// If one loop has very large self trip count
      // we don't want to unroll it.
      // self trip count means trip count divide by the parent's trip count. for example
      // for (int i = 0; i < 16; i++) {
      //   for (int j = 0; j < 4; j++) {
      //     for (int k = 0; k < 2; k++) {
      //       ...
      //     }
      //     ...
      //   }
      // The inner loops j and k could be unrolled, but the loop i will not be unrolled.
      // The return value true means the L could be unrolled, otherwise, it could not
      // be unrolled.
      bool handleParentLoops(Loop *L, LPPassManager &LPM) {
        Loop *currL = L;
        ScalarEvolution *SE = &getAnalysis<ScalarEvolution>();
        BasicBlock *ExitBlock = currL->getLoopLatch();
        if (!ExitBlock || !L->isLoopExiting(ExitBlock))
          ExitBlock = currL->getExitingBlock();

        unsigned currTripCount = 0;
        bool shouldUnroll = true;
        if (ExitBlock)
          currTripCount = SE->getSmallConstantTripCount(L, ExitBlock);

        while(currL) {
          Loop *parentL = currL->getParentLoop();
          unsigned parentTripCount = 0;
          if (parentL) {
            BasicBlock *parentExitBlock = parentL->getLoopLatch();
            if (!parentExitBlock || !parentL->isLoopExiting(parentExitBlock))
              parentExitBlock = parentL->getExitingBlock();

            if (parentExitBlock)
              parentTripCount = SE->getSmallConstantTripCount(parentL, parentExitBlock);
          }
          if ((parentTripCount != 0 && currTripCount / parentTripCount > 16) ||
              (currTripCount > 32)) {
            if (currL == L)
              shouldUnroll = false;
            setUnrollID(currL, false);
            if (currL != L)
              LPM.deleteLoopFromQueue(currL);
          }
          currL = parentL;
          currTripCount = parentTripCount;
        }
        return shouldUnroll;
      }
bool ScopDetection::isValidCFG(BasicBlock &BB,
                               DetectionContext &Context) const {
  Region &RefRegion = Context.CurRegion;
  TerminatorInst *TI = BB.getTerminator();

  // Return instructions are only valid if the region is the top level region.
  if (isa<ReturnInst>(TI) && !RefRegion.getExit() && TI->getNumOperands() == 0)
    return true;

  BranchInst *Br = dyn_cast<BranchInst>(TI);

  if (!Br)
    return invalid<ReportNonBranchTerminator>(Context, /*Assert=*/true, &BB);

  if (Br->isUnconditional())
    return true;

  Value *Condition = Br->getCondition();

  // UndefValue is not allowed as condition.
  if (isa<UndefValue>(Condition))
    return invalid<ReportUndefCond>(Context, /*Assert=*/true, &BB);

  // Only Constant and ICmpInst are allowed as condition.
  if (!(isa<Constant>(Condition) || isa<ICmpInst>(Condition)))
    return invalid<ReportInvalidCond>(Context, /*Assert=*/true, &BB);

  // Allow perfectly nested conditions.
  assert(Br->getNumSuccessors() == 2 && "Unexpected number of successors");

  if (ICmpInst *ICmp = dyn_cast<ICmpInst>(Condition)) {
    // Unsigned comparisons are not allowed. They trigger overflow problems
    // in the code generation.
    //
    // TODO: This is not sufficient and just hides bugs. However it does pretty
    // well.
    if (ICmp->isUnsigned())
      return false;

    // Are both operands of the ICmp affine?
    if (isa<UndefValue>(ICmp->getOperand(0)) ||
        isa<UndefValue>(ICmp->getOperand(1)))
      return invalid<ReportUndefOperand>(Context, /*Assert=*/true, &BB);

    Loop *L = LI->getLoopFor(ICmp->getParent());
    const SCEV *LHS = SE->getSCEVAtScope(ICmp->getOperand(0), L);
    const SCEV *RHS = SE->getSCEVAtScope(ICmp->getOperand(1), L);

    if (!isAffineExpr(&Context.CurRegion, LHS, *SE) ||
        !isAffineExpr(&Context.CurRegion, RHS, *SE))
      return invalid<ReportNonAffBranch>(Context, /*Assert=*/true, &BB, LHS,
                                         RHS);
  }

  // Allow loop exit conditions.
  Loop *L = LI->getLoopFor(&BB);
  if (L && L->getExitingBlock() == &BB)
    return true;

