Exemple #1
0
bool
MCObjectWriter::IsSymbolRefDifferenceFullyResolved(const MCAssembler &Asm,
                                                   const MCSymbolRefExpr *A,
                                                   const MCSymbolRefExpr *B,
                                                   bool InSet) const {
  // Modified symbol references cannot be resolved.
  if (A->getKind() != MCSymbolRefExpr::VK_None ||
      B->getKind() != MCSymbolRefExpr::VK_None)
    return false;

  const MCSymbol &SA = A->getSymbol();
  const MCSymbol &SB = B->getSymbol();
  if (SA.AliasedSymbol().isUndefined() || SB.AliasedSymbol().isUndefined())
    return false;

  const MCSymbolData &DataA = Asm.getSymbolData(SA);
  const MCSymbolData &DataB = Asm.getSymbolData(SB);
  if(!DataA.getFragment() || !DataB.getFragment())
    return false;

  return IsSymbolRefDifferenceFullyResolvedImpl(Asm, DataA,
                                                *DataB.getFragment(),
                                                InSet,
                                                false);
}
/// This function takes a section data object from the assembler
/// and creates the associated COFF symbol staging object.
void WinCOFFObjectWriter::DefineSymbol(MCSymbolData const &SymbolData,
                                       MCAssembler &Assembler) {
  MCSymbol const &Symbol = SymbolData.getSymbol();
  COFFSymbol *coff_symbol = GetOrCreateCOFFSymbol(&Symbol);
  SymbolMap[&Symbol] = coff_symbol;

  if (SymbolData.getFlags() & COFF::SF_WeakExternal) {
    coff_symbol->Data.StorageClass = COFF::IMAGE_SYM_CLASS_WEAK_EXTERNAL;

    if (Symbol.isVariable()) {
      const MCSymbolRefExpr *SymRef =
        dyn_cast<MCSymbolRefExpr>(Symbol.getVariableValue());

      if (!SymRef)
        report_fatal_error("Weak externals may only alias symbols");

      coff_symbol->Other = GetOrCreateCOFFSymbol(&SymRef->getSymbol());
    } else {
      std::string WeakName = std::string(".weak.")
                           +  Symbol.getName().str()
                           + ".default";
      COFFSymbol *WeakDefault = createSymbol(WeakName);
      WeakDefault->Data.SectionNumber = COFF::IMAGE_SYM_ABSOLUTE;
      WeakDefault->Data.StorageClass  = COFF::IMAGE_SYM_CLASS_EXTERNAL;
      WeakDefault->Data.Type          = 0;
      WeakDefault->Data.Value         = 0;
      coff_symbol->Other = WeakDefault;
    }

    // Setup the Weak External auxiliary symbol.
    coff_symbol->Aux.resize(1);
    memset(&coff_symbol->Aux[0], 0, sizeof(coff_symbol->Aux[0]));
    coff_symbol->Aux[0].AuxType = ATWeakExternal;
    coff_symbol->Aux[0].Aux.WeakExternal.TagIndex = 0;
    coff_symbol->Aux[0].Aux.WeakExternal.Characteristics =
      COFF::IMAGE_WEAK_EXTERN_SEARCH_LIBRARY;

    coff_symbol->MCData = &SymbolData;
  } else {
    const MCSymbolData &ResSymData =
      Assembler.getSymbolData(Symbol.AliasedSymbol());

    coff_symbol->Data.Type         = (ResSymData.getFlags() & 0x0000FFFF) >>  0;
    coff_symbol->Data.StorageClass = (ResSymData.getFlags() & 0x00FF0000) >> 16;

    // If no storage class was specified in the streamer, define it here.
    if (coff_symbol->Data.StorageClass == 0) {
      bool external = ResSymData.isExternal() || (ResSymData.Fragment == NULL);

      coff_symbol->Data.StorageClass =
       external ? COFF::IMAGE_SYM_CLASS_EXTERNAL : COFF::IMAGE_SYM_CLASS_STATIC;
    }

    if (ResSymData.Fragment != NULL)
      coff_symbol->Section =
        SectionMap[&ResSymData.Fragment->getParent()->getSection()];

    coff_symbol->MCData = &ResSymData;
  }
}
Exemple #3
0
void X86MachObjectWriter::RecordTLVPRelocation(MachObjectWriter *Writer,
                                               const MCAssembler &Asm,
                                               const MCAsmLayout &Layout,
                                               const MCFragment *Fragment,
                                               const MCFixup &Fixup,
                                               MCValue Target,
                                               uint64_t &FixedValue) {
  assert(Target.getSymA()->getKind() == MCSymbolRefExpr::VK_TLVP &&
         !is64Bit() &&
         "Should only be called with a 32-bit TLVP relocation!");

  unsigned Log2Size = getFixupKindLog2Size(Fixup.getKind());
  uint32_t Value = Layout.getFragmentOffset(Fragment)+Fixup.getOffset();
  unsigned IsPCRel = 0;

  // Get the symbol data.
  const MCSymbolData *SD_A = &Asm.getSymbolData(Target.getSymA()->getSymbol());
  unsigned Index = SD_A->getIndex();

  // We're only going to have a second symbol in pic mode and it'll be a
  // subtraction from the picbase. For 32-bit pic the addend is the difference
  // between the picbase and the next address.  For 32-bit static the addend is
  // zero.
  if (Target.getSymB()) {
    // If this is a subtraction then we're pcrel.
    uint32_t FixupAddress =
      Writer->getFragmentAddress(Fragment, Layout) + Fixup.getOffset();
    const MCSymbolData *SD_B =
        &Asm.getSymbolData(Target.getSymB()->getSymbol());
    IsPCRel = 1;
    FixedValue = (FixupAddress - Writer->getSymbolAddress(SD_B, Layout) +
                  Target.getConstant());
    FixedValue += 1ULL << Log2Size;
  } else {
    FixedValue = 0;
  }

  // struct relocation_info (8 bytes)
  MachO::any_relocation_info MRE;
  MRE.r_word0 = Value;
  MRE.r_word1 = ((Index                    <<  0) |
                 (IsPCRel                  << 24) |
                 (Log2Size                 << 25) |
                 (1                        << 27) | // r_extern
                 (MachO::GENERIC_RELOC_TLV << 28)); // r_type
  Writer->addRelocation(Fragment->getParent(), MRE);
}
Exemple #4
0
static bool isScatteredFixupFullyResolved(const MCAssembler &Asm,
                                          const MCAsmLayout &Layout,
                                          const MCFixup &Fixup,
                                          const MCValue Target,
                                          const MCSymbolData *BaseSymbol) {
  // The effective fixup address is
  //     addr(atom(A)) + offset(A)
  //   - addr(atom(B)) - offset(B)
  //   - addr(BaseSymbol) + <fixup offset from base symbol>
  // and the offsets are not relocatable, so the fixup is fully resolved when
  //  addr(atom(A)) - addr(atom(B)) - addr(BaseSymbol) == 0.
  //
  // Note that "false" is almost always conservatively correct (it means we emit
  // a relocation which is unnecessary), except when it would force us to emit a
  // relocation which the target cannot encode.

  const MCSymbolData *A_Base = 0, *B_Base = 0;
  if (const MCSymbolRefExpr *A = Target.getSymA()) {
    // Modified symbol references cannot be resolved.
    if (A->getKind() != MCSymbolRefExpr::VK_None)
      return false;

    A_Base = Asm.getAtom(Layout, &Asm.getSymbolData(A->getSymbol()));
    if (!A_Base)
      return false;
  }

  if (const MCSymbolRefExpr *B = Target.getSymB()) {
    // Modified symbol references cannot be resolved.
    if (B->getKind() != MCSymbolRefExpr::VK_None)
      return false;

    B_Base = Asm.getAtom(Layout, &Asm.getSymbolData(B->getSymbol()));
    if (!B_Base)
      return false;
  }

  // If there is no base, A and B have to be the same atom for this fixup to be
  // fully resolved.
  if (!BaseSymbol)
    return A_Base == B_Base;

  // Otherwise, B must be missing and A must be the base.
  return !B_Base && BaseSymbol == A_Base;
}
// Return true if R is either a GOT16 against a local symbol or HI16.
static bool NeedsMatchingLo(const MCAssembler &Asm, const RelEntry &R) {
  if (!R.Sym)
    return false;

  MCSymbolData &SD = Asm.getSymbolData(R.Sym->AliasedSymbol());

  return ((R.Reloc.Type == ELF::R_MIPS_GOT16) && !SD.isExternal()) ||
    (R.Reloc.Type == ELF::R_MIPS_HI16);
}
Exemple #6
0
bool MachObjectWriter::
IsSymbolRefDifferenceFullyResolvedImpl(const MCAssembler &Asm,
                                       const MCSymbolData &DataA,
                                       const MCFragment &FB,
                                       bool InSet,
                                       bool IsPCRel) const {
  if (InSet)
    return true;

