR vector< Array2D<float> > HFR_Arrays = FlowInfo.HilltopFlowRouting(FilledDEM, hilltops, slope, ChannelAndFloodplain, aspect, prefix, Basin_Raster, Surfaces[4], print_paths_switch, thinning, trace_path, basin_filter_switch, Target_Basin_Vector); LSDRaster HFR_LH = hilltops.LSDRasterTemplate(HFR_Arrays[1]); LSDRaster HFR_Slope = hilltops.LSDRasterTemplate(HFR_Arrays[2]); LSDRaster relief = hilltops.LSDRasterTemplate(HFR_Arrays[3]); //end of HFR //create lsdbasin objects in a loop over each junction number vector< LSDBasin > Basins; //slope area plotting parameters - these defaults are usually fine float log_bin_width = 0.1; int SplineResolution = 10000; int bin_threshold = 0; float CriticalSlope = 1.2; //this needs modified to generate proper E*R* data cout << "\nCreating each LSDBasin" << endl; //loop over each basin, generating an LSDBasin object which contains that basin's measurements for (int w = 0; w < int(basin_junctions.size()); ++w){ cout << (w+1) << " / " << basin_junctions.size() << endl; LSDBasin Basin(basin_junctions[w], FlowInfo, ChanNetwork); Basin.set_FlowLength(StreamNetwork, FlowInfo); Basin.set_DrainageDensity(); Basin.set_all_HillslopeLengths(FlowInfo, HFR_LH, slope, DinfArea, log_bin_width, SplineResolution, bin_threshold); Basin.set_SlopeMean(FlowInfo, slope); Basin.set_AspectMean(FlowInfo, aspect); Basin.set_ElevationMean(FlowInfo, FilledDEM); Basin.set_ReliefMean(FlowInfo, relief); Basin.set_CHTMean(FlowInfo, CHT); Basin.set_EStar_RStar(CriticalSlope); Basins.push_back(Basin); } //create a filestream to write the output data // use the input arguments to generate a path and filename for the output file ofstream WriteData; stringstream ss; ss << path << filename << "_dreich_PaperData.txt"; WriteData.open(ss.str().c_str()); //write headers WriteData << "BasinID HFR_mean HFR_median HFR_stddev HFR_stderr HFR_Nvalues HFR_range HFR_min HFR_max SA_binned_LH SA_Spline_LH LH_Density Area Basin_Slope_mean Basin_Slope_median Basin_Slope_stddev Basin_Slope_stderr Basin_Slope_Nvalues Basin_Slope_range Basin_Slope_min Basin_Slope_max Basin_elev_mean Basin_elev_median Basin_elev_stddev Basin_elev_stderr Basin_elev_Nvalues Basin_elev_Range Basin_elev_min Basin_elev_max Aspect_mean CHT_mean CHT_median CHT_stddev CHT_stderr CHT_Nvalues CHT_range CHT_min CHT_max EStar RStar HT_Slope_mean HT_Slope_median HT_Slope_stddev HT_Slope_stderr HT_Slope_Nvalues HT_Slope_range HT_Slope_min HT_Slope_max HT_relief_mean HT_relief_median HT_relief_stddev HT_relief_stderr HT_relief_Nvalues HT_relief_range HT_relief_min HT_relief_max" << endl; cout << "\nWriting data to file\n" << endl; //write all data to the opened file, ensuring that there are data points to be written in each basin for (int q = 0; q < int(Basins.size()); ++q){ // only work where we have data points if (Basins[q].CalculateNumDataPoints(FlowInfo, HFR_LH) != 0 && Basins[q].CalculateNumDataPoints(FlowInfo, slope) != 0 && Basins[q].CalculateNumDataPoints(FlowInfo, FilledDEM) != 0 && Basins[q].CalculateNumDataPoints(FlowInfo, CHT) != 0 && Basins[q].CalculateNumDataPoints(FlowInfo, HFR_Slope) != 0 && Basins[q].CalculateNumDataPoints(FlowInfo, relief) != 0){ // BasinID WriteData << Basins[q].get_Junction()<< " "; //HFR WriteData << Basins[q].get_HillslopeLength_HFR() << " " << Basins[q].CalculateBasinMedian(FlowInfo, HFR_LH) << " " << Basins[q].CalculateBasinStdDev(FlowInfo, HFR_LH) << " " << Basins[q].CalculateBasinStdError(FlowInfo, HFR_LH) << " " << Basins[q].CalculateNumDataPoints(FlowInfo, HFR_LH) << " " << Basins[q].CalculateBasinRange(FlowInfo, HFR_LH) << " " << Basins[q].CalculateBasinMin(FlowInfo, HFR_LH) << " " << Basins[q].CalculateBasinMax(FlowInfo, HFR_LH)<< " "; //SA_Bins WriteData << Basins[q].get_HillslopeLength_Binned()<< " "; //SA_Spline WriteData << Basins[q].get_HillslopeLength_Spline()<< " "; //Density WriteData << Basins[q].get_HillslopeLength_Density()<< " "; //Area WriteData << Basins[q].get_Area()<< " "; //Slope_Basin WriteData << Basins[q].get_SlopeMean() << " " << Basins[q].CalculateBasinMedian(FlowInfo, slope) << " " << Basins[q].CalculateBasinStdDev(FlowInfo, slope) << " " << Basins[q].CalculateBasinStdError(FlowInfo, slope) << " " << Basins[q].CalculateNumDataPoints(FlowInfo, slope) << " " << Basins[q].CalculateBasinRange(FlowInfo, slope) << " " << Basins[q].CalculateBasinMin(FlowInfo, slope) << " " << Basins[q].CalculateBasinMax(FlowInfo, slope)<< " "; //Elev_Basin WriteData << Basins[q].get_ElevationMean() << " " << Basins[q].CalculateBasinMedian(FlowInfo, FilledDEM) << " " << Basins[q].CalculateBasinStdDev(FlowInfo, FilledDEM) << " " << Basins[q].CalculateBasinStdError(FlowInfo, FilledDEM) << " " << Basins[q].CalculateNumDataPoints(FlowInfo, FilledDEM) << " " << Basins[q].CalculateBasinRange(FlowInfo, FilledDEM) << " " << Basins[q].CalculateBasinMin(FlowInfo, FilledDEM) << " " << Basins[q].CalculateBasinMax(FlowInfo, FilledDEM)<< " "; //Aspect_Basin WriteData << Basins[q].get_AspectMean()<< " "; //CHT WriteData << Basins[q].get_CHTMean() << " " << Basins[q].CalculateBasinMedian(FlowInfo, CHT) << " " << Basins[q].CalculateBasinStdDev(FlowInfo, CHT) << " " << Basins[q].CalculateBasinStdError(FlowInfo, CHT) << " " << Basins[q].CalculateNumDataPoints(FlowInfo, CHT) << " " << Basins[q].CalculateBasinRange(FlowInfo, CHT) << " " << Basins[q].CalculateBasinMin(FlowInfo, CHT) << " " << Basins[q].CalculateBasinMax(FlowInfo, CHT) << " "; //EStar WriteData << Basins[q].get_EStar()<< " "; //RStar WriteData << Basins[q].get_RStar()<< " "; //Slope_mean WriteData << Basins[q].CalculateBasinMean(FlowInfo, HFR_Slope) << " " << Basins[q].CalculateBasinMedian(FlowInfo, HFR_Slope) << " " << Basins[q].CalculateBasinStdDev(FlowInfo, HFR_Slope) << " " << Basins[q].CalculateBasinStdError(FlowInfo, HFR_Slope) << " " << Basins[q].CalculateNumDataPoints(FlowInfo, HFR_Slope) << " " << Basins[q].CalculateBasinRange(FlowInfo, HFR_Slope) << " " << Basins[q].CalculateBasinMin(FlowInfo, HFR_Slope) << " " << Basins[q].CalculateBasinMax(FlowInfo, HFR_Slope)<< " "; //Relief_mean WriteData << Basins[q].get_ReliefMean() << " " << Basins[q].CalculateBasinMedian(FlowInfo, relief) << " " << Basins[q].CalculateBasinStdDev(FlowInfo, relief) << " " << Basins[q].CalculateBasinStdError(FlowInfo, relief) << " " << Basins[q].CalculateNumDataPoints(FlowInfo, relief) << " " << Basins[q].CalculateBasinRange(FlowInfo, relief) << " " << Basins[q].CalculateBasinMin(FlowInfo, relief) << " " << Basins[q].CalculateBasinMax(FlowInfo, relief)<< "\n"; } } // close the output file WriteData.close(); //if the user requests the raster to be written, write the rasters if (WriteRasters == 1){ cout << "Writing Rasters\n" << endl; // FilledDEM.write_raster((path+filename+"_Fill"), "flt"); Surfaces[1].write_raster((path+filename+"_dreich_Slope"),"flt"); //Surfaces[2].write_raster((path+filename+"_Aspect"),"flt"); //Surfaces[3].write_raster((path+filename+"_Curvature"),"flt"); //StreamNetwork.write_raster((path+filename+"_STNET"), "flt"); //Basin_Raster.write_raster((path+filename+"_Basins"), "flt"); CHT.write_raster((path+filename+"_dreich_CHT"),"flt"); HFR_LH.write_raster((path+filename+"_dreich_HFR_LH"),"flt"); HFR_Slope.write_raster((path+filename+"_dreich_HFR_SLP"),"flt"); relief.write_raster((path+filename+"_dreich_Relief"),"flt"); //perform a hillshade //LSDRaster Hillshade = FilledDEM.hillshade(45.0,315.0,1.0); //Hillshade.write_raster((path+filename+"_HS"),"flt"); } }