  // Allow perfectly nested conditions.
  Region *R = RI->getRegionFor(&BB);
  if (R->getEntry() != &BB)
    return invalid<ReportCondition>(Context, /*Assert=*/true, &BB);

  return true;
}
bool llvm::isSafeToUnrollAndJam(Loop *L, ScalarEvolution &SE, DominatorTree &DT,
                                DependenceInfo &DI) {
  /* We currently handle outer loops like this:
        |
    ForeFirst    <----\    }
     Blocks           |    } ForeBlocks
    ForeLast          |    }
        |             |
    SubLoopFirst  <\  |    }
     Blocks        |  |    } SubLoopBlocks
    SubLoopLast   -/  |    }
        |             |
    AftFirst          |    }
     Blocks           |    } AftBlocks
    AftLast     ------/    }
        |

    There are (theoretically) any number of blocks in ForeBlocks, SubLoopBlocks
    and AftBlocks, providing that there is one edge from Fores to SubLoops,
    one edge from SubLoops to Afts and a single outer loop exit (from Afts).
    In practice we currently limit Aft blocks to a single block, and limit
    things further in the profitablility checks of the unroll and jam pass.

    Because of the way we rearrange basic blocks, we also require that
    the Fore blocks on all unrolled iterations are safe to move before the
    SubLoop blocks of all iterations. So we require that the phi node looping
    operands of ForeHeader can be moved to at least the end of ForeEnd, so that
    we can arrange cloned Fore Blocks before the subloop and match up Phi's
    correctly.

    i.e. The old order of blocks used to be F1 S1_1 S1_2 A1 F2 S2_1 S2_2 A2.
    It needs to be safe to tranform this to F1 F2 S1_1 S2_1 S1_2 S2_2 A1 A2.

    There are then a number of checks along the lines of no calls, no
    exceptions, inner loop IV is consistent, etc. Note that for loops requiring
    runtime unrolling, UnrollRuntimeLoopRemainder can also fail in
    UnrollAndJamLoop if the trip count cannot be easily calculated.
  */

  if (!L->isLoopSimplifyForm() || L->getSubLoops().size() != 1)
    return false;
  Loop *SubLoop = L->getSubLoops()[0];
  if (!SubLoop->isLoopSimplifyForm())
    return false;

  BasicBlock *Header = L->getHeader();
  BasicBlock *Latch = L->getLoopLatch();
  BasicBlock *Exit = L->getExitingBlock();
  BasicBlock *SubLoopHeader = SubLoop->getHeader();
  BasicBlock *SubLoopLatch = SubLoop->getLoopLatch();
  BasicBlock *SubLoopExit = SubLoop->getExitingBlock();

  if (Latch != Exit)
    return false;
  if (SubLoopLatch != SubLoopExit)
    return false;

  if (Header->hasAddressTaken() || SubLoopHeader->hasAddressTaken())
    return false;

  // Split blocks into Fore/SubLoop/Aft based on dominators
  BasicBlockSet SubLoopBlocks;
  BasicBlockSet ForeBlocks;
  BasicBlockSet AftBlocks;
  if (!partitionOuterLoopBlocks(L, SubLoop, ForeBlocks, SubLoopBlocks,
                                AftBlocks, &DT))
    return false;

  // Aft blocks may need to move instructions to fore blocks, which becomes more
  // difficult if there are multiple (potentially conditionally executed)
  // blocks. For now we just exclude loops with multiple aft blocks.
  if (AftBlocks.size() != 1)
    return false;

  // Check inner loop IV is consistent between all iterations
  const SCEV *SubLoopBECountSC = SE.getExitCount(SubLoop, SubLoopLatch);
  if (isa<SCEVCouldNotCompute>(SubLoopBECountSC) ||
      !SubLoopBECountSC->getType()->isIntegerTy())
    return false;
  ScalarEvolution::LoopDisposition LD =
      SE.getLoopDisposition(SubLoopBECountSC, L);
  if (LD != ScalarEvolution::LoopInvariant)
    return false;

  // Check the loop safety info for exceptions.
  LoopSafetyInfo LSI;
  computeLoopSafetyInfo(&LSI, L);
  if (LSI.MayThrow)
    return false;

  // We've ruled out the easy stuff and now need to check that there are no
  // interdependencies which may prevent us from moving the:
  //  ForeBlocks before Subloop and AftBlocks.
  //  Subloop before AftBlocks.
  //  ForeBlock phi operands before the subloop