  // The effective address is
  //     addr(atom(A)) + offset(A)
  //   - addr(atom(B)) - offset(B)
  // and the offsets are not relocatable, so the fixup is fully resolved when
  //  addr(atom(A)) - addr(atom(B)) == 0.
  const MCSymbolData *A_Base = 0, *B_Base = 0;

  const MCSymbol &SA = DataA.getSymbol().AliasedSymbol();
  const MCSection &SecA = SA.getSection();
  const MCSection &SecB = FB.getParent()->getSection();

  if (IsPCRel) {
    // The simple (Darwin, except on x86_64) way of dealing with this was to
    // assume that any reference to a temporary symbol *must* be a temporary
    // symbol in the same atom, unless the sections differ. Therefore, any PCrel
    // relocation to a temporary symbol (in the same section) is fully
    // resolved. This also works in conjunction with absolutized .set, which
    // requires the compiler to use .set to absolutize the differences between
    // symbols which the compiler knows to be assembly time constants, so we
    // don't need to worry about considering symbol differences fully resolved.

    if (!Asm.getBackend().hasReliableSymbolDifference()) {
      if (!SA.isTemporary() || !SA.isInSection() || &SecA != &SecB)
        return false;
      return true;
    }
  } else {
    if (!TargetObjectWriter->useAggressiveSymbolFolding())
      return false;
  }

  const MCFragment &FA = *Asm.getSymbolData(SA).getFragment();

  A_Base = FA.getAtom();
  if (!A_Base)
    return false;

  B_Base = FB.getAtom();
  if (!B_Base)
    return false;

  // If the atoms are the same, they are guaranteed to have the same address.
  if (A_Base == B_Base)
    return true;

  // Otherwise, we can't prove this is fully resolved.
  return false;
}
void X86MachObjectWriter::RecordX86_64Relocation(
    MachObjectWriter *Writer, MCAssembler &Asm, const MCAsmLayout &Layout,
    const MCFragment *Fragment, const MCFixup &Fixup, MCValue Target,
    uint64_t &FixedValue) {
  unsigned IsPCRel = Writer->isFixupKindPCRel(Asm, Fixup.getKind());
  unsigned IsRIPRel = isFixupKindRIPRel(Fixup.getKind());
  unsigned Log2Size = getFixupKindLog2Size(Fixup.getKind());

  // See <reloc.h>.
  uint32_t FixupOffset =
    Layout.getFragmentOffset(Fragment) + Fixup.getOffset();
  uint32_t FixupAddress =
    Writer->getFragmentAddress(Fragment, Layout) + Fixup.getOffset();
  int64_t Value = 0;
  unsigned Index = 0;
  unsigned IsExtern = 0;
  unsigned Type = 0;
  const MCSymbol *RelSymbol = nullptr;

  Value = Target.getConstant();

  if (IsPCRel) {
    // Compensate for the relocation offset, Darwin x86_64 relocations only have
    // the addend and appear to have attempted to define it to be the actual
    // expression addend without the PCrel bias. However, instructions with data
    // following the relocation are not accommodated for (see comment below
    // regarding SIGNED{1,2,4}), so it isn't exactly that either.
    Value += 1LL << Log2Size;
  }

  if (Target.isAbsolute()) { // constant
    // SymbolNum of 0 indicates the absolute section.
    Type = MachO::X86_64_RELOC_UNSIGNED;

    // FIXME: I believe this is broken, I don't think the linker can understand
    // it. I think it would require a local relocation, but I'm not sure if that
    // would work either. The official way to get an absolute PCrel relocation
    // is to use an absolute symbol (which we don't support yet).
    if (IsPCRel) {
      IsExtern = 1;
      Type = MachO::X86_64_RELOC_BRANCH;
    }
  } else if (Target.getSymB()) { // A - B + constant
    const MCSymbol *A = &Target.getSymA()->getSymbol();
    if (A->isTemporary())
      A = &Writer->findAliasedSymbol(*A);
    const MCSymbolData &A_SD = Asm.getSymbolData(*A);
    const MCSymbol *A_Base = Asm.getAtom(&A_SD);

    const MCSymbol *B = &Target.getSymB()->getSymbol();
    if (B->isTemporary())
      B = &Writer->findAliasedSymbol(*B);
    const MCSymbolData &B_SD = Asm.getSymbolData(*B);
    const MCSymbol *B_Base = Asm.getAtom(&B_SD);

    // Neither symbol can be modified.
    if (Target.getSymA()->getKind() != MCSymbolRefExpr::VK_None ||
        Target.getSymB()->getKind() != MCSymbolRefExpr::VK_None)
      report_fatal_error("unsupported relocation of modified symbol", false);

    // We don't support PCrel relocations of differences. Darwin 'as' doesn't
    // implement most of these correctly.
    if (IsPCRel)
      report_fatal_error("unsupported pc-relative relocation of difference",
                         false);

    // The support for the situation where one or both of the symbols would
    // require a local relocation is handled just like if the symbols were
    // external.  This is certainly used in the case of debug sections where the
    // section has only temporary symbols and thus the symbols don't have base
    // symbols.  This is encoded using the section ordinal and non-extern
    // relocation entries.

    // Darwin 'as' doesn't emit correct relocations for this (it ends up with a
    // single SIGNED relocation); reject it for now.  Except the case where both
    // symbols don't have a base, equal but both NULL.
    if (A_Base == B_Base && A_Base)
      report_fatal_error("unsupported relocation with identical base", false);

    // A subtraction expression where either symbol is undefined is a
    // non-relocatable expression.
    if (A->isUndefined() || B->isUndefined()) {
      StringRef Name = A->isUndefined() ? A->getName() : B->getName();
      Asm.getContext().FatalError(Fixup.getLoc(),
        "unsupported relocation with subtraction expression, symbol '" +
        Name + "' can not be undefined in a subtraction expression");
    }

    Value +=
        Writer->getSymbolAddress(&A_SD, Layout) -
        (!A_Base ? 0 : Writer->getSymbolAddress(&A_Base->getData(), Layout));
    Value -=
        Writer->getSymbolAddress(&B_SD, Layout) -
        (!B_Base ? 0 : Writer->getSymbolAddress(&B_Base->getData(), Layout));

    if (!A_Base)
      Index = A_SD.getFragment()->getParent()->getOrdinal() + 1;
    Type = MachO::X86_64_RELOC_UNSIGNED;

    MachO::any_relocation_info MRE;
    MRE.r_word0 = FixupOffset;
    MRE.r_word1 =
        (Index << 0) | (IsPCRel << 24) | (Log2Size << 25) | (Type << 28);
    Writer->addRelocation(A_Base, Fragment->getParent(), MRE);

    if (B_Base)
      RelSymbol = B_Base;
    else
      Index = B_SD.getFragment()->getParent()->getOrdinal() + 1;
    Type = MachO::X86_64_RELOC_SUBTRACTOR;
  } else {
    const MCSymbol *Symbol = &Target.getSymA()->getSymbol();
    if (Symbol->isTemporary() && Value) {
      const MCSection &Sec = Symbol->getSection();
      if (!Asm.getContext().getAsmInfo()->isSectionAtomizableBySymbols(Sec))
        Asm.addLocalUsedInReloc(*Symbol);
    }
    const MCSymbolData &SD = Asm.getSymbolData(*Symbol);
    RelSymbol = Asm.getAtom(&SD);

    // Relocations inside debug sections always use local relocations when
    // possible. This seems to be done because the debugger doesn't fully
    // understand x86_64 relocation entries, and expects to find values that
    // have already been fixed up.
    if (Symbol->isInSection()) {
      const MCSectionMachO &Section = static_cast<const MCSectionMachO&>(
        Fragment->getParent()->getSection());
      if (Section.hasAttribute(MachO::S_ATTR_DEBUG))
        RelSymbol = nullptr;
    }

    // x86_64 almost always uses external relocations, except when there is no
    // symbol to use as a base address (a local symbol with no preceding
    // non-local symbol).
    if (RelSymbol) {
      // Add the local offset, if needed.
      if (&RelSymbol->getData() != &SD)
        Value += Layout.getSymbolOffset(&SD) -
                 Layout.getSymbolOffset(&RelSymbol->getData());
    } else if (Symbol->isInSection() && !Symbol->isVariable()) {
      // The index is the section ordinal (1-based).
      Index = SD.getFragment()->getParent()->getOrdinal() + 1;
      Value += Writer->getSymbolAddress(&SD, Layout);

      if (IsPCRel)
        Value -= FixupAddress + (1 << Log2Size);
    } else if (Symbol->isVariable()) {
      const MCExpr *Value = Symbol->getVariableValue();
      int64_t Res;
      bool isAbs = Value->EvaluateAsAbsolute(Res, Layout,
                                             Writer->getSectionAddressMap());
      if (isAbs) {
        FixedValue = Res;
        return;
      } else {
        report_fatal_error("unsupported relocation of variable '" +
                           Symbol->getName() + "'", false);
      }
    } else {
      report_fatal_error("unsupported relocation of undefined symbol '" +
                         Symbol->getName() + "'", false);
    }

    MCSymbolRefExpr::VariantKind Modifier = Target.getSymA()->getKind();
    if (IsPCRel) {
      if (IsRIPRel) {
        if (Modifier == MCSymbolRefExpr::VK_GOTPCREL) {
          // x86_64 distinguishes movq foo@GOTPCREL so that the linker can
          // rewrite the movq to an leaq at link time if the symbol ends up in
          // the same linkage unit.
          if (unsigned(Fixup.getKind()) == X86::reloc_riprel_4byte_movq_load)
            Type = MachO::X86_64_RELOC_GOT_LOAD;
          else
            Type = MachO::X86_64_RELOC_GOT;
        }  else if (Modifier == MCSymbolRefExpr::VK_TLVP) {
          Type = MachO::X86_64_RELOC_TLV;
        }  else if (Modifier != MCSymbolRefExpr::VK_None) {
          report_fatal_error("unsupported symbol modifier in relocation",
                             false);
        } else {
          Type = MachO::X86_64_RELOC_SIGNED;

