bool LinearTermTests::testLinearTermEvaluation() { bool success = true; double eps = .1; FunctionPtr one = Function::constant(1.0); vector<double> e1,e2; e1.push_back(1.0); e1.push_back(0.0); e2.push_back(0.0); e2.push_back(1.0); // define test variables VarFactoryPtr varFactory = VarFactory::varFactory(); VarPtr tau = varFactory->testVar("\\tau", HDIV); VarPtr v = varFactory->testVar("v", HGRAD); // define a couple LinearTerms LinearTermPtr vVecLT = Teuchos::rcp(new LinearTerm); LinearTermPtr tauVecLT = Teuchos::rcp(new LinearTerm); vVecLT->addTerm(sqrt(eps)*v->grad()); tauVecLT->addTerm((1/sqrt(eps))*tau); //////////////////// evaluate LinearTerms ///////////////// map<int,FunctionPtr> errRepMap; errRepMap[v->ID()] = one; errRepMap[tau->ID()] = one*e1+one*e2; // vector valued fxn (1,1) FunctionPtr errTau = tauVecLT->evaluate(errRepMap,false); FunctionPtr errV = vVecLT->evaluate(errRepMap,false); try { bool xTauZero = errTau->x()->isZero(); bool yTauZero = errTau->y()->isZero(); bool xVZero = errV->dx()->isZero(); bool yVZero = errV->dy()->isZero(); } catch (...) { cout << "testLinearTermEvaluation: Caught exception.\n"; success = false; } /* FunctionPtr xErr = (errTau->x())*(errTau->x()) + (errV->dx())*(errV->dx()); FunctionPtr yErr = (errTau->y())*(errTau->y()) + (errV->dy())*(errV->dy()); double xErrVal = xErr->integrate(mesh,15,true); */ // if we don't crash, return success return success; }
bool LinearTermTests::testRieszInversionAsProjection() { bool success = true; //////////////////// DECLARE VARIABLES /////////////////////// // define test variables VarFactoryPtr varFactory = VarFactory::varFactory(); VarPtr tau = varFactory->testVar("\\tau", HDIV); VarPtr v = varFactory->testVar("v", HGRAD); // define trial variables VarPtr uhat = varFactory->traceVar("\\widehat{u}"); VarPtr beta_n_u_minus_sigma_n = varFactory->fluxVar("\\widehat{\\beta \\cdot n u - \\sigma_{n}}"); VarPtr u = varFactory->fieldVar("u"); VarPtr sigma1 = varFactory->fieldVar("\\sigma_1"); VarPtr sigma2 = varFactory->fieldVar("\\sigma_2"); vector<double> beta; beta.push_back(1.0); beta.push_back(0.0); double eps = .01; //////////////////// DEFINE BILINEAR FORM /////////////////////// BFPtr confusionBF = Teuchos::rcp( new BF(varFactory) ); // tau terms: confusionBF->addTerm(sigma1 / eps, tau->x()); confusionBF->addTerm(sigma2 / eps, tau->y()); confusionBF->addTerm(u, tau->div()); confusionBF->addTerm(uhat, -tau->dot_normal()); // v terms: confusionBF->addTerm( sigma1, v->dx() ); confusionBF->addTerm( sigma2, v->dy() ); confusionBF->addTerm( -u, beta * v->grad() ); confusionBF->addTerm( beta_n_u_minus_sigma_n, v); //////////////////// BUILD MESH /////////////////////// // define nodes for mesh int H1Order = 2; int pToAdd = 2; FieldContainer<double> quadPoints(4,2); quadPoints(0,0) = 0.0; // x1 quadPoints(0,1) = 0.0; // y1 quadPoints(1,0) = 1.0; quadPoints(1,1) = 0.0; quadPoints(2,0) = 1.0; quadPoints(2,1) = 1.0; quadPoints(3,0) = 0.0; quadPoints(3,1) = 1.0; int nCells = 2; int horizontalCells = nCells, verticalCells = nCells; // create a new mesh: MeshPtr myMesh = MeshFactory::buildQuadMesh(quadPoints, horizontalCells, verticalCells, confusionBF, H1Order, H1Order+pToAdd); ElementTypePtr elemType = myMesh->getElement(0)->elementType(); BasisCachePtr basisCache = Teuchos::rcp(new BasisCache(elemType, myMesh)); vector<GlobalIndexType> cellIDs = myMesh->cellIDsOfTypeGlobal(elemType); bool createSideCacheToo = true; basisCache->setPhysicalCellNodes(myMesh->physicalCellNodesGlobal(elemType), cellIDs, createSideCacheToo); LinearTermPtr integrand = Teuchos::rcp(new LinearTerm); // residual FunctionPtr x = Function::xn(1); FunctionPtr y = Function::yn(1); FunctionPtr testFxn1 = x; FunctionPtr testFxn2 = y; FunctionPtr fxnToProject = x * y + 1.0; integrand->addTerm(fxnToProject * v); IPPtr ip_L2 = Teuchos::rcp(new IP); ip_L2->addTerm(v); ip_L2->addTerm(tau); Teuchos::RCP<RieszRep> riesz = Teuchos::rcp(new RieszRep(myMesh, ip_L2, integrand)); riesz->computeRieszRep(); FunctionPtr rieszFxn = RieszRep::repFunction(v,riesz); int numCells = basisCache->getPhysicalCubaturePoints().dimension(0); int numPts = basisCache->getPhysicalCubaturePoints().dimension(1); FieldContainer<double> valProject( numCells, numPts ); FieldContainer<double> valExpected( numCells, numPts ); rieszFxn->values(valProject,basisCache); fxnToProject->values(valExpected,basisCache); // int rank = Teuchos::GlobalMPISession::getRank(); // if (rank==0) cout << "physicalCubaturePoints:\n" << basisCache->getPhysicalCubaturePoints(); double maxDiff; double tol = 1e-12; success = TestSuite::fcsAgree(valProject,valExpected,tol,maxDiff); if (success==false) { cout << "Failed Riesz Inversion Projection test with maxDiff = " << maxDiff << endl; serializeOutput("valExpected", valExpected); serializeOutput("valProject", valProject); serializeOutput("physicalPoints", basisCache->getPhysicalCubaturePoints()); } return allSuccess(success); }
int main(int argc, char *argv[]) { #ifdef HAVE_MPI Teuchos::GlobalMPISession mpiSession(&argc, &argv,0); choice::MpiArgs args( argc, argv ); #else choice::Args args( argc, argv ); #endif int rank = Teuchos::GlobalMPISession::getRank(); int numProcs = Teuchos::GlobalMPISession::getNProc(); int nCells = args.Input<int>("--nCells", "num cells",2); int numSteps = args.Input<int>("--numSteps", "num NR steps",20); int polyOrder = 0; // define our manufactured solution or problem bilinear form: bool useTriangles = false; int pToAdd = 1; args.Process(); int H1Order = polyOrder + 1; //////////////////////////////////////////////////////////////////// // DEFINE VARIABLES //////////////////////////////////////////////////////////////////// // new-style bilinear form definition VarFactory varFactory; VarPtr fn = varFactory.fluxVar("\\widehat{\\beta_n_u}"); VarPtr u = varFactory.fieldVar("u"); VarPtr v = varFactory.testVar("v",HGRAD); BFPtr bf = Teuchos::rcp( new BF(varFactory) ); // initialize bilinear form //////////////////////////////////////////////////////////////////// // CREATE MESH //////////////////////////////////////////////////////////////////// // create a pointer to a new mesh: Teuchos::RCP<Mesh> mesh = MeshUtilities::buildUnitQuadMesh(nCells , bf, H1Order, H1Order+pToAdd); //////////////////////////////////////////////////////////////////// // INITIALIZE BACKGROUND FLOW FUNCTIONS //////////////////////////////////////////////////////////////////// BCPtr nullBC = Teuchos::rcp((BC*)NULL); RHSPtr nullRHS = Teuchos::rcp((RHS*)NULL); IPPtr nullIP = Teuchos::rcp((IP*)NULL); SolutionPtr backgroundFlow = Teuchos::rcp(new Solution(mesh, nullBC, nullRHS, nullIP) ); SolutionPtr solnPerturbation = Teuchos::rcp(new Solution(mesh, nullBC, nullRHS, nullIP) ); vector<double> e1(2),e2(2); e1[0] = 1; e2[1] = 1; FunctionPtr u_prev = Teuchos::rcp( new PreviousSolutionFunction(backgroundFlow, u) ); FunctionPtr beta = e1 * u_prev + Teuchos::rcp( new ConstantVectorFunction( e2 ) ); //////////////////////////////////////////////////////////////////// // DEFINE BILINEAR FORM //////////////////////////////////////////////////////////////////// // v: bf->addTerm( -u, beta * v->grad()); bf->addTerm( fn, v); //////////////////////////////////////////////////////////////////// // DEFINE RHS //////////////////////////////////////////////////////////////////// Teuchos::RCP<RHSEasy> rhs = Teuchos::rcp( new RHSEasy ); FunctionPtr u_prev_squared_div2 = 0.5 * u_prev * u_prev; rhs->addTerm((e1 * u_prev_squared_div2 + e2 * u_prev) * v->grad()); // ==================== SET INITIAL GUESS ========================== mesh->registerSolution(backgroundFlow); FunctionPtr zero = Function::constant(0.0); FunctionPtr u0 = Teuchos::rcp( new U0 ); FunctionPtr n = Teuchos::rcp( new UnitNormalFunction ); // FunctionPtr parity = Teuchos::rcp(new SideParityFunction); FunctionPtr u0_squared_div_2 = 0.5 * u0 * u0; map<int, Teuchos::RCP<Function> > functionMap; functionMap[u->ID()] = u0; // functionMap[fn->ID()] = -(e1 * u0_squared_div_2 + e2 * u0) * n * parity; backgroundFlow->projectOntoMesh(functionMap); // ==================== END SET INITIAL GUESS ========================== //////////////////////////////////////////////////////////////////// // DEFINE INNER PRODUCT //////////////////////////////////////////////////////////////////// IPPtr ip = Teuchos::rcp( new IP ); ip->addTerm( v ); ip->addTerm(v->grad()); // ip->addTerm( beta * v->grad() ); // omitting term to make IP non-dependent on u //////////////////////////////////////////////////////////////////// // DEFINE DIRICHLET BC //////////////////////////////////////////////////////////////////// SpatialFilterPtr outflowBoundary = Teuchos::rcp( new TopBoundary); SpatialFilterPtr inflowBoundary = Teuchos::rcp( new NegatedSpatialFilter(outflowBoundary) ); Teuchos::RCP<BCEasy> inflowBC = Teuchos::rcp( new BCEasy ); inflowBC->addDirichlet(fn,inflowBoundary, ( e1 * u0_squared_div_2 + e2 * u0) * n ); //////////////////////////////////////////////////////////////////// // CREATE SOLUTION OBJECT //////////////////////////////////////////////////////////////////// Teuchos::RCP<Solution> solution = Teuchos::rcp(new Solution(mesh, inflowBC, rhs, ip)); mesh->registerSolution(solution); solution->setCubatureEnrichmentDegree(10); //////////////////////////////////////////////////////////////////// // HESSIAN BIT + CHECKS ON GRADIENT + HESSIAN //////////////////////////////////////////////////////////////////// VarFactory hessianVars = varFactory.getBubnovFactory(VarFactory::BUBNOV_TRIAL); VarPtr du = hessianVars.test(u->ID()); // BFPtr hessianBF = Teuchos::rcp( new BF(hessianVars) ); // initialize bilinear form FunctionPtr du_current = Teuchos::rcp( new PreviousSolutionFunction(solution, u) ); FunctionPtr fnhat = Teuchos::rcp(new PreviousSolutionFunction(solution,fn)); LinearTermPtr residual = Teuchos::rcp(new LinearTerm);// residual residual->addTerm(fnhat*v,true); residual->addTerm( - (e1 * (u_prev_squared_div2) + e2 * (u_prev)) * v->grad(),true); LinearTermPtr Bdu = Teuchos::rcp(new LinearTerm);// residual Bdu->addTerm( - du_current*(beta*v->grad())); Teuchos::RCP<RieszRep> riesz = Teuchos::rcp(new RieszRep(mesh, ip, residual)); Teuchos::RCP<RieszRep> duRiesz = Teuchos::rcp(new RieszRep(mesh, ip, Bdu)); riesz->computeRieszRep(); FunctionPtr e_v = Teuchos::rcp(new RepFunction(v,riesz)); e_v->writeValuesToMATLABFile(mesh, "e_v.m"); FunctionPtr posErrPart = Teuchos::rcp(new PositivePart(e_v->dx())); // hessianBF->addTerm(e_v->dx()*u,du); // hessianBF->addTerm(posErrPart*u,du); // Teuchos::RCP<NullFilter> nullFilter = Teuchos::rcp(new NullFilter); // Teuchos::RCP<HessianFilter> hessianFilter = Teuchos::rcp(new HessianFilter(hessianBF)); Teuchos::RCP< LineSearchStep > LS_Step = Teuchos::rcp(new LineSearchStep(riesz)); double NL_residual = 9e99; for (int i = 0;i<numSteps;i++){ // write matrix to file and then resollve without hessian /* solution->setFilter(hessianFilter); stringstream oss; oss << "hessianMatrix" << i << ".dat"; solution->setWriteMatrixToFile(true,oss.str()); solution->solve(false); solution->setFilter(nullFilter); oss.str(""); // clear oss << "stiffnessMatrix" << i << ".dat"; solution->setWriteMatrixToFile(false,oss.str()); */ solution->solve(false); // do one solve to initialize things... double stepLength = 1.0; stepLength = LS_Step->stepSize(backgroundFlow,solution, NL_residual); // solution->setWriteMatrixToFile(true,"stiffness.dat"); backgroundFlow->addSolution(solution,stepLength); NL_residual = LS_Step->getNLResidual(); if (rank==0){ cout << "NL residual after adding = " << NL_residual << " with step size " << stepLength << endl; } double fd_gradient; for (int dofIndex = 0;dofIndex<mesh->numGlobalDofs();dofIndex++){ TestingUtilities::initializeSolnCoeffs(solnPerturbation); TestingUtilities::setSolnCoeffForGlobalDofIndex(solnPerturbation,1.0,dofIndex); fd_gradient = FiniteDifferenceUtilities::finiteDifferenceGradient(mesh, riesz, backgroundFlow, dofIndex); // CHECK GRADIENT LinearTermPtr b_u = bf->testFunctional(solnPerturbation); map<int,FunctionPtr> NL_err_rep_map; NL_err_rep_map[v->ID()] = Teuchos::rcp(new RepFunction(v,riesz)); FunctionPtr gradient = b_u->evaluate(NL_err_rep_map, TestingUtilities::isFluxOrTraceDof(mesh,dofIndex)); // use boundary part only if flux or trace double grad; if (TestingUtilities::isFluxOrTraceDof(mesh,dofIndex)){ grad = gradient->integralOfJump(mesh,10); }else{ grad = gradient->integrate(mesh,10); } double fdgrad = fd_gradient; double diff = grad-fdgrad; if (abs(diff)>1e-6 && i>0){ cout << "Found difference of " << diff << ", " << " with fd val = " << fdgrad << " and gradient = " << grad << " in dof " << dofIndex << ", isTraceDof = " << TestingUtilities::isFluxOrTraceDof(mesh,dofIndex) << endl; } } } VTKExporter exporter(solution, mesh, varFactory); if (rank==0){ exporter.exportSolution("qopt"); cout << endl; } return 0; }