int main (int nNumberofArgs,char *argv[]) { //Test for correct input arguments if (nNumberofArgs!=3) { cout << "FATAL ERROR: wrong number inputs. The program needs the path name and the file name" << endl; exit(EXIT_SUCCESS); } string path_name = argv[1]; // make sure there is a slash on the end of the file string lchar = path_name.substr(path_name.length()-2,1); string slash = "/"; if (lchar != slash) { cout << "You forgot the frontslash at the end of the path. Appending." << endl; path_name = path_name+slash; } string f_name = argv[2]; cout << "\nYou are running the write junctions driver." << endl <<"IMPORTANT: this has been updated to load an ENVI DEM, whith extension .bil" << endl <<"You can convert your DEM to this file format using gdal_translate, with -of ENVI" << endl <<"See documentation at: http://www.geos.ed.ac.uk/~smudd/LSDTT_docs/html/gdal_notes.html" << endl << endl; cout << "The path is: " << path_name << " and the filename is: " << f_name << endl; string full_name = path_name+f_name; ifstream file_info_in; file_info_in.open(full_name.c_str()); if( file_info_in.fail() ) { cout << "\nFATAL ERROR: the header file \"" << full_name << "\" doesn't exist" << endl; exit(EXIT_FAILURE); } string DEM_name; string fill_ext = "_fill"; file_info_in >> DEM_name; int junction_number; float pruning_threshold; int threshold; float A_0; int minimum_segment_length; float sigma; float start_movern; float d_movern; float Minimum_Slope; int n_movern; int target_nodes; int n_iterations; float fraction_dchi_for_variation; float vertical_interval; float horizontal_interval; float area_thin_frac; int target_skip; file_info_in >> Minimum_Slope >> threshold >> junction_number >> pruning_threshold >> A_0 >> minimum_segment_length >> sigma >> start_movern >> d_movern >> n_movern >> target_nodes >> n_iterations >> fraction_dchi_for_variation >> vertical_interval >> horizontal_interval >> area_thin_frac >> target_skip; cout << "Paramters of this run: " << endl << "junction number: " << junction_number << endl << "pruning_threshold: " << pruning_threshold << endl << "threshold: " << threshold << endl << "A_0: " << A_0 << endl << "minimum_segment_length: " << minimum_segment_length << endl << "sigma: " << sigma << endl << "start_movern " << start_movern << endl << "d_movern: " << d_movern << endl << "n_movern: " << n_movern << endl << "target_nodes: " << target_nodes << endl << "n_iterarions: " << n_iterations << endl << "fraction_dchi_for_variation: " << fraction_dchi_for_variation << endl << "vertical interval: " << vertical_interval << endl << "horizontal interval: " << horizontal_interval << endl << "area thinning fraction for SA analysis: " << area_thin_frac << endl << "target_skip is: " << target_skip << endl; cout << "=================================================================" << endl << "You are also loading a precipitation raster to get the discharge" << endl << "The precipitation raster should: " << endl << "1) Have units of m/yr" << endl << "Have the same prefix as the DEM, but will have the extension _PRECIP"<< endl << "For example, if the DEM is my_DEM.bil, the precip file will be" << endl << "my_DEM_precip.bil" << endl << "=================================================================" << endl; string jn_name = itoa(junction_number); string uscore = "_"; jn_name = uscore+jn_name; file_info_in.close(); string DEM_f_name = path_name+DEM_name+fill_ext; string DEM_bil_extension = "bil"; string precip_ext = "_PRECIP"; string Precip_f_name = path_name+DEM_name+precip_ext; // set no flux boundary conditions vector<string> boundary_conditions(4); boundary_conditions[0] = "No"; boundary_conditions[1] = "no flux"; boundary_conditions[2] = "no flux"; boundary_conditions[3] = "No flux"; // load the filled DEM LSDRaster filled_topo_test((path_name+DEM_name+fill_ext), DEM_bil_extension); // get a flow info object LSDFlowInfo FlowInfo(boundary_conditions,filled_topo_test); // calcualte the distance from outlet LSDRaster DistanceFromOutlet = FlowInfo.distance_from_outlet(); LSDIndexRaster ContributingPixels = FlowInfo.write_NContributingNodes_to_LSDIndexRaster(); // calculate the discharge // note: not discharge yet, need to multiply by cell