          // The Darwin x86_64 relocation format has a problem where it cannot
          // encode an address (L<foo> + <constant>) which is outside the atom
          // containing L<foo>. Generally, this shouldn't occur but it does
          // happen when we have a RIPrel instruction with data following the
          // relocation entry (e.g., movb $012, L0(%rip)). Even with the PCrel
          // adjustment Darwin x86_64 uses, the offset is still negative and the
          // linker has no way to recognize this.
          //
          // To work around this, Darwin uses several special relocation types
          // to indicate the offsets. However, the specification or
          // implementation of these seems to also be incomplete; they should
          // adjust the addend as well based on the actual encoded instruction
          // (the additional bias), but instead appear to just look at the final
          // offset.
          switch (-(Target.getConstant() + (1LL << Log2Size))) {
          case 1: Type = MachO::X86_64_RELOC_SIGNED_1; break;
          case 2: Type = MachO::X86_64_RELOC_SIGNED_2; break;
          case 4: Type = MachO::X86_64_RELOC_SIGNED_4; break;
          }
        }
      } else {
        if (Modifier != MCSymbolRefExpr::VK_None)
          report_fatal_error("unsupported symbol modifier in branch "
                             "relocation", false);

        Type = MachO::X86_64_RELOC_BRANCH;
      }
    } else {
      if (Modifier == MCSymbolRefExpr::VK_GOT) {
        Type = MachO::X86_64_RELOC_GOT;
      } else if (Modifier == MCSymbolRefExpr::VK_GOTPCREL) {
        // GOTPCREL is allowed as a modifier on non-PCrel instructions, in which
        // case all we do is set the PCrel bit in the relocation entry; this is
        // used with exception handling, for example. The source is required to
        // include any necessary offset directly.
        Type = MachO::X86_64_RELOC_GOT;
        IsPCRel = 1;
      } else if (Modifier == MCSymbolRefExpr::VK_TLVP) {
        report_fatal_error("TLVP symbol modifier should have been rip-rel",
                           false);
      } else if (Modifier != MCSymbolRefExpr::VK_None)
        report_fatal_error("unsupported symbol modifier in relocation", false);
      else {
        Type = MachO::X86_64_RELOC_UNSIGNED;
        unsigned Kind = Fixup.getKind();
        if (Kind == X86::reloc_signed_4byte)
          report_fatal_error("32-bit absolute addressing is not supported in "
                             "64-bit mode", false);
      }
    }
  }

  // x86_64 always writes custom values into the fixups.
  FixedValue = Value;

  // struct relocation_info (8 bytes)
  MachO::any_relocation_info MRE;
  MRE.r_word0 = FixupOffset;
  MRE.r_word1 = (Index << 0) | (IsPCRel << 24) | (Log2Size << 25) |
                (IsExtern << 27) | (Type << 28);
  Writer->addRelocation(RelSymbol, Fragment->getParent(), MRE);
}
bool X86MachObjectWriter::RecordScatteredRelocation(MachObjectWriter *Writer,
                                                    const MCAssembler &Asm,
                                                    const MCAsmLayout &Layout,
                                                    const MCFragment *Fragment,
                                                    const MCFixup &Fixup,
                                                    MCValue Target,
                                                    unsigned Log2Size,
                                                    uint64_t &FixedValue) {
  uint64_t OriginalFixedValue = FixedValue;
  uint32_t FixupOffset = Layout.getFragmentOffset(Fragment)+Fixup.getOffset();
  unsigned IsPCRel = Writer->isFixupKindPCRel(Asm, Fixup.getKind());
  unsigned Type = MachO::GENERIC_RELOC_VANILLA;

  // See <reloc.h>.
  const MCSymbol *A = &Target.getSymA()->getSymbol();
  const MCSymbolData *A_SD = &Asm.getSymbolData(*A);

  if (!A_SD->getFragment())
    report_fatal_error("symbol '" + A->getName() +
                       "' can not be undefined in a subtraction expression",
                       false);

  uint32_t Value = Writer->getSymbolAddress(A_SD, Layout);
  uint64_t SecAddr = Writer->getSectionAddress(A_SD->getFragment()->getParent());
  FixedValue += SecAddr;
  uint32_t Value2 = 0;

  if (const MCSymbolRefExpr *B = Target.getSymB()) {
    const MCSymbolData *B_SD = &Asm.getSymbolData(B->getSymbol());

    if (!B_SD->getFragment())
      report_fatal_error("symbol '" + B->getSymbol().getName() +
                         "' can not be undefined in a subtraction expression",
                         false);

    // Select the appropriate difference relocation type.
    //
    // Note that there is no longer any semantic difference between these two
    // relocation types from the linkers point of view, this is done solely for
    // pedantic compatibility with 'as'.
    Type = A_SD->isExternal() ? (unsigned)MachO::GENERIC_RELOC_SECTDIFF :
      (unsigned)MachO::GENERIC_RELOC_LOCAL_SECTDIFF;
    Value2 = Writer->getSymbolAddress(B_SD, Layout);
    FixedValue -= Writer->getSectionAddress(B_SD->getFragment()->getParent());
  }

  // Relocations are written out in reverse order, so the PAIR comes first.
  if (Type == MachO::GENERIC_RELOC_SECTDIFF ||
      Type == MachO::GENERIC_RELOC_LOCAL_SECTDIFF) {
    // If the offset is too large to fit in a scattered relocation,
    // we're hosed. It's an unfortunate limitation of the MachO format.
    if (FixupOffset > 0xffffff) {
      char Buffer[32];
      format("0x%x", FixupOffset).print(Buffer, sizeof(Buffer));
      Asm.getContext().FatalError(Fixup.getLoc(),
                         Twine("Section too large, can't encode "
                                "r_address (") + Buffer +
                         ") into 24 bits of scattered "
                         "relocation entry.");
      llvm_unreachable("fatal error returned?!");
    }

    MachO::any_relocation_info MRE;
    MRE.r_word0 = ((0                         <<  0) | // r_address
                   (MachO::GENERIC_RELOC_PAIR << 24) | // r_type
                   (Log2Size                  << 28) |
                   (IsPCRel                   << 30) |
                   MachO::R_SCATTERED);
    MRE.r_word1 = Value2;
    Writer->addRelocation(nullptr, Fragment->getParent(), MRE);
  } else {
    // If the offset is more than 24-bits, it won't fit in a scattered
    // relocation offset field, so we fall back to using a non-scattered
    // relocation. This is a bit risky, as if the offset reaches out of
    // the block and the linker is doing scattered loading on this
    // symbol, things can go badly.
    //
    // Required for 'as' compatibility.
    if (FixupOffset > 0xffffff) {
      FixedValue = OriginalFixedValue;
      return false;
    }
  }

  MachO::any_relocation_info MRE;
  MRE.r_word0 = ((FixupOffset <<  0) |
                 (Type        << 24) |
                 (Log2Size    << 28) |
                 (IsPCRel     << 30) |
                 MachO::R_SCATTERED);
  MRE.r_word1 = Value;
  Writer->addRelocation(nullptr, Fragment->getParent(), MRE);
  return true;
}
void X86MachObjectWriter::RecordX86Relocation(MachObjectWriter *Writer,
                                              const MCAssembler &Asm,
                                              const MCAsmLayout &Layout,
                                              const MCFragment *Fragment,
                                              const MCFixup &Fixup,
                                              MCValue Target,
                                              uint64_t &FixedValue) {
  unsigned IsPCRel = Writer->isFixupKindPCRel(Asm, Fixup.getKind());
  unsigned Log2Size = getFixupKindLog2Size(Fixup.getKind());

  // If this is a 32-bit TLVP reloc it's handled a bit differently.
  if (Target.getSymA() &&
      Target.getSymA()->getKind() == MCSymbolRefExpr::VK_TLVP) {
    RecordTLVPRelocation(Writer, Asm, Layout, Fragment, Fixup, Target,
                         FixedValue);
    return;
  }

  // If this is a difference or a defined symbol plus an offset, then we need a
  // scattered relocation entry. Differences always require scattered
  // relocations.
  if (Target.getSymB()) {
    RecordScatteredRelocation(Writer, Asm, Layout, Fragment, Fixup,
                              Target, Log2Size, FixedValue);
    return;
  }

  // Get the symbol data, if any.
  const MCSymbolData *SD = nullptr;
  if (Target.getSymA())
    SD = &Asm.getSymbolData(Target.getSymA()->getSymbol());

  // If this is an internal relocation with an offset, it also needs a scattered
  // relocation entry.
  uint32_t Offset = Target.getConstant();
  if (IsPCRel)
    Offset += 1 << Log2Size;
  // Try to record the scattered relocation if needed. Fall back to non
  // scattered if necessary (see comments in RecordScatteredRelocation()
  // for details).
  if (Offset && SD && !Writer->doesSymbolRequireExternRelocation(SD) &&
      RecordScatteredRelocation(Writer, Asm, Layout, Fragment, Fixup,
                                Target, Log2Size, FixedValue))
    return;