bool LinearTermTests::testIntegrateMixedBasis() { bool success = true; //////////////////// DECLARE VARIABLES /////////////////////// // define test variables VarFactoryPtr varFactory = VarFactory::varFactory(); VarPtr v = varFactory->testVar("v", HGRAD); // define trial variables VarPtr beta_n_u_hat = varFactory->fluxVar("\\widehat{\\beta \\cdot n }"); VarPtr u = varFactory->fieldVar("u"); vector<double> beta; beta.push_back(1.0); beta.push_back(1.0); //////////////////// DEFINE BILINEAR FORM/Mesh /////////////////////// BFPtr convectionBF = Teuchos::rcp( new BF(varFactory) ); // v terms: convectionBF->addTerm( -u, beta * v->grad() ); convectionBF->addTerm( beta_n_u_hat, v); convectionBF->addTerm( u, v); // build CONSTANT SINGLE ELEMENT MESH int order = 0; int H1Order = order+1; int pToAdd = 1; int nCells = 2; // along a side // create a pointer to a new mesh: Teuchos::RCP<Mesh> mesh = MeshUtilities::buildUnitQuadMesh(nCells,convectionBF, H1Order, H1Order+pToAdd); ElementTypePtr elemType = mesh->getElement(0)->elementType(); BasisCachePtr basisCache = Teuchos::rcp(new BasisCache(elemType, mesh)); vector<GlobalIndexType> cellIDs; vector< ElementPtr > allElems = mesh->activeElements(); vector< ElementPtr >::iterator elemIt; for (elemIt=allElems.begin(); elemIt!=allElems.end(); elemIt++) { cellIDs.push_back((*elemIt)->cellID()); } bool createSideCacheToo = true; basisCache->setPhysicalCellNodes(mesh->physicalCellNodesGlobal(elemType), cellIDs, createSideCacheToo); int numTrialDofs = elemType->trialOrderPtr->totalDofs(); int numCells = mesh->numActiveElements(); double areaPerCell = 1.0 / numCells; FieldContainer<double> integrals(numCells,numTrialDofs); FieldContainer<double> expectedIntegrals(numCells,numTrialDofs); double sidelengthOfCell = 1.0 / nCells; DofOrderingPtr trialOrdering = elemType->trialOrderPtr; int dofForField = trialOrdering->getDofIndex(u->ID(), 0); vector<int> dofsForFlux; const vector<int>* sidesForFlux = &trialOrdering->getSidesForVarID(beta_n_u_hat->ID()); for (vector<int>::const_iterator sideIt = sidesForFlux->begin(); sideIt != sidesForFlux->end(); sideIt++) { int sideIndex = *sideIt; dofsForFlux.push_back(trialOrdering->getDofIndex(beta_n_u_hat->ID(), 0, sideIndex)); } for (int cellIndex = 0; cellIndex < numCells; cellIndex++) { expectedIntegrals(cellIndex, dofForField) = areaPerCell; for (vector<int>::iterator dofIt = dofsForFlux.begin(); dofIt != dofsForFlux.end(); dofIt++) { int fluxDofIndex = *dofIt; expectedIntegrals(cellIndex, fluxDofIndex) = sidelengthOfCell; } } // cout << "expectedIntegrals:\n" << expectedIntegrals; // setup: with constant degrees of freedom, we expect that the integral of int_dK (flux) + int_K (field) will be ones for each degree of freedom, assuming the basis functions for these constants field/flux variables are just C = 1.0. // //On a unit square, int_K (constant) = 1.0, and int_dK (u_i) = 1, for i = 0,...,3. LinearTermPtr lt = 1.0 * beta_n_u_hat; LinearTermPtr field = 1.0 * u; lt->addTerm(field,true); lt->integrate(integrals, elemType->trialOrderPtr, basisCache); double tol = 1e-12; double maxDiff; success = TestSuite::fcsAgree(integrals,expectedIntegrals,tol,maxDiff); if (success==false) { cout << "Failed testIntegrateMixedBasis with maxDiff = " << maxDiff << endl; } return success; }
int main(int argc, char *argv[]) { #ifdef HAVE_MPI Teuchos::GlobalMPISession mpiSession(&argc, &argv,0); choice::MpiArgs args( argc, argv ); #else choice::Args args( argc, argv ); #endif int rank = Teuchos::GlobalMPISession::getRank(); int numProcs = Teuchos::GlobalMPISession::getNProc(); int nCells = args.Input<int>("--nCells", "num cells",2); int numRefs = args.Input<int>("--numRefs","num adaptive refinements",0); int numPreRefs = args.Input<int>("--numPreRefs","num preemptive adaptive refinements",0); int order = args.Input<int>("--order","order of approximation",2); double eps = args.Input<double>("--epsilon","diffusion parameter",1e-2); double energyThreshold = args.Input<double>("-energyThreshold","energy thresh for adaptivity", .5); double rampHeight = args.Input<double>("--rampHeight","ramp height at x = 2", 0.0); bool useAnisotropy = args.Input<bool>("--useAnisotropy","aniso flag ", false); FunctionPtr zero = Function::constant(0.0); FunctionPtr one = Function::constant(1.0); FunctionPtr n = Teuchos::rcp( new UnitNormalFunction ); vector<double> e1,e2; e1.push_back(1.0); e1.push_back(0.0); e2.push_back(0.0); e2.push_back(1.0); //////////////////// DECLARE VARIABLES /////////////////////// // define test variables VarFactory varFactory; VarPtr tau = varFactory.testVar("\\tau", HDIV); VarPtr v = varFactory.testVar("v", HGRAD); // define trial variables VarPtr uhat = varFactory.traceVar("\\widehat{u}"); VarPtr beta_n_u_minus_sigma_n = varFactory.fluxVar("\\widehat{\\beta \\cdot n u - \\sigma_{n}}"); VarPtr u = varFactory.fieldVar("u"); VarPtr sigma1 = varFactory.fieldVar("\\sigma_1"); VarPtr sigma2 = varFactory.fieldVar("\\sigma_2"); vector<double> beta; beta.push_back(1.0); beta.push_back(0.0); //////////////////// DEFINE BILINEAR FORM /////////////////////// BFPtr confusionBF = Teuchos::rcp( new BF(varFactory) ); // tau terms: confusionBF->addTerm(sigma1 / eps, tau->x()); confusionBF->addTerm(sigma2 / eps, tau->y()); confusionBF->addTerm(u, tau->div()); confusionBF->addTerm(uhat, -tau->dot_normal()); // v terms: confusionBF->addTerm( sigma1, v->dx() ); confusionBF->addTerm( sigma2, v->dy() ); confusionBF->addTerm( -u, beta * v->grad() ); confusionBF->addTerm( beta_n_u_minus_sigma_n, v); // first order term with magnitude alpha double alpha = 0.0; confusionBF->addTerm(alpha * u, v); //////////////////// DEFINE INNER PRODUCT(S) /////////////////////// // robust test norm IPPtr robIP = Teuchos::rcp(new IP); FunctionPtr C_h = Teuchos::rcp( new EpsilonScaling(eps) ); FunctionPtr invH = Teuchos::rcp(new InvHScaling); FunctionPtr invSqrtH = Teuchos::rcp(new InvSqrtHScaling); FunctionPtr sqrtH = Teuchos::rcp(new SqrtHScaling); robIP->addTerm(v*alpha); robIP->addTerm(invSqrtH*v); // robIP->addTerm(v); robIP->addTerm(sqrt(eps) * v->grad() ); robIP->addTerm(beta * v->grad() ); robIP->addTerm(tau->div() ); robIP->addTerm(C_h/sqrt(eps) * tau ); LinearTermPtr vVecLT = Teuchos::rcp(new LinearTerm); LinearTermPtr tauVecLT = Teuchos::rcp(new LinearTerm); vVecLT->addTerm(sqrt(eps)*v->grad()); tauVecLT->addTerm(C_h/sqrt(eps)*tau); LinearTermPtr restLT = Teuchos::rcp(new LinearTerm); restLT->addTerm(alpha*v); restLT->addTerm(invSqrtH*v); restLT = restLT + beta * v->grad(); restLT = restLT + tau->div(); //////////////////// SPECIFY RHS /////////////////////// Teuchos::RCP<RHSEasy> rhs = Teuchos::rcp( new RHSEasy ); FunctionPtr f = zero; // f = one; rhs->addTerm( f * v ); // obviously, with f = 0 adding this term is not necessary! //////////////////// CREATE BCs /////////////////////// Teuchos::RCP<BCEasy> bc = Teuchos::rcp( new BCEasy ); // SpatialFilterPtr inflowBoundary = Teuchos::rcp( new InflowSquareBoundary ); // SpatialFilterPtr outflowBoundary = Teuchos::rcp( new OutflowSquareBoundary); // bc->addDirichlet(beta_n_u_minus_sigma_n, inflowBoundary, zero); // bc->addDirichlet(uhat, outflowBoundary, zero); SpatialFilterPtr rampInflow = Teuchos::rcp(new LeftInflow); SpatialFilterPtr rampBoundary = MeshUtilities::rampBoundary(rampHeight); SpatialFilterPtr freeStream = Teuchos::rcp(new FreeStreamBoundary); SpatialFilterPtr outflowBoundary = Teuchos::rcp(new OutflowBoundary); bc->addDirichlet(uhat, rampBoundary, one); // bc->addDirichlet(uhat, outflowBoundary, one); bc->addDirichlet(beta_n_u_minus_sigma_n, rampInflow, zero); bc->addDirichlet(beta_n_u_minus_sigma_n, freeStream, zero); //////////////////// BUILD MESH /////////////////////// // define nodes for mesh int H1Order = order+1; int pToAdd = 2; // create a pointer to a new mesh: // Teuchos::RCP<Mesh> mesh = MeshUtilities::buildUnitQuadMesh(nCells,confusionBF, H1Order, H1Order+pToAdd); Teuchos::RCP<Mesh> mesh = MeshUtilities::buildRampMesh(rampHeight,confusionBF, H1Order, H1Order+pToAdd); mesh->setPartitionPolicy(Teuchos::rcp(new ZoltanMeshPartitionPolicy("HSFC"))); //////////////////// SOLVE & REFINE /////////////////////// Teuchos::RCP<Solution> solution; solution = Teuchos::rcp( new Solution(mesh, bc, rhs, robIP) ); // solution->solve(false); solution->condensedSolve(); LinearTermPtr residual = rhs->linearTermCopy(); residual->addTerm(-confusionBF->testFunctional(solution)); RieszRepPtr rieszResidual = Teuchos::rcp(new RieszRep(mesh, robIP, residual)); rieszResidual->computeRieszRep(); FunctionPtr e_v = Teuchos::rcp(new RepFunction(v,rieszResidual)); FunctionPtr e_tau = Teuchos::rcp(new RepFunction(tau,rieszResidual)); map<int,FunctionPtr> errRepMap; errRepMap[v->ID()] = e_v; errRepMap[tau->ID()] = e_tau; FunctionPtr errTau = tauVecLT->evaluate(errRepMap,false); FunctionPtr errV = vVecLT->evaluate(errRepMap,false); FunctionPtr errRest = restLT->evaluate(errRepMap,false); FunctionPtr xErr = (errTau->x())*(errTau->x()) + (errV->dx())*(errV->dx()); FunctionPtr yErr = (errTau->y())*(errTau->y()) + (errV->dy())*(errV->dy()); FunctionPtr restErr = errRest*errRest; RefinementStrategy refinementStrategy( solution, energyThreshold ); //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// // PRE REFINEMENTS //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// if (rank==0) { cout << "Number of pre-refinements = " << numPreRefs << endl; } for (int i =0; i<=numPreRefs; i++) { vector<ElementPtr> elems = mesh->activeElements(); vector<ElementPtr>::iterator elemIt; vector<int> wallCells; for (elemIt=elems.begin(); elemIt != elems.end(); elemIt++) { int cellID = (*elemIt)->cellID(); int numSides = mesh->getElement(cellID)->numSides(); FieldContainer<double> vertices(numSides,2); //for quads mesh->verticesForCell(vertices, cellID); bool cellIDset = false; for (int j = 0; j<numSides; j++) { if ((abs(vertices(j,0)-1.0)<1e-7) && (abs(vertices(j,1))<1e-7) && !cellIDset) // if at singularity, i.e. if a vertex is (1,0) { wallCells.push_back(cellID); cellIDset = true; } } } if (i<numPreRefs) { refinementStrategy.refineCells(wallCells); } } //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// VTKExporter exporter(solution, mesh, varFactory); for (int refIndex=0; refIndex<numRefs; refIndex++) { if (rank==0) { cout << "on ref index " << refIndex << endl; } rieszResidual->computeRieszRep(); // in preparation to get anisotropy vector<int> cellIDs; refinementStrategy.getCellsAboveErrorThreshhold(cellIDs); map<int,double> energyError = solution->energyError(); map<int,double> xErrMap = xErr->cellIntegrals(cellIDs,mesh,5,true); map<int,double> yErrMap = yErr->cellIntegrals(cellIDs,mesh,5,true); map<int,double> restErrMap = restErr->cellIntegrals(cellIDs,mesh,5,true); for (vector<ElementPtr>::iterator elemIt = mesh->activeElements().begin(); elemIt!