  // Make sure we can move all instructions we need to before the subloop
  SmallVector<Instruction *, 8> Worklist;
  SmallPtrSet<Instruction *, 8> Visited;
  for (auto &Phi : Header->phis()) {
    Value *V = Phi.getIncomingValueForBlock(Latch);
    if (Instruction *I = dyn_cast<Instruction>(V))
      Worklist.push_back(I);
  }
  while (!Worklist.empty()) {
    Instruction *I = Worklist.back();
    Worklist.pop_back();
    if (Visited.insert(I).second) {
      if (SubLoop->contains(I->getParent()))
        return false;
      if (AftBlocks.count(I->getParent())) {
        // If we hit a phi node in afts we know we are done (probably LCSSA)
        if (isa<PHINode>(I))
          return false;
        if (I->mayHaveSideEffects() || I->mayReadOrWriteMemory())
          return false;
        for (auto &U : I->operands())
          if (Instruction *II = dyn_cast<Instruction>(U))
            Worklist.push_back(II);
      }
    }
  }

  // Check for memory dependencies which prohibit the unrolling we are doing.
  // Because of the way we are unrolling Fore/Sub/Aft blocks, we need to check
  // there are no dependencies between Fore-Sub, Fore-Aft, Sub-Aft and Sub-Sub.
  if (!checkDependencies(L, ForeBlocks, SubLoopBlocks, AftBlocks, DI))
    return false;

  return true;
}
/*
  This method performs Unroll and Jam. For a simple loop like:
  for (i = ..)
    Fore(i)
    for (j = ..)
      SubLoop(i, j)
    Aft(i)

  Instead of doing normal inner or outer unrolling, we do:
  for (i = .., i+=2)
    Fore(i)
    Fore(i+1)
    for (j = ..)
      SubLoop(i, j)
      SubLoop(i+1, j)
    Aft(i)
    Aft(i+1)

  So the outer loop is essetially unrolled and then the inner loops are fused
  ("jammed") together into a single loop. This can increase speed when there
  are loads in SubLoop that are invariant to i, as they become shared between
  the now jammed inner loops.

  We do this by spliting the blocks in the loop into Fore, Subloop and Aft.
  Fore blocks are those before the inner loop, Aft are those after. Normal
  Unroll code is used to copy each of these sets of blocks and the results are
  combined together into the final form above.

  isSafeToUnrollAndJam should be used prior to calling this to make sure the
  unrolling will be valid. Checking profitablility is also advisable.
*/
LoopUnrollResult
llvm::UnrollAndJamLoop(Loop *L, unsigned Count, unsigned TripCount,
                       unsigned TripMultiple, bool UnrollRemainder,
                       LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT,
                       AssumptionCache *AC, OptimizationRemarkEmitter *ORE) {

  // When we enter here we should have already checked that it is safe
  BasicBlock *Header = L->getHeader();
  assert(L->getSubLoops().size() == 1);
  Loop *SubLoop = *L->begin();

  // Don't enter the unroll code if there is nothing to do.
  if (TripCount == 0 && Count < 2) {
    LLVM_DEBUG(dbgs() << "Won't unroll; almost nothing to do\n");
    return LoopUnrollResult::Unmodified;
  }

  assert(Count > 0);
  assert(TripMultiple > 0);
  assert(TripCount == 0 || TripCount % TripMultiple == 0);

  // Are we eliminating the loop control altogether?
  bool CompletelyUnroll = (Count == TripCount);

  // We use the runtime remainder in cases where we don't know trip multiple
  if (TripMultiple == 1 || TripMultiple % Count != 0) {
    if (!UnrollRuntimeLoopRemainder(L, Count, /*AllowExpensiveTripCount*/ false,
                                    /*UseEpilogRemainder*/ true,
                                    UnrollRemainder, LI, SE, DT, AC, true)) {
      LLVM_DEBUG(dbgs() << "Won't unroll-and-jam; remainder loop could not be "
                           "generated when assuming runtime trip count\n");
      return LoopUnrollResult::Unmodified;
    }
  }