  // See <reloc.h>.
  uint32_t FixupOffset = Layout.getFragmentOffset(Fragment)+Fixup.getOffset();
  unsigned Index = 0;
  unsigned Type = 0;
  const MCSymbol *RelSymbol = nullptr;

  if (Target.isAbsolute()) { // constant
    // SymbolNum of 0 indicates the absolute section.
    //
    // FIXME: Currently, these are never generated (see code below). I cannot
    // find a case where they are actually emitted.
    Type = MachO::GENERIC_RELOC_VANILLA;
  } else {
    // Resolve constant variables.
    if (SD->getSymbol().isVariable()) {
      int64_t Res;
      if (SD->getSymbol().getVariableValue()->EvaluateAsAbsolute(
            Res, Layout, Writer->getSectionAddressMap())) {
        FixedValue = Res;
        return;
      }
    }

    // Check whether we need an external or internal relocation.
    if (Writer->doesSymbolRequireExternRelocation(SD)) {
      RelSymbol = &SD->getSymbol();
      // For external relocations, make sure to offset the fixup value to
      // compensate for the addend of the symbol address, if it was
      // undefined. This occurs with weak definitions, for example.
      if (!SD->getSymbol().isUndefined())
        FixedValue -= Layout.getSymbolOffset(SD);
    } else {
      // The index is the section ordinal (1-based).
      const MCSectionData &SymSD = Asm.getSectionData(
        SD->getSymbol().getSection());
      Index = SymSD.getOrdinal() + 1;
      FixedValue += Writer->getSectionAddress(&SymSD);
    }
    if (IsPCRel)
      FixedValue -= Writer->getSectionAddress(Fragment->getParent());

    Type = MachO::GENERIC_RELOC_VANILLA;
  }

  // struct relocation_info (8 bytes)
  MachO::any_relocation_info MRE;
  MRE.r_word0 = FixupOffset;
  MRE.r_word1 =
      (Index << 0) | (IsPCRel << 24) | (Log2Size << 25) | (Type << 28);
  Writer->addRelocation(RelSymbol, Fragment->getParent(), MRE);
}
Exemple #10
0
void MachObjectWriter::WriteObject(MCAssembler &Asm,
                                   const MCAsmLayout &Layout) {
  unsigned NumSections = Asm.size();

  // The section data starts after the header, the segment load command (and
  // section headers) and the symbol table.
  unsigned NumLoadCommands = 1;
  uint64_t LoadCommandsSize = is64Bit() ?
    macho::SegmentLoadCommand64Size + NumSections * macho::Section64Size :
    macho::SegmentLoadCommand32Size + NumSections * macho::Section32Size;

  // Add the data-in-code load command size, if used.
  unsigned NumDataRegions = Asm.getDataRegions().size();
  if (NumDataRegions) {
    ++NumLoadCommands;
    LoadCommandsSize += macho::LinkeditLoadCommandSize;
  }

  // Add the symbol table load command sizes, if used.
  unsigned NumSymbols = LocalSymbolData.size() + ExternalSymbolData.size() +
    UndefinedSymbolData.size();
  if (NumSymbols) {
    NumLoadCommands += 2;
    LoadCommandsSize += (macho::SymtabLoadCommandSize +
                         macho::DysymtabLoadCommandSize);
  }

  // Add the linker option load commands sizes.
  const std::vector<std::vector<std::string> > &LinkerOptions =
    Asm.getLinkerOptions();
  for (unsigned i = 0, e = LinkerOptions.size(); i != e; ++i) {
    ++NumLoadCommands;
    LoadCommandsSize += ComputeLinkerOptionsLoadCommandSize(LinkerOptions[i],
                                                            is64Bit());
  }
  
  // Compute the total size of the section data, as well as its file size and vm
  // size.
  uint64_t SectionDataStart = (is64Bit() ? macho::Header64Size :
                               macho::Header32Size) + LoadCommandsSize;
  uint64_t SectionDataSize = 0;
  uint64_t SectionDataFileSize = 0;
  uint64_t VMSize = 0;
  for (MCAssembler::const_iterator it = Asm.begin(),
         ie = Asm.end(); it != ie; ++it) {
    const MCSectionData &SD = *it;
    uint64_t Address = getSectionAddress(&SD);
    uint64_t Size = Layout.getSectionAddressSize(&SD);
    uint64_t FileSize = Layout.getSectionFileSize(&SD);
    FileSize += getPaddingSize(&SD, Layout);

    VMSize = std::max(VMSize, Address + Size);

    if (SD.getSection().isVirtualSection())
      continue;

    SectionDataSize = std::max(SectionDataSize, Address + Size);
    SectionDataFileSize = std::max(SectionDataFileSize, Address + FileSize);
  }

  // The section data is padded to 4 bytes.
  //
  // FIXME: Is this machine dependent?
  unsigned SectionDataPadding = OffsetToAlignment(SectionDataFileSize, 4);
  SectionDataFileSize += SectionDataPadding;

  // Write the prolog, starting with the header and load command...
  WriteHeader(NumLoadCommands, LoadCommandsSize,
              Asm.getSubsectionsViaSymbols());
  WriteSegmentLoadCommand(NumSections, VMSize,
                          SectionDataStart, SectionDataSize);

  // ... and then the section headers.
  uint64_t RelocTableEnd = SectionDataStart + SectionDataFileSize;
  for (MCAssembler::const_iterator it = Asm.begin(),
         ie = Asm.end(); it != ie; ++it) {
    std::vector<macho::RelocationEntry> &Relocs = Relocations[it];
    unsigned NumRelocs = Relocs.size();
    uint64_t SectionStart = SectionDataStart + getSectionAddress(it);
    WriteSection(Asm, Layout, *it, SectionStart, RelocTableEnd, NumRelocs);
    RelocTableEnd += NumRelocs * macho::RelocationInfoSize;
  }

  // Write the data-in-code load command, if used.
  uint64_t DataInCodeTableEnd = RelocTableEnd + NumDataRegions * 8;
  if (NumDataRegions) {
    uint64_t DataRegionsOffset = RelocTableEnd;
    uint64_t DataRegionsSize = NumDataRegions * 8;
    WriteLinkeditLoadCommand(macho::LCT_DataInCode, DataRegionsOffset,
                             DataRegionsSize);
  }

  // Write the symbol table load command, if used.
  if (NumSymbols) {
    unsigned FirstLocalSymbol = 0;
    unsigned NumLocalSymbols = LocalSymbolData.size();
    unsigned FirstExternalSymbol = FirstLocalSymbol + NumLocalSymbols;
    unsigned NumExternalSymbols = ExternalSymbolData.size();
    unsigned FirstUndefinedSymbol = FirstExternalSymbol + NumExternalSymbols;
    unsigned NumUndefinedSymbols = UndefinedSymbolData.size();
    unsigned NumIndirectSymbols = Asm.indirect_symbol_size();
    unsigned NumSymTabSymbols =
      NumLocalSymbols + NumExternalSymbols + NumUndefinedSymbols;
    uint64_t IndirectSymbolSize = NumIndirectSymbols * 4;
    uint64_t IndirectSymbolOffset = 0;

    // If used, the indirect symbols are written after the section data.
    if (NumIndirectSymbols)
      IndirectSymbolOffset = DataInCodeTableEnd;

    // The symbol table is written after the indirect symbol data.
    uint64_t SymbolTableOffset = DataInCodeTableEnd + IndirectSymbolSize;

    // The string table is written after symbol table.
    uint64_t StringTableOffset =
      SymbolTableOffset + NumSymTabSymbols * (is64Bit() ? macho::Nlist64Size :
                                              macho::Nlist32Size);
    WriteSymtabLoadCommand(SymbolTableOffset, NumSymTabSymbols,
                           StringTableOffset, StringTable.size());

    WriteDysymtabLoadCommand(FirstLocalSymbol, NumLocalSymbols,
                             FirstExternalSymbol, NumExternalSymbols,
                             FirstUndefinedSymbol, NumUndefinedSymbols,
                             IndirectSymbolOffset, NumIndirectSymbols);
  }

  // Write the linker options load commands.
  for (unsigned i = 0, e = LinkerOptions.size(); i != e; ++i) {
    WriteLinkerOptionsLoadCommand(LinkerOptions[i]);
  }

  // Write the actual section data.
  for (MCAssembler::const_iterator it = Asm.begin(),
         ie = Asm.end(); it != ie; ++it) {
    Asm.writeSectionData(it, Layout);

    uint64_t Pad = getPaddingSize(it, Layout);
    for (unsigned int i = 0; i < Pad; ++i)
      Write8(0);
  }

  // Write the extra padding.
  WriteZeros(SectionDataPadding);

  // Write the relocation entries.
  for (MCAssembler::const_iterator it = Asm.begin(),
         ie = Asm.end(); it != ie; ++it) {
    // Write the section relocation entries, in reverse order to match 'as'
    // (approximately, the exact algorithm is more complicated than this).
    std::vector<macho::RelocationEntry> &Relocs = Relocations[it];
    for (unsigned i = 0, e = Relocs.size(); i != e; ++i) {
      Write32(Relocs[e - i - 1].Word0);
      Write32(Relocs[e - i - 1].Word1);
    }
  }