=mesh->activeElements().end(); elemIt++) { int cellID = (*elemIt)->cellID(); double err = xErrMap[cellID]+ yErrMap[cellID] + restErrMap[cellID]; if (rank==0) cout << "err thru LT = " << sqrt(err) << ", while energy err = " << energyError[cellID] << endl; } map<int,double> ratio,xErr,yErr; vector<ElementPtr> elems = mesh->activeElements(); for (vector<ElementPtr>::iterator elemIt = elems.begin(); elemIt!=elems.end(); elemIt++) { int cellID = (*elemIt)->cellID(); ratio[cellID] = 0.0; xErr[cellID] = 0.0; yErr[cellID] = 0.0; if (std::find(cellIDs.begin(),cellIDs.end(),cellID)!=cellIDs.end()) // if this cell is above energy thresh { ratio[cellID] = yErrMap[cellID]/xErrMap[cellID]; xErr[cellID] = xErrMap[cellID]; yErr[cellID] = yErrMap[cellID]; } } FunctionPtr ratioFxn = Teuchos::rcp(new EnergyErrorFunction(ratio)); FunctionPtr xErrFxn = Teuchos::rcp(new EnergyErrorFunction(xErr)); FunctionPtr yErrFxn = Teuchos::rcp(new EnergyErrorFunction(yErr)); std::ostringstream oss; oss << refIndex; exporter.exportFunction(ratioFxn, string("ratio")+oss.str()); exporter.exportFunction(xErrFxn, string("xErr")+oss.str()); exporter.exportFunction(yErrFxn, string("yErr")+oss.str()); if (useAnisotropy) { refinementStrategy.refine(rank==0,xErrMap,yErrMap); //anisotropic refinements } else { refinementStrategy.refine(rank==0); // no anisotropy } solution->condensedSolve(); } // final solve on final mesh solution->condensedSolve(); //////////////////// print to file /////////////////////// FunctionPtr orderFxn = Teuchos::rcp(new MeshPolyOrderFunction(mesh)); std::ostringstream oss; oss << nCells; if (rank==0) { exporter.exportSolution(string("robustIP")+oss.str()); exporter.exportFunction(orderFxn, "meshOrder"); cout << endl; } return 0; }
int main(int argc, char *argv[]) { #ifdef HAVE_MPI Teuchos::GlobalMPISession mpiSession(&argc, &argv,0); choice::MpiArgs args( argc, argv ); #else choice::Args args( argc, argv ); #endif int rank = Teuchos::GlobalMPISession::getRank(); int numProcs = Teuchos::GlobalMPISession::getNProc(); int nCells = args.Input<int>("--nCells", "num cells",2); int numRefs = args.Input<int>("--numRefs","num adaptive refinements",0); int numPreRefs = args.Input<int>("--numPreRefs","num preemptive adaptive refinements",0); int order = args.Input<int>("--order","order of approximation",2); double eps = args.Input<double>("--epsilon","diffusion parameter",1e-2); double energyThreshold = args.Input<double>("-energyThreshold","energy thresh for adaptivity", .5); double rampHeight = args.Input<double>("--rampHeight","ramp height at x = 2", 0.0); double ipSwitch = args.Input<double>("--ipSwitch","point at which to switch to graph norm", 0.0); // default to 0 to remain on robust norm bool useAnisotropy = args.Input<bool>("--useAnisotropy","aniso flag ", false); int H1Order = order+1; int pToAdd = args.Input<int>("--pToAdd","test space enrichment", 2); FunctionPtr zero = Function::constant(0.0); FunctionPtr one = Function::constant(1.0); FunctionPtr n = Teuchos::rcp( new UnitNormalFunction ); vector<double> e1,e2; e1.push_back(1.0);e1.push_back(0.0); e2.push_back(0.0);e2.push_back(1.0); //////////////////// DECLARE VARIABLES /////////////////////// // define test variables VarFactory varFactory; VarPtr tau = varFactory.testVar("\\tau", HDIV); VarPtr v = varFactory.testVar("v", HGRAD); // define trial variables VarPtr uhat = varFactory.traceVar("\\widehat{u}"); VarPtr beta_n_u_minus_sigma_n = varFactory.fluxVar("\\widehat{\\beta \\cdot n u - \\sigma_{n}}"); VarPtr u = varFactory.fieldVar("u"); VarPtr sigma1 = varFactory.fieldVar("\\sigma_1"); VarPtr sigma2 = varFactory.fieldVar("\\sigma_2"); vector<double> beta; beta.push_back(1.0); beta.push_back(0.0); //////////////////// DEFINE BILINEAR FORM /////////////////////// BFPtr confusionBF = Teuchos::rcp( new BF(varFactory) ); // tau terms: confusionBF->addTerm(sigma1 / eps, tau->x()); confusionBF->addTerm(sigma2 / eps, tau->y()); confusionBF->addTerm(u, tau->div()); confusionBF->addTerm(uhat, -tau->dot_normal()); // v terms: confusionBF->addTerm( sigma1, v->dx() ); confusionBF->addTerm( sigma2, v->dy() ); confusionBF->addTerm( -u, beta * v->grad() ); confusionBF->addTerm( beta_n_u_minus_sigma_n, v); // first order term with magnitude alpha double alpha = 0.0; // confusionBF->addTerm(alpha * u, v); //////////////////// BUILD MESH /////////////////////// // create a pointer to a new mesh: Teuchos::RCP<Mesh> mesh = MeshUtilities::buildUnitQuadMesh(nCells,confusionBF, H1Order, H1Order+pToAdd); mesh->setPartitionPolicy(Teuchos::rcp(new ZoltanMeshPartitionPolicy("HSFC"))); MeshInfo meshInfo(mesh); // gets info like cell measure, etc //////////////////// DEFINE INNER PRODUCT(S) /////////////////////// IPPtr ip = Teuchos::rcp(new IP); /* // robust test norm FunctionPtr C_h = Teuchos::rcp( new EpsilonScaling(eps) ); FunctionPtr invH = Teuchos::rcp(new InvHScaling); FunctionPtr invSqrtH = Teuchos::rcp(new InvSqrtHScaling); FunctionPtr sqrtH = Teuchos::rcp(new SqrtHScaling); FunctionPtr hSwitch = Teuchos::rcp(new HSwitch(ipSwitch,mesh)); ip->addTerm(hSwitch*sqrt(eps) * v->grad() ); ip->addTerm(hSwitch*beta * v->grad() ); ip->addTerm(hSwitch*tau->div() ); // graph norm ip->addTerm( (one-hSwitch)*((1.0/eps) * tau + v->grad())); ip->addTerm( (one-hSwitch)*(beta * v->grad() - tau->div())); // regularizing terms ip->addTerm(C_h/sqrt(eps) * tau ); ip->addTerm(invSqrtH*v); */ // robust test norm IPPtr robIP = Teuchos::rcp(new IP); FunctionPtr C_h = Teuchos::rcp( new EpsilonScaling(eps) ); FunctionPtr invH = Teuchos::rcp(new InvHScaling); FunctionPtr invSqrtH = Teuchos::rcp(new InvSqrtHScaling); FunctionPtr sqrtH = Teuchos::rcp(new SqrtHScaling); FunctionPtr hSwitch = Teuchos::rcp(new HSwitch(ipSwitch,mesh)); robIP->addTerm(sqrt(eps) * v->grad() ); robIP->addTerm(beta * v->grad() ); robIP->addTerm(tau->div() ); // regularizing terms robIP->addTerm(C_h/sqrt(eps) * tau ); robIP->addTerm(invSqrtH*v); IPPtr graphIP = confusionBF->graphNorm(); graphIP->addTerm(invSqrtH*v); // graphIP->addTerm(C_h/sqrt(eps) * tau ); IPPtr switchIP = Teuchos::rcp(new IPSwitcher(robIP,graphIP,ipSwitch)); // rob IP for h>ipSwitch mesh size, graph norm o/w ip = switchIP; LinearTermPtr vVecLT = Teuchos::rcp(new LinearTerm); LinearTermPtr tauVecLT = Teuchos::rcp(new LinearTerm); vVecLT->addTerm(sqrt(eps)*v->grad()); tauVecLT->addTerm(C_h/sqrt(eps)*tau); LinearTermPtr restLT = Teuchos::rcp(new LinearTerm); restLT->addTerm(alpha*v); restLT->addTerm(invSqrtH*v); restLT = restLT + beta * v->grad(); restLT = restLT + tau->div(); //////////////////// SPECIFY RHS /////////////////////// Teuchos::RCP<RHSEasy> rhs = Teuchos::rcp( new RHSEasy ); FunctionPtr f = zero; // f = one; rhs->addTerm( f * v ); // obviously, with f = 0 adding this term is not necessary! //////////////////// CREATE BCs /////////////////////// Teuchos::RCP<BCEasy> bc = Teuchos::rcp( new BCEasy ); SpatialFilterPtr Inflow = Teuchos::rcp(new LeftInflow); SpatialFilterPtr wallBoundary = Teuchos::rcp(new WallBoundary);//MeshUtilities::rampBoundary(rampHeight); SpatialFilterPtr freeStream = Teuchos::rcp(new FreeStreamBoundary); bc->addDirichlet(uhat, wallBoundary, one); // bc->addDirichlet(uhat, wallBoundary, Teuchos::rcp(new WallSmoothBC(eps))); bc->addDirichlet(beta_n_u_minus_sigma_n, Inflow, zero); bc->addDirichlet(beta_n_u_minus_sigma_n, freeStream, zero); //////////////////// SOLVE & REFINE /////////////////////// Teuchos::RCP<Solution> solution; solution = Teuchos::rcp( new Solution(mesh, bc, rhs, ip) ); BCPtr nullBC = Teuchos::rcp((BC*)NULL); RHSPtr nullRHS = Teuchos::rcp((RHS*)NULL); IPPtr nullIP = Teuchos::rcp((IP*)NULL); SolutionPtr backgroundFlow = Teuchos::rcp(new Solution(mesh, nullBC, nullRHS, nullIP) ); mesh->registerSolution(backgroundFlow); // to trigger issue with p-refinements map<int, Teuchos::RCP<Function> > functionMap; functionMap[u->ID()] = Function::constant(3.14); backgroundFlow->projectOntoMesh(functionMap); // lower p to p = 1 at SINGULARITY only vector<int> ids; /* for (int i = 0;i<mesh->numActiveElements();i++){ bool cellIDset = false; int cellID = mesh->activeElements()[i]->cellID(); int elemOrder = mesh->cellPolyOrder(cellID)-1; FieldContainer<double> vv(4,2); mesh->verticesForCell(vv, cellID); bool vertexOnWall = false; bool vertexAtSingularity = false; for (int j = 0;j<4;j++){ if ((abs(vv(j,0)-.5) + abs(vv(j,1)))<1e-10){ vertexAtSingularity = true; cellIDset = true; } } if (!vertexAtSingularity && elemOrder<2 && !cellIDset ){ ids.push_back(cellID); cout << "celliD = " << cellID << endl; } } */ ids.push_back(1); ids.push_back(3); mesh->pRefine(ids); // to put order = 1 return 0; LinearTermPtr residual = rhs->linearTermCopy(); residual->addTerm(-confusionBF->testFunctional(solution)); RieszRepPtr rieszResidual = Teuchos::rcp(new RieszRep(mesh, ip, residual)); rieszResidual->computeRieszRep(); FunctionPtr e_v = Teuchos::rcp(new RepFunction(v,rieszResidual)); FunctionPtr e_tau = Teuchos::rcp(new RepFunction(tau,rieszResidual)); map<int,FunctionPtr> errRepMap; errRepMap[v->ID()] = e_v; errRepMap[tau->ID()] = e_tau; FunctionPtr errTau = tauVecLT->evaluate(errRepMap,false); FunctionPtr errV = vVecLT->evaluate(errRepMap,false); FunctionPtr errRest = restLT->evaluate(errRepMap,false); FunctionPtr xErr = (errTau->x())*(errTau->x()) + (errV->dx())*(errV->dx()); FunctionPtr yErr = (errTau->y())*(errTau->y()) + (errV->dy())*(errV->dy()); FunctionPtr restErr = errRest*errRest; RefinementStrategy refinementStrategy( solution, energyThreshold ); //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// // PRE REFINEMENTS //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// if (rank==0){ cout << "Number of pre-refinements = " << numPreRefs << endl; } for (int i =0;i<=numPreRefs;i++){ vector<ElementPtr> elems = mesh->activeElements(); vector<ElementPtr>::iterator elemIt; vector<int> wallCells; for (elemIt=elems.begin();elemIt != elems.end();elemIt++){ int cellID = (*elemIt)->cellID(); int numSides = mesh->getElement(cellID)->numSides(); FieldContainer<double> vertices(numSides,2); //for quads mesh->verticesForCell(vertices, cellID); bool cellIDset = false; for (int j = 0;j<numSides;j++){ if ((abs(vertices(j,0)-.5)<1e-7) && (abs(vertices(j,1))<1e-7) && !cellIDset){ // if at singularity, i.e. if a vertex is (1,0) wallCells.push_back(cellID); cellIDset = true; } } } if (i<numPreRefs){ refinementStrategy.refineCells(wallCells); } } double minSideLength = meshInfo.getMinCellSideLength() ; double minCellMeasure = meshInfo.getMinCellMeasure() ; if (rank==0){ cout << "after prerefs, sqrt min cell measure = " << sqrt(minCellMeasure) << ", min side length = " << minSideLength << endl; } //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// VTKExporter exporter(solution, mesh, varFactory); for (int refIndex=0;refIndex<numRefs;refIndex++){ if (rank==0){ cout << "on ref index " << refIndex << endl; } rieszResidual->computeRieszRep(); // in preparation to get anisotropy vector<int> cellIDs; refinementStrategy.getCellsAboveErrorThreshhold(cellIDs); map<int,double> energyError = solution->energyError(); map<int,double> xErrMap = xErr->cellIntegrals(cellIDs,mesh,5,true); map<int,double> yErrMap = yErr->cellIntegrals(cellIDs,mesh,5,true); map<int,double> restErrMap = restErr->cellIntegrals(cellIDs,mesh,5,true); for (vector<ElementPtr>::iterator elemIt = mesh->activeElements().begin();elemIt!