  // Notify ScalarEvolution that the loop will be substantially changed,
  // if not outright eliminated.
  if (SE) {
    SE->forgetLoop(L);
    SE->forgetLoop(SubLoop);
  }

  using namespace ore;
  // Report the unrolling decision.
  if (CompletelyUnroll) {
    LLVM_DEBUG(dbgs() << "COMPLETELY UNROLL AND JAMMING loop %"
                      << Header->getName() << " with trip count " << TripCount
                      << "!\n");
    ORE->emit(OptimizationRemark(DEBUG_TYPE, "FullyUnrolled", L->getStartLoc(),
                                 L->getHeader())
              << "completely unroll and jammed loop with "
              << NV("UnrollCount", TripCount) << " iterations");
  } else {
    auto DiagBuilder = [&]() {
      OptimizationRemark Diag(DEBUG_TYPE, "PartialUnrolled", L->getStartLoc(),
                              L->getHeader());
      return Diag << "unroll and jammed loop by a factor of "
                  << NV("UnrollCount", Count);
    };

    LLVM_DEBUG(dbgs() << "UNROLL AND JAMMING loop %" << Header->getName()
                      << " by " << Count);
    if (TripMultiple != 1) {
      LLVM_DEBUG(dbgs() << " with " << TripMultiple << " trips per branch");
      ORE->emit([&]() {
        return DiagBuilder() << " with " << NV("TripMultiple", TripMultiple)
                             << " trips per branch";
      });
    } else {
      LLVM_DEBUG(dbgs() << " with run-time trip count");
      ORE->emit([&]() { return DiagBuilder() << " with run-time trip count"; });
    }
    LLVM_DEBUG(dbgs() << "!\n");
  }

  BasicBlock *Preheader = L->getLoopPreheader();
  BasicBlock *LatchBlock = L->getLoopLatch();
  BranchInst *BI = dyn_cast<BranchInst>(LatchBlock->getTerminator());
  assert(Preheader && LatchBlock && Header);
  assert(BI && !BI->isUnconditional());
  bool ContinueOnTrue = L->contains(BI->getSuccessor(0));
  BasicBlock *LoopExit = BI->getSuccessor(ContinueOnTrue);
  bool SubLoopContinueOnTrue = SubLoop->contains(
      SubLoop->getLoopLatch()->getTerminator()->getSuccessor(0));

  // Partition blocks in an outer/inner loop pair into blocks before and after
  // the loop
  BasicBlockSet SubLoopBlocks;
  BasicBlockSet ForeBlocks;
  BasicBlockSet AftBlocks;
  partitionOuterLoopBlocks(L, SubLoop, ForeBlocks, SubLoopBlocks, AftBlocks,
                           DT);

  // We keep track of the entering/first and exiting/last block of each of
  // Fore/SubLoop/Aft in each iteration. This helps make the stapling up of
  // blocks easier.
  std::vector<BasicBlock *> ForeBlocksFirst;
  std::vector<BasicBlock *> ForeBlocksLast;
  std::vector<BasicBlock *> SubLoopBlocksFirst;
  std::vector<BasicBlock *> SubLoopBlocksLast;
  std::vector<BasicBlock *> AftBlocksFirst;
  std::vector<BasicBlock *> AftBlocksLast;
  ForeBlocksFirst.push_back(Header);
  ForeBlocksLast.push_back(SubLoop->getLoopPreheader());
  SubLoopBlocksFirst.push_back(SubLoop->getHeader());
  SubLoopBlocksLast.push_back(SubLoop->getExitingBlock());
  AftBlocksFirst.push_back(SubLoop->getExitBlock());
  AftBlocksLast.push_back(L->getExitingBlock());
  // Maps Blocks[0] -> Blocks[It]
  ValueToValueMapTy LastValueMap;

  // Move any instructions from fore phi operands from AftBlocks into Fore.
  moveHeaderPhiOperandsToForeBlocks(
      Header, LatchBlock, SubLoop->getLoopPreheader()->getTerminator(),
      AftBlocks);

  // The current on-the-fly SSA update requires blocks to be processed in
  // reverse postorder so that LastValueMap contains the correct value at each
  // exit.
  LoopBlocksDFS DFS(L);
  DFS.perform(LI);
  // Stash the DFS iterators before adding blocks to the loop.
  LoopBlocksDFS::RPOIterator BlockBegin = DFS.beginRPO();
  LoopBlocksDFS::RPOIterator BlockEnd = DFS.endRPO();

  if (Header->getParent()->isDebugInfoForProfiling())
    for (BasicBlock *BB : L->getBlocks())
      for (Instruction &I : *BB)
        if (!isa<DbgInfoIntrinsic>(&I))
          if (const DILocation *DIL = I.getDebugLoc())
            I.setDebugLoc(DIL->cloneWithDuplicationFactor(Count));