  // Write out the data-in-code region payload, if there is one.
  for (MCAssembler::const_data_region_iterator
         it = Asm.data_region_begin(), ie = Asm.data_region_end();
         it != ie; ++it) {
    const DataRegionData *Data = &(*it);
    uint64_t Start =
      getSymbolAddress(&Layout.getAssembler().getSymbolData(*Data->Start),
                       Layout);
    uint64_t End =
      getSymbolAddress(&Layout.getAssembler().getSymbolData(*Data->End),
                       Layout);
    DEBUG(dbgs() << "data in code region-- kind: " << Data->Kind
                 << "  start: " << Start << "(" << Data->Start->getName() << ")"
                 << "  end: " << End << "(" << Data->End->getName() << ")"
                 << "  size: " << End - Start
                 << "\n");
    Write32(Start);
    Write16(End - Start);
    Write16(Data->Kind);
  }

  // Write the symbol table data, if used.
  if (NumSymbols) {
    // Write the indirect symbol entries.
    for (MCAssembler::const_indirect_symbol_iterator
           it = Asm.indirect_symbol_begin(),
           ie = Asm.indirect_symbol_end(); it != ie; ++it) {
      // Indirect symbols in the non lazy symbol pointer section have some
      // special handling.
      const MCSectionMachO &Section =
        static_cast<const MCSectionMachO&>(it->SectionData->getSection());
      if (Section.getType() == MCSectionMachO::S_NON_LAZY_SYMBOL_POINTERS) {
        // If this symbol is defined and internal, mark it as such.
        if (it->Symbol->isDefined() &&
            !Asm.getSymbolData(*it->Symbol).isExternal()) {
          uint32_t Flags = macho::ISF_Local;
          if (it->Symbol->isAbsolute())
            Flags |= macho::ISF_Absolute;
          Write32(Flags);
          continue;
        }
      }

      Write32(Asm.getSymbolData(*it->Symbol).getIndex());
    }

    // FIXME: Check that offsets match computed ones.

    // Write the symbol table entries.
    for (unsigned i = 0, e = LocalSymbolData.size(); i != e; ++i)
      WriteNlist(LocalSymbolData[i], Layout);
    for (unsigned i = 0, e = ExternalSymbolData.size(); i != e; ++i)
      WriteNlist(ExternalSymbolData[i], Layout);
    for (unsigned i = 0, e = UndefinedSymbolData.size(); i != e; ++i)
      WriteNlist(UndefinedSymbolData[i], Layout);

    // Write the string table.
    OS << StringTable.str();
  }
}
void ARMMachObjectWriter::
RecordARMScatteredHalfRelocation(MachObjectWriter *Writer,
                                 const MCAssembler &Asm,
                                 const MCAsmLayout &Layout,
                                 const MCFragment *Fragment,
                                 const MCFixup &Fixup,
                                 MCValue Target,
                                 uint64_t &FixedValue) {
  uint32_t FixupOffset = Layout.getFragmentOffset(Fragment)+Fixup.getOffset();
  unsigned IsPCRel = Writer->isFixupKindPCRel(Asm, Fixup.getKind());
  unsigned Type = MachO::ARM_RELOC_HALF;

  // See <reloc.h>.
  const MCSymbol *A = &Target.getSymA()->getSymbol();
  const MCSymbolData *A_SD = &Asm.getSymbolData(*A);

  if (!A_SD->getFragment())
    Asm.getContext().FatalError(Fixup.getLoc(),
                       "symbol '" + A->getName() +
                       "' can not be undefined in a subtraction expression");

  uint32_t Value = Writer->getSymbolAddress(A_SD, Layout);
  uint32_t Value2 = 0;
  uint64_t SecAddr =
    Writer->getSectionAddress(A_SD->getFragment()->getParent());
  FixedValue += SecAddr;

  if (const MCSymbolRefExpr *B = Target.getSymB()) {
    const MCSymbolData *B_SD = &Asm.getSymbolData(B->getSymbol());

    if (!B_SD->getFragment())
      Asm.getContext().FatalError(Fixup.getLoc(),
                         "symbol '" + B->getSymbol().getName() +
                         "' can not be undefined in a subtraction expression");

    // Select the appropriate difference relocation type.
    Type = MachO::ARM_RELOC_HALF_SECTDIFF;
    Value2 = Writer->getSymbolAddress(B_SD, Layout);
    FixedValue -= Writer->getSectionAddress(B_SD->getFragment()->getParent());
  }

  // Relocations are written out in reverse order, so the PAIR comes first.
  // ARM_RELOC_HALF and ARM_RELOC_HALF_SECTDIFF abuse the r_length field:
  //
  // For these two r_type relocations they always have a pair following them and
  // the r_length bits are used differently.  The encoding of the r_length is as
  // follows:
  //   low bit of r_length:
  //      0 - :lower16: for movw instructions
  //      1 - :upper16: for movt instructions
  //   high bit of r_length:
  //      0 - arm instructions
  //      1 - thumb instructions
  // the other half of the relocated expression is in the following pair
  // relocation entry in the low 16 bits of r_address field.
  unsigned ThumbBit = 0;
  unsigned MovtBit = 0;
  switch ((unsigned)Fixup.getKind()) {
  default: break;
  case ARM::fixup_arm_movt_hi16:
    MovtBit = 1;
    // The thumb bit shouldn't be set in the 'other-half' bit of the
    // relocation, but it will be set in FixedValue if the base symbol
    // is a thumb function. Clear it out here.
    if (Asm.isThumbFunc(A))
      FixedValue &= 0xfffffffe;
    break;
  case ARM::fixup_t2_movt_hi16:
    if (Asm.isThumbFunc(A))
      FixedValue &= 0xfffffffe;
    MovtBit = 1;
    // Fallthrough
  case ARM::fixup_t2_movw_lo16:
    ThumbBit = 1;
    break;
  }

  if (Type == MachO::ARM_RELOC_HALF_SECTDIFF) {
    uint32_t OtherHalf = MovtBit
      ? (FixedValue & 0xffff) : ((FixedValue & 0xffff0000) >> 16);

    MachO::any_relocation_info MRE;
    MRE.r_word0 = ((OtherHalf             <<  0) |
                   (MachO::ARM_RELOC_PAIR << 24) |
                   (MovtBit               << 28) |
                   (ThumbBit              << 29) |
                   (IsPCRel               << 30) |
                   MachO::R_SCATTERED);
    MRE.r_word1 = Value2;
    Writer->addRelocation(nullptr, Fragment->getParent(), MRE);
  }
void WinCOFFObjectWriter::RecordRelocation(const MCAssembler &Asm,
                                           const MCAsmLayout &Layout,
                                           const MCFragment *Fragment,
                                           const MCFixup &Fixup,
                                           MCValue Target,
                                           uint64_t &FixedValue) {
  assert(Target.getSymA() != NULL && "Relocation must reference a symbol!");

  const MCSymbol &Symbol = Target.getSymA()->getSymbol();
  const MCSymbol &A = Symbol.AliasedSymbol();
  MCSymbolData &A_SD = Asm.getSymbolData(A);

  MCSectionData const *SectionData = Fragment->getParent();

  // Mark this symbol as requiring an entry in the symbol table.
  assert(SectionMap.find(&SectionData->getSection()) != SectionMap.end() &&
         "Section must already have been defined in ExecutePostLayoutBinding!");
  assert(SymbolMap.find(&A_SD.getSymbol()) != SymbolMap.end() &&
         "Symbol must already have been defined in ExecutePostLayoutBinding!");

  COFFSection *coff_section = SectionMap[&SectionData->getSection()];
  COFFSymbol *coff_symbol = SymbolMap[&A_SD.getSymbol()];
  const MCSymbolRefExpr *SymA = Target.getSymA();
  const MCSymbolRefExpr *SymB = Target.getSymB();
  const bool CrossSection = SymB &&
    &SymA->getSymbol().getSection() != &SymB->getSymbol().getSection();

  if (Target.getSymB()) {
    const MCSymbol *B = &Target.getSymB()->getSymbol();
    MCSymbolData &B_SD = Asm.getSymbolData(*B);

    // Offset of the symbol in the section
    int64_t a = Layout.getSymbolOffset(&B_SD);

    // Ofeset of the relocation in the section
    int64_t b = Layout.getFragmentOffset(Fragment) + Fixup.getOffset();

    FixedValue = b - a;
    // In the case where we have SymbA and SymB, we just need to store the delta
    // between the two symbols.  Update FixedValue to account for the delta, and
    // skip recording the relocation.
    if (!CrossSection)
      return;
  } else {
    FixedValue = Target.getConstant();
  }

  COFFRelocation Reloc;

  Reloc.Data.SymbolTableIndex = 0;
  Reloc.Data.VirtualAddress = Layout.getFragmentOffset(Fragment);

  // Turn relocations for temporary symbols into section relocations.
  if (coff_symbol->MCData->getSymbol().isTemporary() || CrossSection) {
    Reloc.Symb = coff_symbol->Section->Symbol;
    FixedValue += Layout.getFragmentOffset(coff_symbol->MCData->Fragment)
                + coff_symbol->MCData->getOffset();
  } else
    Reloc.Symb = coff_symbol;

  ++Reloc.Symb->Relocations;