=mesh->activeElements().end();elemIt++){ int cellID = (*elemIt)->cellID(); double err = xErrMap[cellID]+ yErrMap[cellID] + restErrMap[cellID]; // if (rank==0) // cout << "err thru LT = " << sqrt(err) << ", while energy err = " << energyError[cellID] << endl; } /* map<int,double> ratio,xErr,yErr; vector<ElementPtr> elems = mesh->activeElements(); for (vector<ElementPtr>::iterator elemIt = elems.begin();elemIt!=elems.end();elemIt++){ int cellID = (*elemIt)->cellID(); ratio[cellID] = 0.0; xErr[cellID] = 0.0; yErr[cellID] = 0.0; if (std::find(cellIDs.begin(),cellIDs.end(),cellID)!=cellIDs.end()){ // if this cell is above energy thresh ratio[cellID] = yErrMap[cellID]/xErrMap[cellID]; xErr[cellID] = xErrMap[cellID]; yErr[cellID] = yErrMap[cellID]; } } FunctionPtr ratioFxn = Teuchos::rcp(new EnergyErrorFunction(ratio)); FunctionPtr xErrFxn = Teuchos::rcp(new EnergyErrorFunction(xErr)); FunctionPtr yErrFxn = Teuchos::rcp(new EnergyErrorFunction(yErr)); exporter.exportFunction(ratioFxn, string("ratio")+oss.str()); exporter.exportFunction(xErrFxn, string("xErr")+oss.str()); exporter.exportFunction(yErrFxn, string("yErr")+oss.str()); */ if (useAnisotropy){ refinementStrategy.refine(rank==0,xErrMap,yErrMap); //anisotropic refinements }else{ refinementStrategy.refine(rank==0); // no anisotropy } // lower p to p = 1 at SINGULARITY only vector<int> ids; for (int i = 0;i<mesh->numActiveElements();i++){ int cellID = mesh->activeElements()[i]->cellID(); int elemOrder = mesh->cellPolyOrder(cellID)-1; FieldContainer<double> vv(4,2); mesh->verticesForCell(vv, cellID); bool vertexOnWall = false; bool vertexAtSingularity = false; for (int j = 0;j<4;j++){ if ((abs(vv(j,0)-.5) + abs(vv(j,1)))<1e-10) vertexAtSingularity = true; } if (!vertexAtSingularity && elemOrder<2){ ids.push_back(cellID); } } mesh->pRefine(ids); // to put order = 1 /* if (elemOrder>1){ if (vertexAtSingularity){ vector<int> ids; ids.push_back(cellID); mesh->pRefine(ids,1-(elemOrder-1)); // to put order = 1 // mesh->pRefine(ids); // to put order = 1 if (rank==0) cout << "p unrefining elem with elemOrder = " << elemOrder << endl; } }else{ if (!vertexAtSingularity){ vector<int> ids; ids.push_back(cellID); mesh->pRefine(ids,2-elemOrder); } } */ double minSideLength = meshInfo.getMinCellSideLength() ; if (rank==0) cout << "minSideLength is " << minSideLength << endl; solution->condensedSolve(); std::ostringstream oss; oss << refIndex; } // final solve on final mesh solution->setWriteMatrixToFile(true,"K.mat"); solution->condensedSolve(); //////////////////////////////////////////////////////////////////////////////////////////////////////////// // CHECK CONDITIONING //////////////////////////////////////////////////////////////////////////////////////////////////////////// bool checkConditioning = true; if (checkConditioning){ double minSideLength = meshInfo.getMinCellSideLength() ; StandardAssembler assembler(solution); double maxCond = 0.0; int maxCellID = 0; for (int i = 0;i<mesh->numActiveElements();i++){ int cellID = mesh->getActiveElement(i)->cellID(); FieldContainer<double> ipMat = assembler.getIPMatrix(mesh->getElement(cellID)); double cond = SerialDenseWrapper::getMatrixConditionNumber(ipMat); if (cond>maxCond){ maxCond = cond; maxCellID = cellID; } } if (rank==0){ cout << "cell ID " << maxCellID << " has minCellLength " << minSideLength << " and condition estimate " << maxCond << endl; } string ipMatName = string("ipMat.mat"); ElementPtr maxCondElem = mesh->getElement(maxCellID); FieldContainer<double> ipMat = assembler.getIPMatrix(maxCondElem); SerialDenseWrapper::writeMatrixToMatlabFile(ipMatName,ipMat); } //////////////////// print to file /////////////////////// if (rank==0){ exporter.exportSolution(string("robustIP")); cout << endl; } return 0; }
int main(int argc, char *argv[]) { #ifdef HAVE_MPI Teuchos::GlobalMPISession mpiSession(&argc, &argv,0); int rank=mpiSession.getRank(); int numProcs=mpiSession.getNProc(); #else int rank = 0; int numProcs = 1; #endif int polyOrder = 2; // define our manufactured solution or problem bilinear form: double epsilon = 1e-3; bool useTriangles = false; int pToAdd = 2; int nCells = 2; if ( argc > 1) { nCells = atoi(argv[1]); if (rank==0) { cout << "numCells = " << nCells << endl; } } int numSteps = 20; if ( argc > 2) { numSteps = atoi(argv[2]); if (rank==0) { cout << "num NR steps = " << numSteps << endl; } } int useHessian = 0; // defaults to "not use" if ( argc > 3) { useHessian = atoi(argv[3]); if (rank==0) { cout << "useHessian = " << useHessian << endl; } } int thresh = numSteps; // threshhold for when to apply linesearch/hessian if ( argc > 4) { thresh = atoi(argv[4]); if (rank==0) { cout << "thresh = " << thresh << endl; } } int H1Order = polyOrder + 1; double energyThreshold = 0.2; // for mesh refinements double nonlinearStepSize = 0.5; double nonlinearRelativeEnergyTolerance = 1e-8; // used to determine convergence of the nonlinear solution //////////////////////////////////////////////////////////////////// // DEFINE VARIABLES //////////////////////////////////////////////////////////////////// // new-style bilinear form definition VarFactory varFactory; VarPtr uhat = varFactory.traceVar("\\widehat{u}"); VarPtr beta_n_u_minus_sigma_hat = varFactory.fluxVar("\\widehat{\\beta_n u - \\sigma_n}"); VarPtr u = varFactory.fieldVar("u"); VarPtr sigma1 = varFactory.fieldVar("\\sigma_1"); VarPtr sigma2 = varFactory.fieldVar("\\sigma_2"); VarPtr tau = varFactory.testVar("\\tau",HDIV); VarPtr v = varFactory.testVar("v",HGRAD); BFPtr bf = Teuchos::rcp( new BF(varFactory) ); // initialize bilinear form //////////////////////////////////////////////////////////////////// // CREATE MESH //////////////////////////////////////////////////////////////////// // create a pointer to a new mesh: Teuchos::RCP<Mesh> mesh = MeshUtilities::buildUnitQuadMesh(nCells, bf, H1Order, H1Order+pToAdd); mesh->setPartitionPolicy(Teuchos::rcp(new ZoltanMeshPartitionPolicy("HSFC"))); //////////////////////////////////////////////////////////////////// // INITIALIZE BACKGROUND FLOW FUNCTIONS //////////////////////////////////////////////////////////////////// BCPtr nullBC = Teuchos::rcp((BC*)NULL); RHSPtr nullRHS = Teuchos::rcp((RHS*)NULL); IPPtr nullIP = Teuchos::rcp((IP*)NULL); SolutionPtr backgroundFlow = Teuchos::rcp(new Solution(mesh, nullBC, nullRHS, nullIP) ); vector<double> e1(2); // (1,0) e1[0] = 1; vector<double> e2(2); // (0,1) e2[1] = 1; FunctionPtr u_prev = Teuchos::rcp( new PreviousSolutionFunction(backgroundFlow, u) ); FunctionPtr beta = e1 * u_prev + Teuchos::rcp( new ConstantVectorFunction( e2 ) ); //////////////////////////////////////////////////////////////////// // DEFINE BILINEAR FORM //////////////////////////////////////////////////////////////////// // tau parts: // 1/eps (sigma, tau)_K + (u, div tau)_K - (u_hat, tau_n)_dK bf->addTerm(sigma1 / epsilon, tau->x()); bf->addTerm(sigma2 / epsilon, tau->y()); bf->addTerm(u, tau->div()); bf->addTerm( - uhat, tau->dot_normal() ); // v: // (sigma, grad v)_K - (sigma_hat_n, v)_dK - (u, beta dot grad v) + (u_hat * n dot beta, v)_dK bf->addTerm( sigma1, v->dx() ); bf->addTerm( sigma2, v->dy() ); bf->addTerm( -u, beta * v->grad()); bf->addTerm( beta_n_u_minus_sigma_hat, v); // ==================== SET INITIAL GUESS ========================== mesh->registerSolution(backgroundFlow); FunctionPtr zero = Teuchos::rcp( new ConstantScalarFunction(0.0) ); FunctionPtr u0 = Teuchos::rcp( new U0 ); map<int, Teuchos::RCP<Function> > functionMap; functionMap[u->ID()] = u0; functionMap[sigma1->ID()] = zero; functionMap[sigma2->ID()] = zero; backgroundFlow->projectOntoMesh(functionMap); // ==================== END SET INITIAL GUESS ========================== //////////////////////////////////////////////////////////////////// // DEFINE INNER PRODUCT //////////////////////////////////////////////////////////////////// // function to scale the squared guy by epsilon/h FunctionPtr epsilonOverHScaling = Teuchos::rcp( new EpsilonScaling(epsilon) ); IPPtr ip = Teuchos::rcp( new IP ); ip->addTerm( epsilonOverHScaling * (1.0/sqrt(epsilon))* tau); ip->addTerm( tau->div()); // ip->addTerm( epsilonOverHScaling * v ); ip->addTerm( v ); ip->addTerm( sqrt(epsilon) * v->grad() ); ip->addTerm(v->grad()); // ip->addTerm( beta * v->grad() ); //////////////////////////////////////////////////////////////////// // DEFINE RHS //////////////////////////////////////////////////////////////////// RHSPtr rhs = RHS::rhs(); FunctionPtr u_prev_squared_div2 = 0.5 * u_prev * u_prev; rhs->addTerm((e1 * u_prev_squared_div2 + e2 * u_prev) * v->grad() - u_prev * tau->div()); //////////////////////////////////////////////////////////////////// // DEFINE DIRICHLET BC //////////////////////////////////////////////////////////////////// FunctionPtr n = Teuchos::rcp( new UnitNormalFunction ); SpatialFilterPtr outflowBoundary = Teuchos::rcp( new TopBoundary); SpatialFilterPtr inflowBoundary = Teuchos::rcp( new NegatedSpatialFilter(outflowBoundary) ); BCPtr inflowBC = BC::bc(); FunctionPtr u0_squared_div_2 = 0.5 * u0 * u0; inflowBC->addDirichlet(beta_n_u_minus_sigma_hat,inflowBoundary, ( e1 * u0_squared_div_2 + e2 * u0) * n ); //////////////////////////////////////////////////////////////////// // CREATE SOLUTION OBJECT //////////////////////////////////////////////////////////////////// Teuchos::RCP<Solution> solution = Teuchos::rcp(new Solution(mesh, inflowBC, rhs, ip)); mesh->registerSolution(solution); //////////////////////////////////////////////////////////////////// // WARNING: UNFINISHED HESSIAN BIT //////////////////////////////////////////////////////////////////// VarFactory hessianVars = varFactory.getBubnovFactory(VarFactory::BUBNOV_TRIAL); VarPtr du = hessianVars.test(u->ID()); BFPtr hessianBF = Teuchos::rcp( new BF(hessianVars) ); // initialize bilinear