area LSDRaster VolumePrecipitation(Precip_f_name, DEM_bil_extension); float dx = VolumePrecipitation.get_DataResolution(); // volume precipitation per time precipitation times the cell areas VolumePrecipitation.raster_multiplier(dx*dx); // discharge accumulates this precipitation LSDRaster Discharge = FlowInfo.upslope_variable_accumulator(VolumePrecipitation); string Q_ext = "_Q"; string Q_f_name = path_name+DEM_name+Q_ext; Discharge.write_raster(Q_f_name,DEM_bil_extension); // get the sources vector<int> sources; sources = FlowInfo.get_sources_index_threshold(ContributingPixels, threshold); // now get the junction network LSDJunctionNetwork ChanNetwork(sources, FlowInfo); // now get a junction and look for the longest channel upstream cout << "creating main stem" << endl; LSDIndexChannel main_stem = ChanNetwork.generate_longest_index_channel_in_basin(junction_number, FlowInfo, DistanceFromOutlet); cout << "got main stem channel, with n_nodes " << main_stem.get_n_nodes_in_channel() << endl; string Basin_name = "_basin"; LSDIndexRaster BasinArray = ChanNetwork.extract_basin_from_junction(junction_number,junction_number,FlowInfo); BasinArray.write_raster((path_name+DEM_name+Basin_name+jn_name),DEM_bil_extension); // now get the best fit m over n for all the tributaries int organization_switch = 1; int pruning_switch = 1; LSDIndexChannelTree ChannelTree(FlowInfo, ChanNetwork, junction_number, organization_switch, DistanceFromOutlet, pruning_switch, pruning_threshold); LSDRaster DrainageArea = FlowInfo.write_DrainageArea_to_LSDRaster(); // print a file that can be ingested by the chi fitting algorithm string Chan_fname = "_ChanNet"; string Chan_ext = ".chan"; string Chan_for_chi_ingestion_fname = path_name+DEM_name+Chan_fname+jn_name+Chan_ext; ChannelTree.print_LSDChannels_for_chi_network_ingestion(FlowInfo, filled_topo_test, DistanceFromOutlet, Chan_for_chi_ingestion_fname, Discharge); ChannelTree.convert_chan_file_for_ArcMap_ingestion(Chan_for_chi_ingestion_fname,DrainageArea,Discharge); }
int main (int nNumberofArgs,char *argv[]) { //Test for correct input arguments if (nNumberofArgs!=7) { cout << "FATAL ERROR: wrong number of inputs. The program needs the path (with trailing slash), the filename prefix, the DEM file format, the window radius, "; cout << "basin order, and a switch to write rasters if desired." << endl; exit(EXIT_SUCCESS); } //load input arguments string Path = argv[1]; string Prefix = argv[2]; string DEM_Format = argv[3]; float window_radius = atof(argv[4]); //6 int BasinOrder = atoi(argv[5]); //2 int WriteRasters = atoi(argv[6]); //0 (do not write rasters) or 1 (write rasters) //set up writers to write the output data stringstream ssLH; stringstream ssR; ssLH << Path << Prefix << "_LHResData_variable.txt"; ssR << Path << Prefix << "_RResData_variable.txt"; ofstream WriteLHData; WriteLHData.open(ssLH.str().c_str()); ofstream WriteRData; WriteRData.open(ssR.str().c_str()); //write headers WriteLHData << "resolution 2pc 25pc median mean 75pc 98pc minimum maximum" << endl; WriteRData << "resolution 2pc 25pc median mean 75pc 98pc minimum maximum" << endl; //set boundary conditions vector<string> BoundaryConditions(4, "No Flux"); //array of resolutions to load int Resolutions[] = {2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30}; for (int a = 0; a < 19; ++a){ cout << "Processing DEM " << a+1 << " of " << "19" << endl; //create an output filename based on the dem name and the resolution stringstream ss; ss << Path << Prefix << "_" << Resolutions[a]; string Filename = ss.str(); //load dem LSDRaster DEM((Filename + "_DEM"), DEM_Format); stringstream ssa; ssa << Path << Prefix << "_" << Resolutions[a] << "_variable"; string Filename_variable = ssa.str(); //Fill float MinSlope = 0.0001; LSDRaster FilledDEM = DEM.fill(MinSlope); //surface fitting vector<int> raster_selection; raster_selection.push_back(0); raster_selection.push_back(1); //slope