  Reloc.Data.VirtualAddress += Fixup.getOffset();
  Reloc.Data.Type = TargetObjectWriter->getRelocType(Target, Fixup,
                                                     CrossSection);

  // FIXME: Can anyone explain what this does other than adjust for the size
  // of the offset?
  if (Reloc.Data.Type == COFF::IMAGE_REL_AMD64_REL32 ||
      Reloc.Data.Type == COFF::IMAGE_REL_I386_REL32)
    FixedValue += 4;

  coff_section->Relocations.push_back(Reloc);
}
Exemple #13
0
bool MachObjectWriter::
IsSymbolRefDifferenceFullyResolvedImpl(const MCAssembler &Asm,
                                       const MCSymbolData &DataA,
                                       const MCFragment &FB,
                                       bool InSet,
                                       bool IsPCRel) const {
  if (InSet)
    return true;

  // The effective address is
  //     addr(atom(A)) + offset(A)
  //   - addr(atom(B)) - offset(B)
  // and the offsets are not relocatable, so the fixup is fully resolved when
  //  addr(atom(A)) - addr(atom(B)) == 0.
  const MCSymbolData *A_Base = 0, *B_Base = 0;

  const MCSymbol &SA = DataA.getSymbol().AliasedSymbol();
  const MCSection &SecA = SA.getSection();
  const MCSection &SecB = FB.getParent()->getSection();

  if (IsPCRel) {
    // The simple (Darwin, except on x86_64) way of dealing with this was to
    // assume that any reference to a temporary symbol *must* be a temporary
    // symbol in the same atom, unless the sections differ. Therefore, any PCrel
    // relocation to a temporary symbol (in the same section) is fully
    // resolved. This also works in conjunction with absolutized .set, which
    // requires the compiler to use .set to absolutize the differences between
    // symbols which the compiler knows to be assembly time constants, so we
    // don't need to worry about considering symbol differences fully resolved.
    //
    // If the file isn't using sub-sections-via-symbols, we can make the
    // same assumptions about any symbol that we normally make about
    // assembler locals.

    if (!Asm.getBackend().hasReliableSymbolDifference()) {
      if (!SA.isInSection() || &SecA != &SecB ||
          (!SA.isTemporary() &&
           FB.getAtom() != Asm.getSymbolData(SA).getFragment()->getAtom() &&
           Asm.getSubsectionsViaSymbols()))
        return false;
      return true;
    }
    // For Darwin x86_64, there is one special case when the reference IsPCRel.
    // If the fragment with the reference does not have a base symbol but meets
    // the simple way of dealing with this, in that it is a temporary symbol in
    // the same atom then it is assumed to be fully resolved.  This is needed so
    // a relocation entry is not created and so the static linker does not
    // mess up the reference later.
    else if(!FB.getAtom() &&
            SA.isTemporary() && SA.isInSection() && &SecA == &SecB){
      return true;
    }
  } else {
    if (!TargetObjectWriter->useAggressiveSymbolFolding())
      return false;
  }

  const MCFragment *FA = Asm.getSymbolData(SA).getFragment();

  // Bail if the symbol has no fragment.
  if (!FA)
    return false;

  A_Base = FA->getAtom();
  if (!A_Base)
    return false;

  B_Base = FB.getAtom();
  if (!B_Base)
    return false;

  // If the atoms are the same, they are guaranteed to have the same address.
  if (A_Base == B_Base)
    return true;

  // Otherwise, we can't prove this is fully resolved.
  return false;
}
void AArch64MachObjectWriter::RecordRelocation(
    MachObjectWriter *Writer, MCAssembler &Asm, const MCAsmLayout &Layout,
    const MCFragment *Fragment, const MCFixup &Fixup, MCValue Target,
    uint64_t &FixedValue) {
    unsigned IsPCRel = Writer->isFixupKindPCRel(Asm, Fixup.getKind());

    // See <reloc.h>.
    uint32_t FixupOffset = Layout.getFragmentOffset(Fragment);
    unsigned Log2Size = 0;
    int64_t Value = 0;
    unsigned Index = 0;
    unsigned Type = 0;
    unsigned Kind = Fixup.getKind();
    const MCSymbolData *RelSymbol = nullptr;

    FixupOffset += Fixup.getOffset();

    // AArch64 pcrel relocation addends do not include the section offset.
    if (IsPCRel)
        FixedValue += FixupOffset;

    // ADRP fixups use relocations for the whole symbol value and only
    // put the addend in the instruction itself. Clear out any value the
    // generic code figured out from the sybmol definition.
    if (Kind == AArch64::fixup_aarch64_pcrel_adrp_imm21)
        FixedValue = 0;

    // imm19 relocations are for conditional branches, which require
    // assembler local symbols. If we got here, that's not what we have,
    // so complain loudly.
    if (Kind == AArch64::fixup_aarch64_pcrel_branch19) {
        Asm.getContext().FatalError(Fixup.getLoc(),
                                    "conditional branch requires assembler-local"
                                    " label. '" +
                                    Target.getSymA()->getSymbol().getName() +
                                    "' is external.");
        return;
    }

    // 14-bit branch relocations should only target internal labels, and so
    // should never get here.
    if (Kind == AArch64::fixup_aarch64_pcrel_branch14) {
        Asm.getContext().FatalError(Fixup.getLoc(),
                                    "Invalid relocation on conditional branch!");
        return;
    }

    if (!getAArch64FixupKindMachOInfo(Fixup, Type, Target.getSymA(), Log2Size,
                                      Asm)) {
        Asm.getContext().FatalError(Fixup.getLoc(), "unknown AArch64 fixup kind!");
        return;
    }

    Value = Target.getConstant();

    if (Target.isAbsolute()) { // constant
        // FIXME: Should this always be extern?
        // SymbolNum of 0 indicates the absolute section.
        Type = MachO::ARM64_RELOC_UNSIGNED;

        if (IsPCRel) {
            Asm.getContext().FatalError(Fixup.getLoc(),
                                        "PC relative absolute relocation!");

            // FIXME: x86_64 sets the type to a branch reloc here. Should we do
            // something similar?
        }
    } else if (Target.getSymB()) { // A - B + constant
        const MCSymbol *A = &Target.getSymA()->getSymbol();
        const MCSymbolData &A_SD = Asm.getSymbolData(*A);
        const MCSymbolData *A_Base = Asm.getAtom(&A_SD);

        const MCSymbol *B = &Target.getSymB()->getSymbol();
        const MCSymbolData &B_SD = Asm.getSymbolData(*B);
        const MCSymbolData *B_Base = Asm.getAtom(&B_SD);

        // Check for "_foo@got - .", which comes through here as:
        // Ltmp0:
        //    ... _foo@got - Ltmp0
        if (Target.getSymA()->getKind() == MCSymbolRefExpr::VK_GOT &&
                Target.getSymB()->getKind() == MCSymbolRefExpr::VK_None &&
                Layout.getSymbolOffset(&B_SD) ==
                Layout.getFragmentOffset(Fragment) + Fixup.getOffset()) {
            // SymB is the PC, so use a PC-rel pointer-to-GOT relocation.
            Type = MachO::ARM64_RELOC_POINTER_TO_GOT;
            IsPCRel = 1;
            MachO::any_relocation_info MRE;
            MRE.r_word0 = FixupOffset;
            MRE.r_word1 = (IsPCRel << 24) | (Log2Size << 25) | (Type << 28);
            Writer->addRelocation(A_Base, Fragment->getParent(), MRE);
            return;
        } else if (Target.getSymA()->getKind() != MCSymbolRefExpr::VK_None ||
                   Target.getSymB()->getKind() != MCSymbolRefExpr::VK_None)
            // Otherwise, neither symbol can be modified.
            Asm.getContext().FatalError(Fixup.getLoc(),
                                        "unsupported relocation of modified symbol");

        // We don't support PCrel relocations of differences.
        if (IsPCRel)
            Asm.getContext().FatalError(Fixup.getLoc(),
                                        "unsupported pc-relative relocation of "
                                        "difference");

        // AArch64 always uses external relocations. If there is no symbol to use as
        // a base address (a local symbol with no preceding non-local symbol),
        // error out.
        //
        // FIXME: We should probably just synthesize an external symbol and use
        // that.
        if (!A_Base)
            Asm.getContext().FatalError(
                Fixup.getLoc(),
                "unsupported relocation of local symbol '" + A->getName() +
                "'. Must have non-local symbol earlier in section.");
        if (!B_Base)
            Asm.getContext().FatalError(
                Fixup.getLoc(),
                "unsupported relocation of local symbol '" + B->getName() +
                "'. Must have non-local symbol earlier in section.");

        if (A_Base == B_Base && A_Base)
            Asm.getContext().FatalError(Fixup.getLoc(),
                                        "unsupported relocation with identical base");

        Value += (!A_SD.getFragment() ? 0
                  : Writer->getSymbolAddress(&A_SD, Layout)) -
                 (!A_Base || !A_Base->getFragment()
                  ? 0
                  : Writer->getSymbolAddress(A_Base, Layout));
        Value -= (!B_SD.getFragment() ? 0
                  : Writer->getSymbolAddress(&B_SD, Layout)) -
                 (!B_Base || !B_Base->getFragment()
                  ? 0
                  : Writer->getSymbolAddress(B_Base, Layout));

        Type = MachO::ARM64_RELOC_UNSIGNED;