form // FunctionPtr e_v = Function::constant(1.0); // dummy error rep function for now - should do nothing FunctionPtr u_current = Teuchos::rcp( new PreviousSolutionFunction(solution, u) ); FunctionPtr sig1_prev = Teuchos::rcp( new PreviousSolutionFunction(solution, sigma1) ); FunctionPtr sig2_prev = Teuchos::rcp( new PreviousSolutionFunction(solution, sigma2) ); FunctionPtr sig_prev = (e1*sig1_prev + e2*sig2_prev); FunctionPtr fnhat = Teuchos::rcp(new PreviousSolutionFunction(solution,beta_n_u_minus_sigma_hat)); FunctionPtr uhat_prev = Teuchos::rcp(new PreviousSolutionFunction(solution,uhat)); LinearTermPtr residual = Teuchos::rcp(new LinearTerm);// residual residual->addTerm(fnhat*v - (e1 * (u_prev_squared_div2 - sig1_prev) + e2 * (u_prev - sig2_prev)) * v->grad()); residual->addTerm((1/epsilon)*sig_prev * tau + u_prev * tau->div() - uhat_prev*tau->dot_normal()); LinearTermPtr Bdu = Teuchos::rcp(new LinearTerm);// residual Bdu->addTerm( u_current*tau->div() - u_current*(beta*v->grad())); Teuchos::RCP<RieszRep> riesz = Teuchos::rcp(new RieszRep(mesh, ip, residual)); Teuchos::RCP<RieszRep> duRiesz = Teuchos::rcp(new RieszRep(mesh, ip, Bdu)); riesz->computeRieszRep(); FunctionPtr e_v = Teuchos::rcp(new RepFunction(v,riesz)); e_v->writeValuesToMATLABFile(mesh, "e_v.m"); FunctionPtr posErrPart = Teuchos::rcp(new PositivePart(e_v->dx())); hessianBF->addTerm(e_v->dx()*u,du); // hessianBF->addTerm(posErrPart*u,du); Teuchos::RCP<HessianFilter> hessianFilter = Teuchos::rcp(new HessianFilter(hessianBF)); if (useHessian) { solution->setWriteMatrixToFile(true,"hessianStiffness.dat"); } else { solution->setWriteMatrixToFile(true,"stiffness.dat"); } Teuchos::RCP< LineSearchStep > LS_Step = Teuchos::rcp(new LineSearchStep(riesz)); ofstream out; out.open("Burgers.txt"); double NL_residual = 9e99; for (int i = 0; i<numSteps; i++) { solution->solve(false); // do one solve to initialize things... double stepLength = 1.0; stepLength = LS_Step->stepSize(backgroundFlow,solution, NL_residual); if (useHessian) { solution->setFilter(hessianFilter); } backgroundFlow->addSolution(solution,stepLength); NL_residual = LS_Step->getNLResidual(); if (rank==0) { cout << "NL residual after adding = " << NL_residual << " with step size " << stepLength << endl; out << NL_residual << endl; // saves initial NL error } } out.close(); //////////////////////////////////////////////////////////////////// // DEFINE REFINEMENT STRATEGY //////////////////////////////////////////////////////////////////// Teuchos::RCP<RefinementStrategy> refinementStrategy; refinementStrategy = Teuchos::rcp(new RefinementStrategy(solution,energyThreshold)); int numRefs = 0; Teuchos::RCP<NonlinearStepSize> stepSize = Teuchos::rcp(new NonlinearStepSize(nonlinearStepSize)); Teuchos::RCP<NonlinearSolveStrategy> solveStrategy; solveStrategy = Teuchos::rcp( new NonlinearSolveStrategy(backgroundFlow, solution, stepSize, nonlinearRelativeEnergyTolerance)); //////////////////////////////////////////////////////////////////// // SOLVE //////////////////////////////////////////////////////////////////// for (int refIndex=0; refIndex<numRefs; refIndex++) { solveStrategy->solve(rank==0); // print to console on rank 0 refinementStrategy->refine(rank==0); // print to console on rank 0 } // solveStrategy->solve(rank==0); if (rank==0) { backgroundFlow->writeToVTK("Burgers.vtu",min(H1Order+1,4)); solution->writeFluxesToFile(uhat->ID(), "burgers.dat"); cout << "wrote solution files" << endl; } return 0; }
// tests to make sure the energy error calculated thru direct integration works for vector valued test functions too bool ScratchPadTests::testLTResidual() { double tol = 1e-11; int rank = Teuchos::GlobalMPISession::getRank(); bool success = true; int nCells = 2; double eps = .1; //////////////////// DECLARE VARIABLES /////////////////////// // define test variables VarFactoryPtr varFactory = VarFactory::varFactory(); VarPtr tau = varFactory->testVar("\\tau", HDIV); VarPtr v = varFactory->testVar("v", HGRAD); // define trial variables VarPtr uhat = varFactory->traceVar("\\widehat{u}"); VarPtr beta_n_u_minus_sigma_n = varFactory->fluxVar("\\widehat{\\beta \\cdot n u - \\sigma_{n}}"); VarPtr u = varFactory->fieldVar("u"); VarPtr sigma1 = varFactory->fieldVar("\\sigma_1"); VarPtr sigma2 = varFactory->fieldVar("\\sigma_2"); vector<double> beta; beta.push_back(1.0); beta.push_back(0.0); //////////////////// DEFINE BILINEAR FORM /////////////////////// BFPtr confusionBF = Teuchos::rcp( new BF(varFactory) ); // tau terms: confusionBF->addTerm(sigma1 / eps, tau->x()); confusionBF->addTerm(sigma2 / eps, tau->y()); confusionBF->addTerm(u, tau->div()); confusionBF->addTerm(uhat, -tau->dot_normal()); // v terms: confusionBF->addTerm( sigma1, v->dx() ); confusionBF->addTerm( sigma2, v->dy() ); confusionBF->addTerm( -u, beta * v->grad() ); confusionBF->addTerm( beta_n_u_minus_sigma_n, v); //////////////////// DEFINE INNER PRODUCT(S) /////////////////////// // robust test norm IPPtr ip = Teuchos::rcp(new IP); // choose the mesh-independent norm even though it may have boundary layers ip->addTerm(v->grad()); ip->addTerm(v); ip->addTerm(tau); ip->addTerm(tau->div()); //////////////////// SPECIFY RHS AND HELPFUL FUNCTIONS /////////////////////// FunctionPtr n = Function::normal(); vector<double> e1,e2; e1.push_back(1.0); e1.push_back(0.0); e2.push_back(0.0); e2.push_back(1.0); FunctionPtr one = Function::constant(1.0); FunctionPtr zero = Function::constant(0.0); RHSPtr rhs = RHS::rhs(); FunctionPtr f = one; // if this is set to zero instead, we pass the test (a clue?) rhs->addTerm( f * v ); //////////////////// CREATE BCs /////////////////////// BCPtr bc = BC::bc(); SpatialFilterPtr squareBoundary = Teuchos::rcp( new SquareBoundary ); bc->addDirichlet(uhat, squareBoundary, one); //////////////////// BUILD MESH /////////////////////// // define nodes for mesh int order = 2; int H1Order = order+1; int pToAdd = 2; // create a pointer to a new mesh: Teuchos::RCP<Mesh> mesh = MeshUtilities::buildUnitQuadMesh(nCells,confusionBF, H1Order, H1Order+pToAdd); //////////////////// SOLVE & REFINE /////////////////////// Teuchos::RCP<Solution> solution; solution = Teuchos::rcp( new Solution(mesh, bc, rhs, ip) ); solution->solve(false); double energyError = solution->energyErrorTotal(); LinearTermPtr residual = rhs->linearTermCopy(); residual->addTerm(-confusionBF->testFunctional(solution),true); // FunctionPtr uh = Function::solution(uhat,solution); // FunctionPtr fn = Function::solution(beta_n_u_minus_sigma_n,solution); // FunctionPtr uF = Function::solution(u,solution); // FunctionPtr sigma = e1*Function::solution(sigma1,solution)+e2*Function::solution(sigma2,solution); // residual->addTerm(- (fn*v - uh*tau->dot_normal())); // residual->addTerm(- (uF*(tau->div() - beta*v->grad()) + sigma*((1/eps)*tau + v->grad()))); // residual->addTerm(-(fn*v - uF*beta*v->grad() + sigma*v->grad())); // just v portion // residual->addTerm(uh*tau->dot_normal() - uF*tau->div() - sigma*((1/eps)*tau)); // just tau portion Teuchos::RCP<RieszRep> rieszResidual = Teuchos::rcp(new RieszRep(mesh, ip, residual)); rieszResidual->computeRieszRep(); double energyErrorLT = rieszResidual->getNorm(); int cubEnrich = 0; bool testVsTest = true; FunctionPtr e_v = RieszRep::repFunction(v,rieszResidual); FunctionPtr e_tau = RieszRep::repFunction(tau,rieszResidual); // experiment by Nate: manually specify the error (this appears to produce identical results, as it should) // FunctionPtr err = e_v * e_v + e_tau * e_tau + e_v->grad() * e_v->grad() + e_tau->div() * e_tau->div(); map<int,FunctionPtr> errFxns; errFxns[v->ID()] = e_v; errFxns[tau->ID()] = e_tau; LinearTermPtr ipAtErrFxns = ip->evaluate(errFxns); FunctionPtr err = ip->evaluate(errFxns)->evaluate(errFxns); double energyErrorIntegrated = sqrt(err->integrate(mesh,cubEnrich,testVsTest)); // check that energy error computed thru Solution and through rieszRep are the same bool success1 = abs(energyError-energyErrorLT)<tol; // checks that matrix-computed and integrated errors are the same bool success2 = abs(energyErrorLT-energyErrorIntegrated)<tol; success = success1==true && success2==true; if (!success) { if (rank==0) cout << "Failed testLTResidual; energy error = " << energyError << ", while linearTerm error is computed to be " << energyErrorLT << ", and when computing through integration of the Riesz rep function, error = " << energyErrorIntegrated << endl; } // VTKExporter exporter(solution, mesh, varFactory); // exporter.exportSolution("testLTRes"); // cout << endl; return success; }
bool ScratchPadTests::testGalerkinOrthogonality() { double tol = 1e-11; bool success = true; //////////////////// DECLARE VARIABLES /////////////////////// // define test variables VarFactoryPtr varFactory = VarFactory::varFactory(); VarPtr v = varFactory->testVar("v", HGRAD); vector<double> beta; beta.push_back(1.0); beta.push_back(1.0); //////////////////// DEFINE INNER PRODUCT(S) /////////////////////// // robust test norm IPPtr ip = Teuchos::rcp(new IP); ip->addTerm(v); ip->addTerm(beta*v->grad()); // define trial variables VarPtr beta_n_u = varFactory->fluxVar("\\widehat{\\beta \\cdot n }"); VarPtr u = varFactory->fieldVar("u"); //////////////////// BUILD MESH /////////////////////// BFPtr convectionBF = Teuchos::rcp( new BF(varFactory) ); FunctionPtr n = Function::normal(); // v terms: convectionBF->addTerm( -u, beta * v->grad() ); convectionBF->addTerm( beta_n_u, v); // define nodes for mesh int order = 2; int H1Order = order+1; int pToAdd = 1; // create a pointer to a new mesh: Teuchos::RCP<Mesh> mesh = MeshUtilities::buildUnitQuadMesh(4, convectionBF, H1Order, H1Order+pToAdd); //////////////////// SOLVE /////////////////////// RHSPtr rhs = RHS::rhs(); BCPtr bc = BC::bc(); SpatialFilterPtr inflowBoundary = Teuchos::rcp( new InflowSquareBoundary ); SpatialFilterPtr outflowBoundary = Teuchos::rcp( new NegatedSpatialFilter(inflowBoundary) ); FunctionPtr uIn; uIn = Teuchos::rcp(new Uinflow); // uses a discontinuous piecewise-constant basis function on left and bottom sides of square bc->addDirichlet(beta_n_u, inflowBoundary, beta*n*uIn); Teuchos::RCP<Solution> solution; solution = Teuchos::rcp( new Solution(mesh, bc, rhs, ip) ); solution->solve(false); FunctionPtr uFxn = Function::solution(u, solution); FunctionPtr fnhatFxn = Function::solution(beta_n_u,solution); // make residual for riesz representation function LinearTermPtr residual = Teuchos::rcp(new LinearTerm);// residual FunctionPtr parity = Function::sideParity(); residual->addTerm(-fnhatFxn*v + (beta*uFxn)*v->grad()); Teuchos::RCP<RieszRep> riesz = Teuchos::rcp(new RieszRep(mesh, ip, residual)); riesz->computeRieszRep(); map<int,FunctionPtr> err_rep_map; err_rep_map[v->ID()] = RieszRep::repFunction(v,riesz); //////////////////// GET BOUNDARY CONDITION DATA /////////////////////// FieldContainer<GlobalIndexType> bcGlobalIndices; FieldContainer<double> bcGlobalValues; mesh->boundary().bcsToImpose(bcGlobalIndices,bcGlobalValues,*(solution->bc()), NULL); set<int> bcInds; for (int i=0; i<bcGlobalIndices.dimension(0); i++) { bcInds.insert(bcGlobalIndices(i)); } //////////////////// CHECK GALERKIN ORTHOGONALITY /////////////////////// BCPtr nullBC; RHSPtr