raster_selection.push_back(1); //aspect raster_selection.push_back(1); //curvature raster_selection.push_back(1); //plan curvature raster_selection.push_back(0); raster_selection.push_back(0); raster_selection.push_back(0); int CurrentWindowSize = window_radius; vector<LSDRaster> Surfaces = FilledDEM.calculate_polyfit_surface_metrics(CurrentWindowSize, raster_selection); LSDRaster slope = Surfaces[1]; LSDRaster aspect = Surfaces[2]; cout << "\nGetting drainage network and basins\n" << endl; // get a flow info object LSDFlowInfo FlowInfo(BoundaryConditions,FilledDEM); //get stream net from channel heads stringstream ss_ch; ss_ch << Path << "Pelletier/" << Prefix << "_" << Resolutions[a] << "_CH"; vector<int> sources = FlowInfo.Ingest_Channel_Heads(ss_ch.str(), "bil"); LSDJunctionNetwork ChanNetwork(sources, FlowInfo); LSDIndexRaster StreamNetwork = ChanNetwork.StreamOrderArray_to_LSDIndexRaster(); //Extract basins based on input stream order vector< int > basin_junctions = ChanNetwork.ExtractBasinJunctionOrder(BasinOrder, FlowInfo); LSDIndexRaster Basin_Raster = ChanNetwork.extract_basins_from_junction_vector(basin_junctions, FlowInfo); cout << "\nExtracting hilltops and hilltop curvature" << endl; // extract hilltops - no critical slope filtering is performed here LSDRaster hilltops = ChanNetwork.ExtractRidges(FlowInfo); //get hilltop curvature using filter to remove positive curvatures LSDRaster cht_raster = FilledDEM.get_hilltop_curvature(Surfaces[3], hilltops); LSDRaster CHT = FilledDEM.remove_positive_hilltop_curvature(cht_raster); cout << "Starting hilltop flow routing\n" << endl; // these params do not need changed during normal use of the HFR algorithm bool print_paths_switch = false; int thinning = 1; string trace_path = ""; bool basin_filter_switch = false; vector<int> Target_Basin_Vector; //run HFR vector< Array2D<float> > HFR_Arrays = FlowInfo.HilltopFlowRouting(FilledDEM, hilltops, slope, StreamNetwork, aspect, Filename_variable, Basin_Raster, Surfaces[4], print_paths_switch, thinning, trace_path, basin_filter_switch, Target_Basin_Vector); LSDRaster HFR_LH = hilltops.LSDRasterTemplate(HFR_Arrays[1]); LSDRaster relief = hilltops.LSDRasterTemplate(HFR_Arrays[3]); //Filter Relief and LH data to remove any values < 2 pixels, as in Grieve et al (2015) LSDRaster LH1 = HFR_LH.RemoveBelow(2.0*Resolutions[a]); LSDRaster Relief1 = relief.RemoveBelow(2.0*Resolutions[a]); //Filter Relief and LH data to remove any values > 10000 //These are created due to using 1m channel heads on low res data, and inadvertantly //sampling nodata values, which gives us massive relief values LSDRaster LH = LH1.RemoveAbove(10000); LSDRaster Relief = Relief1.RemoveAbove(10000); //go through the lh raster and get every value into a 1D vector vector<float> LH_vec = Flatten_Without_Nodata(LH.get_RasterData(), LH.get_NoDataValue()); vector<float> Boxplot = BoxPlot(LH_vec); //write the values to the output file WriteLHData << Resolutions[a] << " " << Boxplot[0] << " " << Boxplot[1] << " " << Boxplot[2] << " " << Boxplot[3] << " " << Boxplot[4] << " " << Boxplot[5] << " " << Boxplot[6] << " " << Boxplot[7]; WriteLHData << endl; stringstream ss3; ss3 << Path << Prefix << "_" << Resolutions[a] << "_Hist_LH_variable.txt"; print_histogram(LH_vec, 1, ss3.str()); //go through the relief raster and get every value into a 1D vector vector<float> R_vec = Flatten_Without_Nodata(Relief.get_RasterData(), Relief.get_NoDataValue()); vector<float> Boxplot_R = BoxPlot(R_vec); //write the values to the output file WriteRData << Resolutions[a] << " " << Boxplot_R[0] << " " << Boxplot_R[1] << " " << Boxplot_R[2] << " " << Boxplot_R[3] << " " << Boxplot_R[4] << " " << Boxplot_R[5] << " " << Boxplot_R[6] << " " << Boxplot_R[7]; WriteRData << endl; stringstream ss4; ss4 << Path << Prefix << "_" << Resolutions[a] << "_Hist_R_variable.txt"; print_histogram(R_vec, 1, ss4.str()); //if the user requests the rasters to be written, write the rasters if (WriteRasters == 1){ cout << "Writing Rasters\n" << endl; Surfaces[1].write_raster((Filename + "_Slope_variable"), DEM_Format); CHT.write_raster((Filename + "_CHT_variable"), DEM_Format); LH.write_raster((Filename + "_HFR_LH_variable"), DEM_Format); Relief.write_raster((Filename + "_Relief_variable"), DEM_Format); } } WriteLHData.close(); WriteRData.close(); }