        MachO::any_relocation_info MRE;
        MRE.r_word0 = FixupOffset;
        MRE.r_word1 = (IsPCRel << 24) | (Log2Size << 25) | (Type << 28);
        Writer->addRelocation(A_Base, Fragment->getParent(), MRE);

        RelSymbol = B_Base;
        Type = MachO::ARM64_RELOC_SUBTRACTOR;
    } else { // A + constant
        const MCSymbol *Symbol = &Target.getSymA()->getSymbol();
        const MCSectionMachO &Section = static_cast<const MCSectionMachO &>(
                                            Fragment->getParent()->getSection());

        bool CanUseLocalRelocation =
            canUseLocalRelocation(Section, *Symbol, Log2Size);
        if (Symbol->isTemporary() && (Value || !CanUseLocalRelocation)) {
            const MCSection &Sec = Symbol->getSection();
            if (!Asm.getContext().getAsmInfo()->isSectionAtomizableBySymbols(Sec))
                Asm.addLocalUsedInReloc(*Symbol);
        }

        const MCSymbolData &SD = Asm.getSymbolData(*Symbol);
        const MCSymbolData *Base = Asm.getAtom(&SD);

        // If the symbol is a variable and we weren't able to get a Base for it
        // (i.e., it's not in the symbol table associated with a section) resolve
        // the relocation based its expansion instead.
        if (Symbol->isVariable() && !Base) {
            // If the evaluation is an absolute value, just use that directly
            // to keep things easy.
            int64_t Res;
            if (SD.getSymbol().getVariableValue()->EvaluateAsAbsolute(
                        Res, Layout, Writer->getSectionAddressMap())) {
                FixedValue = Res;
                return;
            }

            // FIXME: Will the Target we already have ever have any data in it
            // we need to preserve and merge with the new Target? How about
            // the FixedValue?
            if (!Symbol->getVariableValue()->EvaluateAsRelocatable(Target, &Layout,
                    &Fixup))
                Asm.getContext().FatalError(Fixup.getLoc(),
                                            "unable to resolve variable '" +
                                            Symbol->getName() + "'");
            return RecordRelocation(Writer, Asm, Layout, Fragment, Fixup, Target,
                                    FixedValue);
        }

        // Relocations inside debug sections always use local relocations when
        // possible. This seems to be done because the debugger doesn't fully
        // understand relocation entries and expects to find values that
        // have already been fixed up.
        if (Symbol->isInSection()) {
            if (Section.hasAttribute(MachO::S_ATTR_DEBUG))
                Base = nullptr;
        }

        // AArch64 uses external relocations as much as possible. For debug
        // sections, and for pointer-sized relocations (.quad), we allow section
        // relocations.  It's code sections that run into trouble.
        if (Base) {
            RelSymbol = Base;

            // Add the local offset, if needed.
            if (Base != &SD)
                Value += Layout.getSymbolOffset(&SD) - Layout.getSymbolOffset(Base);
        } else if (Symbol->isInSection()) {
            if (!CanUseLocalRelocation)
                Asm.getContext().FatalError(
                    Fixup.getLoc(),
                    "unsupported relocation of local symbol '" + Symbol->getName() +
                    "'. Must have non-local symbol earlier in section.");
            // Adjust the relocation to be section-relative.
            // The index is the section ordinal (1-based).
            const MCSectionData &SymSD =
                Asm.getSectionData(SD.getSymbol().getSection());
            Index = SymSD.getOrdinal() + 1;
            Value += Writer->getSymbolAddress(&SD, Layout);

            if (IsPCRel)
                Value -= Writer->getFragmentAddress(Fragment, Layout) +
                         Fixup.getOffset() + (1ULL << Log2Size);
        } else {
            // Resolve constant variables.
            if (SD.getSymbol().isVariable()) {
                int64_t Res;
                if (SD.getSymbol().getVariableValue()->EvaluateAsAbsolute(
                            Res, Layout, Writer->getSectionAddressMap())) {
                    FixedValue = Res;
                    return;
                }
            }
            Asm.getContext().FatalError(Fixup.getLoc(),
                                        "unsupported relocation of variable '" +
                                        Symbol->getName() + "'");
        }
    }

    // If the relocation kind is Branch26, Page21, or Pageoff12, any addend
    // is represented via an Addend relocation, not encoded directly into
    // the instruction.
    if ((Type == MachO::ARM64_RELOC_BRANCH26 ||
            Type == MachO::ARM64_RELOC_PAGE21 ||
            Type == MachO::ARM64_RELOC_PAGEOFF12) &&
            Value) {
        assert((Value & 0xff000000) == 0 && "Added relocation out of range!");

        MachO::any_relocation_info MRE;
        MRE.r_word0 = FixupOffset;
        MRE.r_word1 =
            (Index << 0) | (IsPCRel << 24) | (Log2Size << 25) | (Type << 28);
        Writer->addRelocation(RelSymbol, Fragment->getParent(), MRE);

        // Now set up the Addend relocation.
        Type = MachO::ARM64_RELOC_ADDEND;
        Index = Value;
        RelSymbol = nullptr;
        IsPCRel = 0;
        Log2Size = 2;

        // Put zero into the instruction itself. The addend is in the relocation.
        Value = 0;
    }

    // If there's any addend left to handle, encode it in the instruction.
    FixedValue = Value;

    // struct relocation_info (8 bytes)
    MachO::any_relocation_info MRE;
    MRE.r_word0 = FixupOffset;
    MRE.r_word1 =
        (Index << 0) | (IsPCRel << 24) | (Log2Size << 25) | (Type << 28);
    Writer->addRelocation(RelSymbol, Fragment->getParent(), MRE);
}
void WinCOFFObjectWriter::RecordRelocation(const MCAssembler &Asm,
                                           const MCAsmLayout &Layout,
                                           const MCFragment *Fragment,
                                           const MCFixup &Fixup,
                                           MCValue Target,
                                           uint64_t &FixedValue) {
  assert(Target.getSymA() != NULL && "Relocation must reference a symbol!");

  const MCSymbol *A = &Target.getSymA()->getSymbol();
  MCSymbolData &A_SD = Asm.getSymbolData(*A);

  MCSectionData const *SectionData = Fragment->getParent();

  // Mark this symbol as requiring an entry in the symbol table.
  assert(SectionMap.find(&SectionData->getSection()) != SectionMap.end() &&
         "Section must already have been defined in ExecutePostLayoutBinding!");
  assert(SymbolMap.find(&A_SD.getSymbol()) != SymbolMap.end() &&
         "Symbol must already have been defined in ExecutePostLayoutBinding!");

  COFFSection *coff_section = SectionMap[&SectionData->getSection()];
  COFFSymbol *coff_symbol = SymbolMap[&A_SD.getSymbol()];

  if (Target.getSymB()) {
    if (&Target.getSymA()->getSymbol().getSection()
     != &Target.getSymB()->getSymbol().getSection()) {
      llvm_unreachable("Symbol relative relocations are only allowed between "
                       "symbols in the same section");
    }
    const MCSymbol *B = &Target.getSymB()->getSymbol();
    MCSymbolData &B_SD = Asm.getSymbolData(*B);

    FixedValue = Layout.getSymbolOffset(&A_SD) - Layout.getSymbolOffset(&B_SD);

    // In the case where we have SymbA and SymB, we just need to store the delta
    // between the two symbols.  Update FixedValue to account for the delta, and
    // skip recording the relocation.
    return;
  } else {
    FixedValue = Target.getConstant();
  }

  COFFRelocation Reloc;

  Reloc.Data.SymbolTableIndex = 0;
  Reloc.Data.VirtualAddress = Layout.getFragmentOffset(Fragment);

  // Turn relocations for temporary symbols into section relocations.
  if (coff_symbol->MCData->getSymbol().isTemporary()) {
    Reloc.Symb = coff_symbol->Section->Symbol;
    FixedValue += Layout.getFragmentOffset(coff_symbol->MCData->Fragment)
                + coff_symbol->MCData->getOffset();
  } else
    Reloc.Symb = coff_symbol;

  ++Reloc.Symb->Relocations;

  Reloc.Data.VirtualAddress += Fixup.getOffset();

  switch ((unsigned)Fixup.getKind()) {
  case FK_PCRel_4:
  case X86::reloc_riprel_4byte:
  case X86::reloc_riprel_4byte_movq_load:
    Reloc.Data.Type = Is64Bit ? COFF::IMAGE_REL_AMD64_REL32
                              : COFF::IMAGE_REL_I386_REL32;
    // FIXME: Can anyone explain what this does other than adjust for the size
    // of the offset?
    FixedValue += 4;
    break;
  case FK_Data_4:
  case X86::reloc_signed_4byte:
    Reloc.Data.Type = Is64Bit ? COFF::IMAGE_REL_AMD64_ADDR32
                              : COFF::IMAGE_REL_I386_DIR32;
    break;
  case FK_Data_8:
    if (Is64Bit)
      Reloc.Data.Type = COFF::IMAGE_REL_AMD64_ADDR64;
    else
      llvm_unreachable("unsupported relocation type");
    break;
  default:
    llvm_unreachable("unsupported relocation type");
  }

  coff_section->Relocations.push_back(Reloc);
}
void MachObjectWriter::WriteObject(MCAssembler &Asm,
                                   const MCAsmLayout &Layout) {
  unsigned NumSections = Asm.size();
  const MCAssembler::VersionMinInfoType &VersionInfo =
    Layout.getAssembler().getVersionMinInfo();