nullRHS; IPPtr nullIP; SolutionPtr solnPerturbation = Teuchos::rcp(new Solution(mesh, nullBC, nullRHS, nullIP) ); map< int, vector<DofInfo> > infoMap = constructGlobalDofToLocalDofInfoMap(mesh); for (map< int, vector<DofInfo> >::iterator mapIt = infoMap.begin(); mapIt != infoMap.end(); mapIt++) { int dofIndex = mapIt->first; vector< DofInfo > dofInfoVector = mapIt->second; // all the local dofs that map to dofIndex // create perturbation in direction du solnPerturbation->clear(); // clear all solns // set each corresponding local dof to 1.0 for (vector< DofInfo >::iterator dofInfoIt = dofInfoVector.begin(); dofInfoIt != dofInfoVector.end(); dofInfoIt++) { DofInfo info = *dofInfoIt; FieldContainer<double> solnCoeffs(info.basisCardinality); solnCoeffs(info.basisOrdinal) = 1.0; solnPerturbation->setSolnCoeffsForCellID(solnCoeffs, info.cellID, info.trialID, info.sideIndex); } // solnPerturbation->setSolnCoeffForGlobalDofIndex(1.0,dofIndex); LinearTermPtr b_du = convectionBF->testFunctional(solnPerturbation); FunctionPtr gradient = b_du->evaluate(err_rep_map, TestingUtilities::isFluxOrTraceDof(mesh,dofIndex)); // use boundary part only if flux double grad = gradient->integrate(mesh,10); if (!TestingUtilities::isFluxOrTraceDof(mesh,dofIndex) && abs(grad)>tol) // if we're not single-precision zero FOR FIELDS { // int cellID = mesh->getGlobalToLocalMap()[dofIndex].first; cout << "Failed testGalerkinOrthogonality() for fields with diff " << abs(grad) << " at dof " << dofIndex << "; info:" << endl; cout << dofInfoString(infoMap[dofIndex]); success = false; } } FieldContainer<double> errorJumps(mesh->numGlobalDofs()); //initialized to zero // just test fluxes ON INTERNAL SKELETON here set<GlobalIndexType> activeCellIDs = mesh->getActiveCellIDsGlobal(); for (GlobalIndexType activeCellID : activeCellIDs) { ElementPtr elem = mesh->getElement(activeCellID); for (int sideIndex = 0; sideIndex < 4; sideIndex++) { ElementTypePtr elemType = elem->elementType(); vector<int> localDofIndices = elemType->trialOrderPtr->getDofIndices(beta_n_u->ID(), sideIndex); for (int i = 0; i<localDofIndices.size(); i++) { int globalDofIndex = mesh->globalDofIndex(elem->cellID(), localDofIndices[i]); vector< DofInfo > dofInfoVector = infoMap[globalDofIndex]; solnPerturbation->clear(); TestingUtilities::setSolnCoeffForGlobalDofIndex(solnPerturbation,1.0,globalDofIndex); // also add in BCs for (int i = 0; i<bcGlobalIndices.dimension(0); i++) { TestingUtilities::setSolnCoeffForGlobalDofIndex(solnPerturbation,bcGlobalValues(i),bcGlobalIndices(i)); } LinearTermPtr b_du = convectionBF->testFunctional(solnPerturbation); FunctionPtr gradient = b_du->evaluate(err_rep_map, TestingUtilities::isFluxOrTraceDof(mesh,globalDofIndex)); // use boundary part only if flux double jump = gradient->integrate(mesh,10); errorJumps(globalDofIndex) += jump; } } } for (int i = 0; i<mesh->numGlobalDofs(); i++) { if (abs(errorJumps(i))>tol) { cout << "Failing Galerkin orthogonality test for fluxes with diff " << errorJumps(i) << " at dof " << i << endl; cout << dofInfoString(infoMap[i]); success = false; } } return success; }
// tests to make sure that the rieszNorm computed via matrices is the same as the one computed thru direct integration bool ScratchPadTests::testRieszIntegration() { double tol = 1e-11; bool success = true; int nCells = 2; double eps = .25; //////////////////// DECLARE VARIABLES /////////////////////// // define test variables VarFactoryPtr varFactory = VarFactory::varFactory(); VarPtr tau = varFactory->testVar("\\tau", HDIV); VarPtr v = varFactory->testVar("v", HGRAD); // define trial variables VarPtr uhat = varFactory->traceVar("\\widehat{u}"); VarPtr beta_n_u_minus_sigma_n = varFactory->fluxVar("\\widehat{\\beta \\cdot n u - \\sigma_{n}}"); VarPtr u = varFactory->fieldVar("u"); VarPtr sigma1 = varFactory->fieldVar("\\sigma_1"); VarPtr sigma2 = varFactory->fieldVar("\\sigma_2"); vector<double> beta; beta.push_back(1.0); beta.push_back(0.0); //////////////////// DEFINE BILINEAR FORM /////////////////////// BFPtr confusionBF = Teuchos::rcp( new BF(varFactory) ); // tau terms: confusionBF->addTerm(sigma1 / eps, tau->x()); confusionBF->addTerm(sigma2 / eps, tau->y()); confusionBF->addTerm(u, tau->div()); confusionBF->addTerm(uhat, -tau->dot_normal()); // v terms: confusionBF->addTerm( sigma1, v->dx() ); confusionBF->addTerm( sigma2, v->dy() ); confusionBF->addTerm( -u, beta * v->grad() ); confusionBF->addTerm( beta_n_u_minus_sigma_n, v); //////////////////// DEFINE INNER PRODUCT(S) /////////////////////// // robust test norm IPPtr ip = Teuchos::rcp(new IP); // just H1 projection ip->addTerm(v->grad()); ip->addTerm(v); ip->addTerm(tau); ip->addTerm(tau->div()); //////////////////// SPECIFY RHS AND HELPFUL FUNCTIONS /////////////////////// FunctionPtr n = Function::normal(); vector<double> e1,e2; e1.push_back(1.0); e1.push_back(0.0); e2.push_back(0.0); e2.push_back(1.0); FunctionPtr one = Function::constant(1.0); FunctionPtr zero = Function::constant(0.0); RHSPtr rhs = RHS::rhs(); FunctionPtr f = one; rhs->addTerm( f * v ); // obviously, with f = 0 adding this term is not necessary! //////////////////// CREATE BCs /////////////////////// BCPtr bc = BC::bc(); SpatialFilterPtr squareBoundary = Teuchos::rcp( new SquareBoundary ); bc->addDirichlet(uhat, squareBoundary, zero); //////////////////// BUILD MESH /////////////////////// // define nodes for mesh int order = 2; int H1Order = order+1; int pToAdd = 2; // create a pointer to a new mesh: Teuchos::RCP<Mesh> mesh = MeshUtilities::buildUnitQuadMesh(nCells,confusionBF, H1Order, H1Order+pToAdd); //////////////////// SOLVE & REFINE /////////////////////// LinearTermPtr lt = Teuchos::rcp(new LinearTerm); FunctionPtr fxn = Function::xn(1); // fxn = x lt->addTerm(fxn*v + fxn->grad()*v->grad()); lt->addTerm(fxn*tau->x() + fxn*tau->y() + (fxn->dx() + fxn->dy())*tau->div()); Teuchos::RCP<RieszRep> rieszLT = Teuchos::rcp(new RieszRep(mesh, ip, lt)); rieszLT->computeRieszRep(); double rieszNorm = rieszLT->getNorm(); FunctionPtr e_v = RieszRep::repFunction(v,rieszLT); FunctionPtr e_tau = RieszRep::repFunction(tau,rieszLT); map<int,FunctionPtr> repFxns; repFxns[v->ID()] = e_v; repFxns[tau->ID()] = e_tau; double integratedNorm = sqrt((lt->evaluate(repFxns,false))->integrate(mesh,5,true)); success = abs(rieszNorm-integratedNorm)<tol; if (success==false) { cout << "Failed testRieszIntegration; riesz norm is computed to be = " << rieszNorm << ", while using integration it's computed to be " << integratedNorm << endl; return success; } return success; }
// tests whether a mixed type LT bool ScratchPadTests::testIntegrateDiscontinuousFunction() { bool success = true; //////////////////// DECLARE VARIABLES /////////////////////// // define test variables VarFactoryPtr varFactory = VarFactory::varFactory(); VarPtr v = varFactory->testVar("v", HGRAD); vector<double> beta; beta.push_back(1.0); beta.push_back(1.0); //////////////////// DEFINE INNER PRODUCT(S) /////////////////////// // robust test norm IPPtr ip = Teuchos::rcp(new IP); ip->addTerm(v); ip->addTerm(beta*v->grad()); // for projections IPPtr ipL2 = Teuchos::rcp(new IP); ipL2->addTerm(v); // define trial variables VarPtr beta_n_u = varFactory->fluxVar("\\widehat{\\beta \\cdot n }"); VarPtr u = varFactory->fieldVar("u"); //////////////////// BUILD MESH /////////////////////// BFPtr convectionBF = Teuchos::rcp( new BF(varFactory) ); // v terms: convectionBF->addTerm( -u, beta * v->grad() ); convectionBF->addTerm( beta_n_u, v); // define nodes for mesh int order = 1; int H1Order = order+1; int pToAdd = 1; // create a pointer to a new mesh: Teuchos::RCP<Mesh> mesh = MeshUtilities::buildUnitQuadMesh(2, 1, convectionBF, H1Order, H1Order+pToAdd); //////////////////// integrate discontinuous function - cellIDFunction /////////////////////// // FunctionPtr cellIDFxn = Teuchos::rcp(new CellIDFunction); // should be 0 on cellID 0, 1 on cellID 1 set<int> cellIDs; cellIDs.insert(1); // 0 on cell 0, 1 on cell 1 FunctionPtr indicator = Teuchos::rcp(new IndicatorFunction(cellIDs)); // should be 0 on cellID 0, 1 on cellID 1 double jumpWeight = 13.3; // some random number FunctionPtr edgeRestrictionFxn = Teuchos::rcp(new EdgeFunction); FunctionPtr X = Function::xn(1); LinearTermPtr integrandLT = Function::constant(1.0)*v + Function::constant(jumpWeight)*X*edgeRestrictionFxn*v; // make riesz representation function to more closely emulate the error rep LinearTermPtr indicatorLT = Teuchos::rcp(new LinearTerm);// residual indicatorLT->addTerm(indicator*v); Teuchos::RCP<RieszRep> riesz = Teuchos::rcp(new RieszRep(mesh, ipL2, indicatorLT)); riesz->computeRieszRep(); map<int,FunctionPtr> vmap; vmap[v->ID()] = RieszRep::repFunction(v,riesz); // SHOULD BE L2 projection = same thing!!! FunctionPtr volumeIntegrand = integrandLT->evaluate(vmap,false); FunctionPtr edgeRestrictedIntegrand = integrandLT->evaluate(vmap,true); double edgeRestrictedValue = volumeIntegrand->integrate(mesh,10) + edgeRestrictedIntegrand->integrate(mesh,10); double expectedValue = .5 + .5*jumpWeight; double diff = abs(expectedValue-edgeRestrictedValue); if (abs(diff)>1e-11) { success = false; cout << "Failed testIntegrateDiscontinuousFunction() with expectedValue = " << expectedValue << " and actual value = " << edgeRestrictedValue << endl; } return success; }
// tests whether a mixed type LT bool ScratchPadTests::testLinearTermEvaluationConsistency() { bool success = true; //////////////////// DECLARE VARIABLES /////////////////////// // define test variables VarFactoryPtr varFactory = VarFactory::varFactory(); VarPtr v = varFactory->testVar("v", HGRAD); vector<double> beta; beta.push_back(1.0); beta.push_back(1.0); //////////////////// DEFINE INNER PRODUCT(S) /////////////////////// // robust test norm IPPtr ip = Teuchos::rcp(new IP); ip->addTerm(v); ip->addTerm(beta*v->grad()); // define trial variables VarPtr beta_n_u = varFactory->fluxVar("\\widehat{\\beta \\cdot n }"); VarPtr u = varFactory->fieldVar("u"); //////////////////// BUILD MESH /////////////////////// BFPtr convectionBF = Teuchos::rcp( new BF(varFactory) ); // v terms: convectionBF->addTerm( -u, beta * v->grad() ); convectionBF->addTerm( beta_n_u, v); // define nodes for mesh int order = 1; int H1Order = order+1; int pToAdd = 1; // create a pointer to a new mesh: Teuchos::RCP<Mesh> mesh = MeshUtilities::buildUnitQuadMesh(1, convectionBF, H1Order, H1Order+pToAdd); //////////////////// get fake residual /////////////////////// LinearTermPtr lt = Teuchos::rcp(new LinearTerm); FunctionPtr edgeFxn = Teuchos::rcp(new EdgeFunction); FunctionPtr Xsq = Function::xn(2); FunctionPtr Ysq = Function::yn(2); FunctionPtr XYsq = Xsq*Ysq; lt->addTerm(edgeFxn*v + (beta*XYsq)*v->grad()); Teuchos::RCP<RieszRep> ltRiesz = Teuchos::rcp(new RieszRep(mesh, ip, lt)); ltRiesz->computeRieszRep(); FunctionPtr repFxn = RieszRep::repFunction(v,ltRiesz); map<int,FunctionPtr> rep_map; rep_map[v->ID()] = repFxn; FunctionPtr edgeLt = lt->evaluate(rep_map, true) ; FunctionPtr elemLt = lt->evaluate(rep_map, false); double edgeVal = edgeLt->integrate(mesh,10); double elemVal = elemLt->integrate(mesh,10); LinearTermPtr edgeOnlyLt = Teuchos::rcp(new LinearTerm);// residual edgeOnlyLt->addTerm(edgeFxn*v); FunctionPtr edgeOnly = edgeOnlyLt->evaluate(rep_map,true); double edgeOnlyVal = edgeOnly->integrate(mesh,10); double diff = edgeOnlyVal-edgeVal; if (abs(diff)>1e-11) { success = false; cout << "Failed testLinearTermEvaluationConsistency() with diff = " << diff << endl; } return success; }