int main (int nNumberofArgs,char *argv[]) { // the driver version string driver_version = "Driver_version: 0.01"; // some paramters //Test for correct input arguments if (nNumberofArgs!=5) { cout << endl; cout << "=====================================================================" << endl; cout << "|| Welcome to the Topographic Shielding tool! ||" << endl; cout << "|| This program is used to calculate topographic shielding_driver ||" << endl; cout << "|| rasters following the method of Codilean (2006). ||" << endl; cout << "=====================================================================" << endl; cout << "This program requires four inputs: " << endl; cout << "* First the path to the DEM files." << endl; cout << " The path must have a slash at the end." << endl; cout << " (Either \\ or / depending on your operating system.)" << endl; cout << "* Second the prefix of the DEM (that is, without the .bil)." << endl; cout << " For example if you DEM is Ladakh.bil, you should enter Ladakh" << endl; cout << " (Note that the DEM should be in *.bil format)" << endl; cout << "* Third the increment in azimuth (in degrees) over which you" << endl; cout << " want shielding calculated. Recommended values is 5" << endl; cout << "* Fourth the increment in inclination (in degrees) over which you" << endl; cout << " want shielding calculated. Recommended values is 5" << endl; cout << "=====================================================================" << endl; cout << "For more documentation, see readme and online documentation" << endl; cout << "=====================================================================" << endl; cout << endl; exit(EXIT_SUCCESS); } cout << endl; cout << "===============================================================" << endl; cout << "Welcome to the Topographic Shielding tool" << endl; cout << "This software was developed at the University of Edinburgh," << endl; cout << "by the Land Surface Dynamics group. For questions email" << endl; cout << "simon.m.mudd _at_ ed.ac.uk" << endl; cout << "This software is released under a GNU public license." << endl; cout << "You are using " << driver_version << endl; cout << "================================================================" << endl; cout << "++IMPORTANT++ The DEM must be an ENVI bil format file" << endl; cout << "ENVI bil files are required because, unlike asc or flt files, " << endl; cout << "they use georeferencing information." << endl; cout << "For more information about changing DEM formatting, see: " << endl; cout << "http://lsdtopotools.github.io/LSDTT_book/#_gdal_2" << endl; cout << "================================================================" << endl; //Assign values from input arguments string path_name = argv[1]; string file_name = argv[2]; string azimuth_str = argv[3]; string inclination_str = argv[4]; //Set the DEM filename file_name = path_name+file_name; //Convert the angle increments to integers int azimuth_step = atoi(azimuth_str.c_str()); int inclination_step = atoi(inclination_str.c_str()); // check the parameter values check_azimuth_and_inclination(azimuth_step,inclination_step); //load dem LSDRaster DEM(file_name, "bil"); //launch toposhielding LSDRaster TopoShielding = DEM.TopographicShielding(azimuth_step,inclination_step); TopoShielding.write_raster(file_name+"_TopoShield","bil"); cout << "Done!" << endl << endl; }