  // Copy all blocks
  for (unsigned It = 1; It != Count; ++It) {
    std::vector<BasicBlock *> NewBlocks;
    // Maps Blocks[It] -> Blocks[It-1]
    DenseMap<Value *, Value *> PrevItValueMap;

    for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
      ValueToValueMapTy VMap;
      BasicBlock *New = CloneBasicBlock(*BB, VMap, "." + Twine(It));
      Header->getParent()->getBasicBlockList().push_back(New);

      if (ForeBlocks.count(*BB)) {
        L->addBasicBlockToLoop(New, *LI);

        if (*BB == ForeBlocksFirst[0])
          ForeBlocksFirst.push_back(New);
        if (*BB == ForeBlocksLast[0])
          ForeBlocksLast.push_back(New);
      } else if (SubLoopBlocks.count(*BB)) {
        SubLoop->addBasicBlockToLoop(New, *LI);

        if (*BB == SubLoopBlocksFirst[0])
          SubLoopBlocksFirst.push_back(New);
        if (*BB == SubLoopBlocksLast[0])
          SubLoopBlocksLast.push_back(New);
      } else if (AftBlocks.count(*BB)) {
        L->addBasicBlockToLoop(New, *LI);

        if (*BB == AftBlocksFirst[0])
          AftBlocksFirst.push_back(New);
        if (*BB == AftBlocksLast[0])
          AftBlocksLast.push_back(New);
      } else {
        llvm_unreachable("BB being cloned should be in Fore/Sub/Aft");
      }

      // Update our running maps of newest clones
      PrevItValueMap[New] = (It == 1 ? *BB : LastValueMap[*BB]);
      LastValueMap[*BB] = New;
      for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end();
           VI != VE; ++VI) {
        PrevItValueMap[VI->second] =
            const_cast<Value *>(It == 1 ? VI->first : LastValueMap[VI->first]);
        LastValueMap[VI->first] = VI->second;
      }

      NewBlocks.push_back(New);

      // Update DomTree:
      if (*BB == ForeBlocksFirst[0])
        DT->addNewBlock(New, ForeBlocksLast[It - 1]);
      else if (*BB == SubLoopBlocksFirst[0])
        DT->addNewBlock(New, SubLoopBlocksLast[It - 1]);
      else if (*BB == AftBlocksFirst[0])
        DT->addNewBlock(New, AftBlocksLast[It - 1]);
      else {
        // Each set of blocks (Fore/Sub/Aft) will have the same internal domtree
        // structure.
        auto BBDomNode = DT->getNode(*BB);
        auto BBIDom = BBDomNode->getIDom();
        BasicBlock *OriginalBBIDom = BBIDom->getBlock();
        assert(OriginalBBIDom);
        assert(LastValueMap[cast<Value>(OriginalBBIDom)]);
        DT->addNewBlock(
            New, cast<BasicBlock>(LastValueMap[cast<Value>(OriginalBBIDom)]));
      }
    }

    // Remap all instructions in the most recent iteration
    for (BasicBlock *NewBlock : NewBlocks) {
      for (Instruction &I : *NewBlock) {
        ::remapInstruction(&I, LastValueMap);
        if (auto *II = dyn_cast<IntrinsicInst>(&I))
          if (II->getIntrinsicID() == Intrinsic::assume)
            AC->registerAssumption(II);
      }
    }

    // Alter the ForeBlocks phi's, pointing them at the latest version of the
    // value from the previous iteration's phis
    for (PHINode &Phi : ForeBlocksFirst[It]->phis()) {
      Value *OldValue = Phi.getIncomingValueForBlock(AftBlocksLast[It]);
      assert(OldValue && "should have incoming edge from Aft[It]");
      Value *NewValue = OldValue;
      if (Value *PrevValue = PrevItValueMap[OldValue])
        NewValue = PrevValue;

      assert(Phi.getNumOperands() == 2);
      Phi.setIncomingBlock(0, ForeBlocksLast[It - 1]);
      Phi.setIncomingValue(0, NewValue);
      Phi.removeIncomingValue(1);
    }
  }

  // Now that all the basic blocks for the unrolled iterations are in place,
  // finish up connecting the blocks and phi nodes. At this point LastValueMap
  // is the last unrolled iterations values.