bool ScratchPadTests::testResidualMemoryError() { int rank = Teuchos::GlobalMPISession::getRank(); double tol = 1e-11; bool success = true; int nCells = 2; double eps = 1e-2; //////////////////// DECLARE VARIABLES /////////////////////// // define test variables VarFactoryPtr varFactory = VarFactory::varFactory(); VarPtr tau = varFactory->testVar("\\tau", HDIV); VarPtr v = varFactory->testVar("v", HGRAD); // define trial variables VarPtr uhat = varFactory->traceVar("\\widehat{u}"); VarPtr beta_n_u_minus_sigma_n = varFactory->fluxVar("\\widehat{\\beta \\cdot n u - \\sigma_{n}}"); VarPtr u = varFactory->fieldVar("u"); VarPtr sigma1 = varFactory->fieldVar("\\sigma_1"); VarPtr sigma2 = varFactory->fieldVar("\\sigma_2"); vector<double> beta; beta.push_back(1.0); beta.push_back(0.0); //////////////////// DEFINE BILINEAR FORM /////////////////////// BFPtr confusionBF = Teuchos::rcp( new BF(varFactory) ); // tau terms: confusionBF->addTerm(sigma1 / eps, tau->x()); confusionBF->addTerm(sigma2 / eps, tau->y()); confusionBF->addTerm(u, tau->div()); confusionBF->addTerm(uhat, -tau->dot_normal()); // v terms: confusionBF->addTerm( sigma1, v->dx() ); confusionBF->addTerm( sigma2, v->dy() ); confusionBF->addTerm( -u, beta * v->grad() ); confusionBF->addTerm( beta_n_u_minus_sigma_n, v); //////////////////// DEFINE INNER PRODUCT(S) /////////////////////// // robust test norm IPPtr robIP = Teuchos::rcp(new IP); robIP->addTerm(tau); robIP->addTerm(tau->div()); robIP->addTerm(v->grad()); robIP->addTerm(v); //////////////////// SPECIFY RHS /////////////////////// FunctionPtr zero = Function::constant(0.0); FunctionPtr one = Function::constant(1.0); RHSPtr rhs = RHS::rhs(); FunctionPtr f = zero; // FunctionPtr f = one; rhs->addTerm( f * v ); // obviously, with f = 0 adding this term is not necessary! //////////////////// CREATE BCs /////////////////////// BCPtr bc = BC::bc(); SpatialFilterPtr inflowBoundary = Teuchos::rcp( new LRInflowSquareBoundary ); SpatialFilterPtr outflowBoundary = Teuchos::rcp( new LROutflowSquareBoundary); FunctionPtr n = Function::normal(); vector<double> e1,e2; e1.push_back(1.0); e1.push_back(0.0); e2.push_back(0.0); e2.push_back(1.0); bc->addDirichlet(beta_n_u_minus_sigma_n, inflowBoundary, beta*n*one); bc->addDirichlet(uhat, outflowBoundary, zero); //////////////////// BUILD MESH /////////////////////// // define nodes for mesh int order = 2; int H1Order = order+1; int pToAdd = 2; // create a pointer to a new mesh: Teuchos::RCP<Mesh> mesh = MeshUtilities::buildUnitQuadMesh(nCells,confusionBF, H1Order, H1Order+pToAdd); // mesh->setPartitionPolicy(Teuchos::rcp(new ZoltanMeshPartitionPolicy("HSFC"))); //////////////////// SOLVE & REFINE /////////////////////// Teuchos::RCP<Solution> solution; solution = Teuchos::rcp( new Solution(mesh, bc, rhs, robIP) ); solution->solve(false); mesh->registerSolution(solution); double energyErr1 = solution->energyErrorTotal(); LinearTermPtr residual = rhs->linearTermCopy(); residual->addTerm(-confusionBF->testFunctional(solution)); RieszRepPtr rieszResidual = Teuchos::rcp(new RieszRep(mesh, robIP, residual)); rieszResidual->computeRieszRep(); FunctionPtr e_v = RieszRep::repFunction(v,rieszResidual); FunctionPtr e_tau = RieszRep::repFunction(tau,rieszResidual); double energyThreshold = 0.2; // for mesh refinements RefinementStrategy refinementStrategy( solution, energyThreshold ); refinementStrategy.refine(); solution->solve(false); double energyErr2 = solution->energyErrorTotal(); // if energy error rises if (energyErr1 < energyErr2) { if (rank==0) cout << "energy error increased from " << energyErr1 << " to " << energyErr2 << " after refinement.\n"; success = false; } return success; }
bool LinearTermTests::testMixedTermConsistency() { bool success = true; //////////////////// DECLARE VARIABLES /////////////////////// // define test variables VarFactoryPtr varFactory = VarFactory::varFactory(); VarPtr tau = varFactory->testVar("\\tau", HDIV); VarPtr v = varFactory->testVar("v", HGRAD); // define trial variables VarPtr uhat = varFactory->traceVar("\\widehat{u}"); VarPtr beta_n_u_minus_sigma_n = varFactory->fluxVar("\\widehat{\\beta \\cdot n u - \\sigma_{n}}"); VarPtr u = varFactory->fieldVar("u"); VarPtr sigma1 = varFactory->fieldVar("\\sigma_1"); VarPtr sigma2 = varFactory->fieldVar("\\sigma_2"); vector<double> beta; beta.push_back(1.0); beta.push_back(0.0); double eps = .01; //////////////////// DEFINE BILINEAR FORM /////////////////////// BFPtr confusionBF = Teuchos::rcp( new BF(varFactory) ); // tau terms: confusionBF->addTerm(sigma1 / eps, tau->x()); confusionBF->addTerm(sigma2 / eps, tau->y()); confusionBF->addTerm(u, tau->div()); confusionBF->addTerm(uhat, -tau->dot_normal()); // v terms: confusionBF->addTerm( sigma1, v->dx() ); confusionBF->addTerm( sigma2, v->dy() ); confusionBF->addTerm( -u, beta * v->grad() ); confusionBF->addTerm( beta_n_u_minus_sigma_n, v); //////////////////// BUILD MESH /////////////////////// // define nodes for mesh int H1Order = 1; int pToAdd = 1; FieldContainer<double> quadPoints(4,2); quadPoints(0,0) = 0.0; // x1 quadPoints(0,1) = 0.0; // y1 quadPoints(1,0) = 1.0; quadPoints(1,1) = 0.0; quadPoints(2,0) = 1.0; quadPoints(2,1) = 1.0; quadPoints(3,0) = 0.0; quadPoints(3,1) = 1.0; int nCells = 1; int horizontalCells = nCells, verticalCells = nCells; // create a pointer to a new mesh: Teuchos::RCP<Mesh> myMesh = MeshFactory::buildQuadMesh(quadPoints, horizontalCells, verticalCells, confusionBF, H1Order, H1Order+pToAdd); ElementTypePtr elemType = myMesh->getElement(0)->elementType(); // DofOrderingPtr testOrder = elemType->testOrderPtr; BasisCachePtr basisCache = Teuchos::rcp(new BasisCache(elemType, myMesh, true)); LinearTermPtr integrandIBP = Teuchos::rcp(new LinearTerm);// residual vector<double> e1(2); // (1,0) vector<double> e2(2); // (0,1) e1[0] = 1; e2[1] = 1; FunctionPtr n = Function::normal(); FunctionPtr X = Function::xn(1); FunctionPtr Y = Function::yn(1); FunctionPtr testFxn1 = X; FunctionPtr testFxn2 = Y; FunctionPtr divTestFxn = testFxn1->dx() + testFxn2->dy(); FunctionPtr vectorTest = testFxn1*e1 + testFxn2*e2; integrandIBP->addTerm(vectorTest*n*v + -vectorTest*v->grad()); // boundary term // define dummy IP to initialize riesz rep class, but just integrate RHS IPPtr dummyIP = Teuchos::rcp(new IP); dummyIP->addTerm(v); Teuchos::RCP<RieszRep> riesz = Teuchos::rcp(new RieszRep(myMesh, dummyIP, integrandIBP)); map<GlobalIndexType,FieldContainer<double> > rieszRHS = riesz->integrateFunctional(); set<GlobalIndexType> cellIDs = myMesh->cellIDsInPartition(); for (set<GlobalIndexType>::iterator cellIDIt=cellIDs.begin(); cellIDIt !=cellIDs.end(); cellIDIt++) { GlobalIndexType cellID = *cellIDIt; ElementTypePtr elemTypePtr = myMesh->getElementType(cellID); DofOrderingPtr testOrderingPtr = elemTypePtr->testOrderPtr; int numTestDofs = testOrderingPtr->totalDofs(); BasisCachePtr basisCache = BasisCache::basisCacheForCell(myMesh, cellID, true); FieldContainer<double> rhsIBPValues(1,numTestDofs); integrandIBP->integrate(rhsIBPValues, testOrderingPtr, basisCache); FieldContainer<double> rieszValues(1,numTestDofs); (riesz->getFunctional())->integrate(rieszValues, testOrderingPtr, basisCache); double maxDiff; double tol = 1e-13; FieldContainer<double> rhsIBPVals(numTestDofs); for (int i = 0; i< numTestDofs; i++) { rhsIBPVals(i) = rhsIBPValues(0,i); // cout << "riesz rhs values = " << rieszRHS[cellID](i) << ", rhsIBPValues = " << rhsIBPVals(i) << ", riesz returned values = " << rieszValues(0,i) << endl; } bool fcsAgree = TestSuite::fcsAgree(rieszRHS[cellID],rhsIBPVals,tol,maxDiff); if (!fcsAgree) { success=false; cout << "Failed mixed term consistency test with maxDiff = " << maxDiff << " on cellID " << cellID<< endl; } } return allSuccess(success); }
int main(int argc, char *argv[]) { #ifdef HAVE_MPI Teuchos::GlobalMPISession mpiSession(&argc, &argv,0); choice::MpiArgs args( argc, argv ); #else choice::Args args( argc, argv ); #endif int commRank = Teuchos::GlobalMPISession::getRank(); int numProcs = Teuchos::GlobalMPISession::getNProc(); // Required arguments int numRefs = args.Input<int>("--numRefs", "number of refinement steps"); bool enforceLocalConservation = args.Input<bool>("--conserve", "enforce local conservation"); bool steady = args.Input<bool>("--steady", "run steady rather than transient"); // Optional arguments (have defaults) double dt = args.Input("--dt", "time step", 0.25); int numTimeSteps = args.Input("--nt", "number of time steps", 20); halfWidth = args.Input("--halfWidth", "half width of inlet profile", 1.0); args.Process(); //////////////////// DECLARE VARIABLES /////////////////////// // define test variables VarFactory varFactory; VarPtr v = varFactory.testVar("v", HGRAD); // define trial variables VarPtr beta_n_u_hat = varFactory.fluxVar("\\widehat{\\beta \\cdot n }"); VarPtr u = varFactory.fieldVar("u"); vector<double> beta; beta.push_back(1.0); beta.push_back(0.0); //////////////////// BUILD MESH /////////////////////// BFPtr bf = Teuchos::rcp( new BF(varFactory) ); // define nodes for mesh FieldContainer<double> meshBoundary(4,2); meshBoundary(0,0) = 0.0; // x1 meshBoundary(0,1) = -2.0; // y1 meshBoundary(1,0) = 4.0; meshBoundary(1,1) = -2.0; meshBoundary(2,0) = 4.0; meshBoundary(2,1) = 2.0; meshBoundary(3,0) = 0.0; meshBoundary(3,1) = 2.0; int horizontalCells = 8, verticalCells = 8; // create a pointer to a new mesh: Teuchos::RCP<Mesh> mesh = Mesh::buildQuadMesh(meshBoundary, horizontalCells, verticalCells, bf, H1Order, H1Order+pToAdd); //////////////////////////////////////////////////////////////////// // INITIALIZE FLOW FUNCTIONS //////////////////////////////////////////////////////////////////// BCPtr nullBC = Teuchos::rcp((BC*)NULL); RHSPtr nullRHS = Teuchos::rcp((RHS*)NULL); IPPtr nullIP = Teuchos::rcp((IP*)NULL); SolutionPtr prevTimeFlow = Teuchos::rcp(new Solution(mesh, nullBC, nullRHS, nullIP) ); SolutionPtr flowResidual = Teuchos::rcp(new Solution(mesh, nullBC, nullRHS, nullIP) ); FunctionPtr u_prev_time = Teuchos::rcp( new PreviousSolutionFunction(prevTimeFlow, u) ); //////////////////// DEFINE BILINEAR FORM /////////////////////// Teuchos::RCP<RHSEasy> rhs = Teuchos::rcp( new RHSEasy ); FunctionPtr invDt = Teuchos::rcp(new ScalarParamFunction(1.0/dt)); // v terms: bf->addTerm( beta * u, - v->grad() ); bf->addTerm( beta_n_u_hat, v); if (!steady) { bf->addTerm( u, invDt*v ); rhs->addTerm( u_prev_time * invDt * v ); } //////////////////// SPECIFY RHS /////////////////////// FunctionPtr f = Teuchos::rcp( new ConstantScalarFunction(0.0) ); rhs->addTerm( f * v ); // obviously, with f = 0 adding this term is not necessary! //////////////////// DEFINE INNER PRODUCT(S) /////////////////////// IPPtr ip = bf->graphNorm(); // ip->addTerm(v); // ip->addTerm(beta*v->grad()); //////////////////// CREATE BCs /////////////////////// Teuchos::RCP<BCEasy> bc = Teuchos::rcp( new BCEasy ); SpatialFilterPtr