  // Update Phis in BB from OldBB to point to NewBB
  auto updatePHIBlocks = [](BasicBlock *BB, BasicBlock *OldBB,
                            BasicBlock *NewBB) {
    for (PHINode &Phi : BB->phis()) {
      int I = Phi.getBasicBlockIndex(OldBB);
      Phi.setIncomingBlock(I, NewBB);
    }
  };
  // Update Phis in BB from OldBB to point to NewBB and use the latest value
  // from LastValueMap
  auto updatePHIBlocksAndValues = [](BasicBlock *BB, BasicBlock *OldBB,
                                     BasicBlock *NewBB,
                                     ValueToValueMapTy &LastValueMap) {
    for (PHINode &Phi : BB->phis()) {
      for (unsigned b = 0; b < Phi.getNumIncomingValues(); ++b) {
        if (Phi.getIncomingBlock(b) == OldBB) {
          Value *OldValue = Phi.getIncomingValue(b);
          if (Value *LastValue = LastValueMap[OldValue])
            Phi.setIncomingValue(b, LastValue);
          Phi.setIncomingBlock(b, NewBB);
          break;
        }
      }
    }
  };
  // Move all the phis from Src into Dest
  auto movePHIs = [](BasicBlock *Src, BasicBlock *Dest) {
    Instruction *insertPoint = Dest->getFirstNonPHI();
    while (PHINode *Phi = dyn_cast<PHINode>(Src->begin()))
      Phi->moveBefore(insertPoint);
  };

  // Update the PHI values outside the loop to point to the last block
  updatePHIBlocksAndValues(LoopExit, AftBlocksLast[0], AftBlocksLast.back(),
                           LastValueMap);

  // Update ForeBlocks successors and phi nodes
  BranchInst *ForeTerm =
      cast<BranchInst>(ForeBlocksLast.back()->getTerminator());
  BasicBlock *Dest = SubLoopBlocksFirst[0];
  ForeTerm->setSuccessor(0, Dest);

  if (CompletelyUnroll) {
    while (PHINode *Phi = dyn_cast<PHINode>(ForeBlocksFirst[0]->begin())) {
      Phi->replaceAllUsesWith(Phi->getIncomingValueForBlock(Preheader));
      Phi->getParent()->getInstList().erase(Phi);
    }
  } else {
    // Update the PHI values to point to the last aft block
    updatePHIBlocksAndValues(ForeBlocksFirst[0], AftBlocksLast[0],
                             AftBlocksLast.back(), LastValueMap);
  }

  for (unsigned It = 1; It != Count; It++) {
    // Remap ForeBlock successors from previous iteration to this
    BranchInst *ForeTerm =
        cast<BranchInst>(ForeBlocksLast[It - 1]->getTerminator());
    BasicBlock *Dest = ForeBlocksFirst[It];
    ForeTerm->setSuccessor(0, Dest);
  }

  // Subloop successors and phis
  BranchInst *SubTerm =
      cast<BranchInst>(SubLoopBlocksLast.back()->getTerminator());
  SubTerm->setSuccessor(!SubLoopContinueOnTrue, SubLoopBlocksFirst[0]);
  SubTerm->setSuccessor(SubLoopContinueOnTrue, AftBlocksFirst[0]);
  updatePHIBlocks(SubLoopBlocksFirst[0], ForeBlocksLast[0],
                  ForeBlocksLast.back());
  updatePHIBlocks(SubLoopBlocksFirst[0], SubLoopBlocksLast[0],
                  SubLoopBlocksLast.back());

  for (unsigned It = 1; It != Count; It++) {
    // Replace the conditional branch of the previous iteration subloop with an
    // unconditional one to this one
    BranchInst *SubTerm =
        cast<BranchInst>(SubLoopBlocksLast[It - 1]->getTerminator());
    BranchInst::Create(SubLoopBlocksFirst[It], SubTerm);
    SubTerm->eraseFromParent();

    updatePHIBlocks(SubLoopBlocksFirst[It], ForeBlocksLast[It],
                    ForeBlocksLast.back());
    updatePHIBlocks(SubLoopBlocksFirst[It], SubLoopBlocksLast[It],
                    SubLoopBlocksLast.back());
    movePHIs(SubLoopBlocksFirst[It], SubLoopBlocksFirst[0]);
  }