lBoundary = Teuchos::rcp( new LeftBoundary ); FunctionPtr u1 = Teuchos::rcp( new InletBC ); bc->addDirichlet(beta_n_u_hat, lBoundary, -u1); Teuchos::RCP<Solution> solution = Teuchos::rcp( new Solution(mesh, bc, rhs, ip) ); // ==================== Register Solutions ========================== mesh->registerSolution(solution); mesh->registerSolution(prevTimeFlow); mesh->registerSolution(flowResidual); // ==================== SET INITIAL GUESS ========================== double u_free = 0.0; map<int, Teuchos::RCP<Function> > functionMap; // functionMap[u->ID()] = Teuchos::rcp( new ConInletBC functionMap[u->ID()] = Teuchos::rcp( new InletBC ); prevTimeFlow->projectOntoMesh(functionMap); //////////////////// SOLVE & REFINE /////////////////////// if (enforceLocalConservation) { if (steady) { FunctionPtr zero = Teuchos::rcp( new ConstantScalarFunction(0.0) ); solution->lagrangeConstraints()->addConstraint(beta_n_u_hat == zero); } else { // FunctionPtr parity = Teuchos::rcp<Function>( new SideParityFunction ); // LinearTermPtr conservedQuantity = Teuchos::rcp<LinearTerm>( new LinearTerm(parity, beta_n_u_minus_sigma_n) ); LinearTermPtr conservedQuantity = Teuchos::rcp<LinearTerm>( new LinearTerm(1.0, beta_n_u_hat) ); LinearTermPtr sourcePart = Teuchos::rcp<LinearTerm>( new LinearTerm(invDt, u) ); conservedQuantity->addTerm(sourcePart, true); solution->lagrangeConstraints()->addConstraint(conservedQuantity == u_prev_time * invDt); } } double energyThreshold = 0.2; // for mesh refinements RefinementStrategy refinementStrategy( solution, energyThreshold ); VTKExporter exporter(solution, mesh, varFactory); for (int refIndex=0; refIndex<=numRefs; refIndex++) { if (steady) { solution->solve(false); if (commRank == 0) { stringstream outfile; outfile << "Convection_" << refIndex; exporter.exportSolution(outfile.str()); // Check local conservation FunctionPtr flux = Teuchos::rcp( new PreviousSolutionFunction(solution, beta_n_u_hat) ); FunctionPtr zero = Teuchos::rcp( new ConstantScalarFunction(0.0) ); Teuchos::Tuple<double, 3> fluxImbalances = checkConservation(flux, zero, varFactory, mesh); cout << "Mass flux: Largest Local = " << fluxImbalances[0] << ", Global = " << fluxImbalances[1] << ", Sum Abs = " << fluxImbalances[2] << endl; } } else { int timestepCount = 0; double time_tol = 1e-8; double L2_time_residual = 1e9; // cout << L2_time_residual <<" "<< time_tol << timestepCount << numTimeSteps << endl; while((L2_time_residual > time_tol) && (timestepCount < numTimeSteps)) { solution->solve(false); // Subtract solutions to get residual flowResidual->setSolution(solution); flowResidual->addSolution(prevTimeFlow, -1.0); L2_time_residual = flowResidual->L2NormOfSolutionGlobal(u->ID()); if (commRank == 0) { cout << endl << "Timestep: " << timestepCount << ", dt = " << dt << ", Time residual = " << L2_time_residual << endl; stringstream outfile; outfile << "TransientConvection_" << refIndex << "-" << timestepCount; exporter.exportSolution(outfile.str()); // Check local conservation FunctionPtr flux = Teuchos::rcp( new PreviousSolutionFunction(solution, beta_n_u_hat) ); FunctionPtr source = Teuchos::rcp( new PreviousSolutionFunction(flowResidual, u) ); source = -invDt * source; Teuchos::Tuple<double, 3> fluxImbalances = checkConservation(flux, source, varFactory, mesh); cout << "Mass flux: Largest Local = " << fluxImbalances[0] << ", Global = " << fluxImbalances[1] << ", Sum Abs = " << fluxImbalances[2] << endl; } prevTimeFlow->setSolution(solution); // reset previous time solution to current time sol timestepCount++; } } if (refIndex < numRefs) refinementStrategy.refine(commRank==0); // print to console on commRank 0 } return 0; }
// tests Riesz inversion by integration by parts bool LinearTermTests::testRieszInversion() { bool success = true; //////////////////// DECLARE VARIABLES /////////////////////// // define test variables VarFactoryPtr varFactory = VarFactory::varFactory(); VarPtr tau = varFactory->testVar("\\tau", HDIV); VarPtr v = varFactory->testVar("v", HGRAD); // define trial variables VarPtr uhat = varFactory->traceVar("\\widehat{u}"); VarPtr beta_n_u_minus_sigma_n = varFactory->fluxVar("\\widehat{\\beta \\cdot n u - \\sigma_{n}}"); VarPtr u = varFactory->fieldVar("u"); VarPtr sigma1 = varFactory->fieldVar("\\sigma_1"); VarPtr sigma2 = varFactory->fieldVar("\\sigma_2"); vector<double> beta; beta.push_back(1.0); beta.push_back(0.0); double eps = .01; //////////////////// DEFINE BILINEAR FORM /////////////////////// BFPtr confusionBF = Teuchos::rcp( new BF(varFactory) ); // tau terms: confusionBF->addTerm(sigma1 / eps, tau->x()); confusionBF->addTerm(sigma2 / eps, tau->y()); confusionBF->addTerm(u, tau->div()); confusionBF->addTerm(uhat, -tau->dot_normal()); // v terms: confusionBF->addTerm( sigma1, v->dx() ); confusionBF->addTerm( sigma2, v->dy() ); confusionBF->addTerm( -u, beta * v->grad() ); confusionBF->addTerm( beta_n_u_minus_sigma_n, v); //////////////////// BUILD MESH /////////////////////// // define nodes for mesh int H1Order = 1; int pToAdd = 1; FieldContainer<double> quadPoints(4,2); quadPoints(0,0) = 0.0; // x1 quadPoints(0,1) = 0.0; // y1 quadPoints(1,0) = 1.0; quadPoints(1,1) = 0.0; quadPoints(2,0) = 1.0; quadPoints(2,1) = 1.0; quadPoints(3,0) = 0.0; quadPoints(3,1) = 1.0; int nCells = 1; int horizontalCells = nCells, verticalCells = nCells; // create a pointer to a new mesh: Teuchos::RCP<Mesh> myMesh = MeshFactory::buildQuadMesh(quadPoints, horizontalCells, verticalCells, confusionBF, H1Order, H1Order+pToAdd); ElementTypePtr elemType = myMesh->getElement(0)->elementType(); BasisCachePtr basisCache = Teuchos::rcp(new BasisCache(elemType, myMesh)); vector<GlobalIndexType> cellIDs; vector<ElementPtr> elems = myMesh->activeElements(); vector<ElementPtr>::iterator elemIt; for (elemIt=elems.begin(); elemIt!=elems.end(); elemIt++) { int cellID = (*elemIt)->cellID(); cellIDs.push_back(cellID); } bool createSideCacheToo = true; basisCache->setPhysicalCellNodes(myMesh->physicalCellNodesGlobal(elemType), cellIDs, createSideCacheToo); LinearTermPtr integrand = Teuchos::rcp(new LinearTerm);// residual LinearTermPtr integrandIBP = Teuchos::rcp(new LinearTerm);// residual vector<double> e1(2); // (1,0) vector<double> e2(2); // (0,1) e1[0] = 1; e2[1] = 1; FunctionPtr n = Function::normal(); FunctionPtr X = Function::xn(1); FunctionPtr Y = Function::yn(1); FunctionPtr testFxn1 = X; FunctionPtr testFxn2 = Y; FunctionPtr divTestFxn = testFxn1->dx() + testFxn2->dy(); FunctionPtr vectorTest = testFxn1*e1 + testFxn2*e2; integrand->addTerm(divTestFxn*v); integrandIBP->addTerm(vectorTest*n*v - vectorTest*v->grad()); // boundary term IPPtr sobolevIP = Teuchos::rcp(new IP); sobolevIP->addTerm(v); sobolevIP->addTerm(tau); Teuchos::RCP<RieszRep> riesz = Teuchos::rcp(new RieszRep(myMesh, sobolevIP, integrand)); // riesz->setPrintOption(true); riesz->computeRieszRep(); Teuchos::RCP<RieszRep> rieszIBP = Teuchos::rcp(new RieszRep(myMesh, sobolevIP, integrandIBP)); riesz->setFunctional(integrandIBP); // rieszIBP->setPrintOption(true); rieszIBP->computeRieszRep(); FunctionPtr rieszOrigFxn = RieszRep::repFunction(v,riesz); FunctionPtr rieszIBPFxn = RieszRep::repFunction(v,rieszIBP); int numCells = basisCache->getPhysicalCubaturePoints().dimension(0); int numPts = basisCache->getPhysicalCubaturePoints().dimension(1); FieldContainer<double> valOriginal( numCells, numPts); FieldContainer<double> valIBP( numCells, numPts); rieszOrigFxn->values(valOriginal,basisCache); rieszIBPFxn->values(valIBP,basisCache); double maxDiff; double tol = 1e-14; success = TestSuite::fcsAgree(valOriginal,valIBP,tol,maxDiff); if (success==false) { cout << "Failed TestRieszInversion with maxDiff = " << maxDiff << endl; } return success; }
// tests residual computation on simple convection bool ScratchPadTests::testLTResidualSimple() { double tol = 1e-11; int rank = Teuchos::GlobalMPISession::getRank(); bool success = true; int nCells = 2; //////////////////// DECLARE VARIABLES /////////////////////// // define test variables VarFactoryPtr varFactory = VarFactory::varFactory(); VarPtr v = varFactory->testVar("v", HGRAD); // define trial variables VarPtr beta_n_u = varFactory->fluxVar("\\widehat{\\beta \\cdot n u - \\sigma_{n}}"); VarPtr u = varFactory->fieldVar("u"); vector<double> beta; beta.push_back(1.0); beta.push_back(1.0); //////////////////// DEFINE BILINEAR FORM /////////////////////// BFPtr confusionBF = Teuchos::rcp( new BF(varFactory) ); // v terms: confusionBF->addTerm( -u, beta * v->grad() ); confusionBF->addTerm( beta_n_u, v); //////////////////// DEFINE INNER PRODUCT(S) /////////////////////// // robust test norm IPPtr ip = Teuchos::rcp(new IP); // choose the mesh-independent norm even though it may have BLs ip->addTerm(v->grad()); ip->addTerm(v); //////////////////// SPECIFY RHS AND HELPFUL FUNCTIONS /////////////////////// FunctionPtr n = Function::normal(); vector<double> e1,e2; e1.push_back(1.0); e1.push_back(0.0); e2.push_back(0.0); e2.push_back(1.0); FunctionPtr one = Function::constant(1.0); FunctionPtr zero = Function::constant(0.0); RHSPtr rhs = RHS::rhs(); FunctionPtr f = one; rhs->addTerm( f * v ); //////////////////// CREATE BCs /////////////////////// BCPtr bc = BC::bc(); SpatialFilterPtr boundary = Teuchos::rcp( new InflowSquareBoundary ); FunctionPtr u_in = Teuchos::rcp(new Uinflow); bc->addDirichlet(beta_n_u, boundary, beta*n*u_in); //////////////////// BUILD MESH /////////////////////// // define nodes for mesh int order = 2; int H1Order = order+1; int pToAdd = 2; // create a pointer to a new mesh: Teuchos::RCP<Mesh> mesh = MeshUtilities::buildUnitQuadMesh(nCells,confusionBF, H1Order, H1Order+pToAdd); //////////////////// SOLVE & REFINE /////////////////////// int cubEnrich = 0; Teuchos::RCP<Solution> solution; solution = Teuchos::rcp( new Solution(mesh, bc, rhs, ip) ); solution->solve(false); double energyError = solution->energyErrorTotal(); LinearTermPtr residual = rhs->linearTermCopy(); residual->addTerm(-confusionBF->testFunctional(solution),true); Teuchos::RCP<RieszRep> rieszResidual = Teuchos::rcp(new RieszRep(mesh, ip, residual)); rieszResidual->computeRieszRep(cubEnrich); double energyErrorLT = rieszResidual->getNorm(); bool testVsTest = true; FunctionPtr e_v = RieszRep::repFunction(v,rieszResidual); map<int,FunctionPtr> errFxns; errFxns[v->ID()] = e_v; FunctionPtr err = (ip->evaluate(errFxns,false))->evaluate(errFxns,false); // don't need boundary terms unless they're in IP double energyErrorIntegrated = sqrt(err->integrate(mesh,cubEnrich,testVsTest)); // check that energy error computed thru Solution and through rieszRep are the same success = abs(energyError-energyErrorLT) < tol; if (success==false) { if (rank==0) cout << "Failed testLTResidualSimple; energy error = " << energyError << ", while linearTerm error is computed to be " << energyErrorLT << endl; return success; } // checks that matrix-computed and integrated errors are the same success = abs(energyErrorLT-energyErrorIntegrated)<tol; if (success==false) { if (rank==0) cout << "Failed testLTResidualSimple; energy error = " << energyError << ", while error computed via integration is " << energyErrorIntegrated << endl; return success; } return success; }