  // Aft blocks successors and phis
  BranchInst *Term = cast<BranchInst>(AftBlocksLast.back()->getTerminator());
  if (CompletelyUnroll) {
    BranchInst::Create(LoopExit, Term);
    Term->eraseFromParent();
  } else {
    Term->setSuccessor(!ContinueOnTrue, ForeBlocksFirst[0]);
  }
  updatePHIBlocks(AftBlocksFirst[0], SubLoopBlocksLast[0],
                  SubLoopBlocksLast.back());

  for (unsigned It = 1; It != Count; It++) {
    // Replace the conditional branch of the previous iteration subloop with an
    // unconditional one to this one
    BranchInst *AftTerm =
        cast<BranchInst>(AftBlocksLast[It - 1]->getTerminator());
    BranchInst::Create(AftBlocksFirst[It], AftTerm);
    AftTerm->eraseFromParent();

    updatePHIBlocks(AftBlocksFirst[It], SubLoopBlocksLast[It],
                    SubLoopBlocksLast.back());
    movePHIs(AftBlocksFirst[It], AftBlocksFirst[0]);
  }

  // Dominator Tree. Remove the old links between Fore, Sub and Aft, adding the
  // new ones required.
  if (Count != 1) {
    SmallVector<DominatorTree::UpdateType, 4> DTUpdates;
    DTUpdates.emplace_back(DominatorTree::UpdateKind::Delete, ForeBlocksLast[0],
                           SubLoopBlocksFirst[0]);
    DTUpdates.emplace_back(DominatorTree::UpdateKind::Delete,
                           SubLoopBlocksLast[0], AftBlocksFirst[0]);

    DTUpdates.emplace_back(DominatorTree::UpdateKind::Insert,
                           ForeBlocksLast.back(), SubLoopBlocksFirst[0]);
    DTUpdates.emplace_back(DominatorTree::UpdateKind::Insert,
                           SubLoopBlocksLast.back(), AftBlocksFirst[0]);
    DT->applyUpdates(DTUpdates);
  }

  // Merge adjacent basic blocks, if possible.
  SmallPtrSet<BasicBlock *, 16> MergeBlocks;
  MergeBlocks.insert(ForeBlocksLast.begin(), ForeBlocksLast.end());
  MergeBlocks.insert(SubLoopBlocksLast.begin(), SubLoopBlocksLast.end());
  MergeBlocks.insert(AftBlocksLast.begin(), AftBlocksLast.end());
  while (!MergeBlocks.empty()) {
    BasicBlock *BB = *MergeBlocks.begin();
    BranchInst *Term = dyn_cast<BranchInst>(BB->getTerminator());
    if (Term && Term->isUnconditional() && L->contains(Term->getSuccessor(0))) {
      BasicBlock *Dest = Term->getSuccessor(0);
      if (BasicBlock *Fold = foldBlockIntoPredecessor(Dest, LI, SE, DT)) {
        // Don't remove BB and add Fold as they are the same BB
        assert(Fold == BB);
        (void)Fold;
        MergeBlocks.erase(Dest);
      } else
        MergeBlocks.erase(BB);
    } else
      MergeBlocks.erase(BB);
  }

  // At this point, the code is well formed.  We now do a quick sweep over the
  // inserted code, doing constant propagation and dead code elimination as we
  // go.
  simplifyLoopAfterUnroll(SubLoop, true, LI, SE, DT, AC);
  simplifyLoopAfterUnroll(L, !CompletelyUnroll && Count > 1, LI, SE, DT, AC);

  NumCompletelyUnrolledAndJammed += CompletelyUnroll;
  ++NumUnrolledAndJammed;

#ifndef NDEBUG
  // We shouldn't have done anything to break loop simplify form or LCSSA.
  Loop *OuterL = L->getParentLoop();
  Loop *OutestLoop = OuterL ? OuterL : (!CompletelyUnroll ? L : SubLoop);
  assert(OutestLoop->isRecursivelyLCSSAForm(*DT, *LI));
  if (!CompletelyUnroll)
    assert(L->isLoopSimplifyForm());
  assert(SubLoop->isLoopSimplifyForm());
  assert(DT->verify());
#endif

  // Update LoopInfo if the loop is completely removed.
  if (CompletelyUnroll)
    LI->erase(L);

  return CompletelyUnroll ? LoopUnrollResult::FullyUnrolled
                          : LoopUnrollResult::PartiallyUnrolled;
}