  // The section data starts after the header, the segment load command (and
  // section headers) and the symbol table.
  unsigned NumLoadCommands = 1;
  uint64_t LoadCommandsSize = is64Bit() ?
    sizeof(MachO::segment_command_64) + NumSections * sizeof(MachO::section_64):
    sizeof(MachO::segment_command) + NumSections * sizeof(MachO::section);

  // Add the deployment target version info load command size, if used.
  if (VersionInfo.Major != 0) {
    ++NumLoadCommands;
    LoadCommandsSize += sizeof(MachO::version_min_command);
  }

  // Add the data-in-code load command size, if used.
  unsigned NumDataRegions = Asm.getDataRegions().size();
  if (NumDataRegions) {
    ++NumLoadCommands;
    LoadCommandsSize += sizeof(MachO::linkedit_data_command);
  }

  // Add the loh load command size, if used.
  uint64_t LOHRawSize = Asm.getLOHContainer().getEmitSize(*this, Layout);
  uint64_t LOHSize = RoundUpToAlignment(LOHRawSize, is64Bit() ? 8 : 4);
  if (LOHSize) {
    ++NumLoadCommands;
    LoadCommandsSize += sizeof(MachO::linkedit_data_command);
  }

  // Add the symbol table load command sizes, if used.
  unsigned NumSymbols = LocalSymbolData.size() + ExternalSymbolData.size() +
    UndefinedSymbolData.size();
  if (NumSymbols) {
    NumLoadCommands += 2;
    LoadCommandsSize += (sizeof(MachO::symtab_command) +
                         sizeof(MachO::dysymtab_command));
  }

  // Add the linker option load commands sizes.
  const std::vector<std::vector<std::string> > &LinkerOptions =
    Asm.getLinkerOptions();
  for (unsigned i = 0, e = LinkerOptions.size(); i != e; ++i) {
    ++NumLoadCommands;
    LoadCommandsSize += ComputeLinkerOptionsLoadCommandSize(LinkerOptions[i],
                                                            is64Bit());
  }
  
  // Compute the total size of the section data, as well as its file size and vm
  // size.
  uint64_t SectionDataStart = (is64Bit() ? sizeof(MachO::mach_header_64) :
                               sizeof(MachO::mach_header)) + LoadCommandsSize;
  uint64_t SectionDataSize = 0;
  uint64_t SectionDataFileSize = 0;
  uint64_t VMSize = 0;
  for (MCAssembler::const_iterator it = Asm.begin(),
         ie = Asm.end(); it != ie; ++it) {
    const MCSectionData &SD = *it;
    uint64_t Address = getSectionAddress(&SD);
    uint64_t Size = Layout.getSectionAddressSize(&SD);
    uint64_t FileSize = Layout.getSectionFileSize(&SD);
    FileSize += getPaddingSize(&SD, Layout);

    VMSize = std::max(VMSize, Address + Size);

    if (SD.getSection().isVirtualSection())
      continue;

    SectionDataSize = std::max(SectionDataSize, Address + Size);
    SectionDataFileSize = std::max(SectionDataFileSize, Address + FileSize);
  }

  // The section data is padded to 4 bytes.
  //
  // FIXME: Is this machine dependent?
  unsigned SectionDataPadding = OffsetToAlignment(SectionDataFileSize, 4);
  SectionDataFileSize += SectionDataPadding;

  // Write the prolog, starting with the header and load command...
  WriteHeader(NumLoadCommands, LoadCommandsSize,
              Asm.getSubsectionsViaSymbols());
  WriteSegmentLoadCommand(NumSections, VMSize,
                          SectionDataStart, SectionDataSize);

  // ... and then the section headers.
  uint64_t RelocTableEnd = SectionDataStart + SectionDataFileSize;
  for (MCAssembler::const_iterator it = Asm.begin(),
         ie = Asm.end(); it != ie; ++it) {
    std::vector<MachO::any_relocation_info> &Relocs = Relocations[it];
    unsigned NumRelocs = Relocs.size();
    uint64_t SectionStart = SectionDataStart + getSectionAddress(it);
    WriteSection(Asm, Layout, *it, SectionStart, RelocTableEnd, NumRelocs);
    RelocTableEnd += NumRelocs * sizeof(MachO::any_relocation_info);
  }

  // Write out the deployment target information, if it's available.
  if (VersionInfo.Major != 0) {
    assert(VersionInfo.Update < 256 && "unencodable update target version");
    assert(VersionInfo.Minor < 256 && "unencodable minor target version");
    assert(VersionInfo.Major < 65536 && "unencodable major target version");
    uint32_t EncodedVersion = VersionInfo.Update | (VersionInfo.Minor << 8) |
      (VersionInfo.Major << 16);
    Write32(VersionInfo.Kind == MCVM_OSXVersionMin ? MachO::LC_VERSION_MIN_MACOSX :
            MachO::LC_VERSION_MIN_IPHONEOS);
    Write32(sizeof(MachO::version_min_command));
    Write32(EncodedVersion);
    Write32(0);         // reserved.
  }

  // Write the data-in-code load command, if used.
  uint64_t DataInCodeTableEnd = RelocTableEnd + NumDataRegions * 8;
  if (NumDataRegions) {
    uint64_t DataRegionsOffset = RelocTableEnd;
    uint64_t DataRegionsSize = NumDataRegions * 8;
    WriteLinkeditLoadCommand(MachO::LC_DATA_IN_CODE, DataRegionsOffset,
                             DataRegionsSize);
  }

  // Write the loh load command, if used.
  uint64_t LOHTableEnd = DataInCodeTableEnd + LOHSize;
  if (LOHSize)
    WriteLinkeditLoadCommand(MachO::LC_LINKER_OPTIMIZATION_HINT,
                             DataInCodeTableEnd, LOHSize);

  // Write the symbol table load command, if used.
  if (NumSymbols) {
    unsigned FirstLocalSymbol = 0;
    unsigned NumLocalSymbols = LocalSymbolData.size();
    unsigned FirstExternalSymbol = FirstLocalSymbol + NumLocalSymbols;
    unsigned NumExternalSymbols = ExternalSymbolData.size();
    unsigned FirstUndefinedSymbol = FirstExternalSymbol + NumExternalSymbols;
    unsigned NumUndefinedSymbols = UndefinedSymbolData.size();
    unsigned NumIndirectSymbols = Asm.indirect_symbol_size();
    unsigned NumSymTabSymbols =
      NumLocalSymbols + NumExternalSymbols + NumUndefinedSymbols;
    uint64_t IndirectSymbolSize = NumIndirectSymbols * 4;
    uint64_t IndirectSymbolOffset = 0;

    // If used, the indirect symbols are written after the section data.
    if (NumIndirectSymbols)
      IndirectSymbolOffset = LOHTableEnd;

    // The symbol table is written after the indirect symbol data.
    uint64_t SymbolTableOffset = LOHTableEnd + IndirectSymbolSize;

    // The string table is written after symbol table.
    uint64_t StringTableOffset =
      SymbolTableOffset + NumSymTabSymbols * (is64Bit() ?
                                              sizeof(MachO::nlist_64) :
                                              sizeof(MachO::nlist));
    WriteSymtabLoadCommand(SymbolTableOffset, NumSymTabSymbols,
                           StringTableOffset, StringTable.data().size());

    WriteDysymtabLoadCommand(FirstLocalSymbol, NumLocalSymbols,
                             FirstExternalSymbol, NumExternalSymbols,
                             FirstUndefinedSymbol, NumUndefinedSymbols,
                             IndirectSymbolOffset, NumIndirectSymbols);
  }

  // Write the linker options load commands.
  for (unsigned i = 0, e = LinkerOptions.size(); i != e; ++i) {
    WriteLinkerOptionsLoadCommand(LinkerOptions[i]);
  }

  // Write the actual section data.
  for (MCAssembler::const_iterator it = Asm.begin(),
         ie = Asm.end(); it != ie; ++it) {
    Asm.writeSectionData(it, Layout);

    uint64_t Pad = getPaddingSize(it, Layout);
    for (unsigned int i = 0; i < Pad; ++i)
      Write8(0);
  }

  // Write the extra padding.
  WriteZeros(SectionDataPadding);

  // Write the relocation entries.
  for (MCAssembler::const_iterator it = Asm.begin(),
         ie = Asm.end(); it != ie; ++it) {
    // Write the section relocation entries, in reverse order to match 'as'
    // (approximately, the exact algorithm is more complicated than this).
    std::vector<MachO::any_relocation_info> &Relocs = Relocations[it];
    for (unsigned i = 0, e = Relocs.size(); i != e; ++i) {
      Write32(Relocs[e - i - 1].r_word0);
      Write32(Relocs[e - i - 1].r_word1);
    }
  }

  // Write out the data-in-code region payload, if there is one.
  for (MCAssembler::const_data_region_iterator
         it = Asm.data_region_begin(), ie = Asm.data_region_end();
         it != ie; ++it) {
    const DataRegionData *Data = &(*it);
    uint64_t Start =
      getSymbolAddress(&Layout.getAssembler().getSymbolData(*Data->Start),
                       Layout);
    uint64_t End =
      getSymbolAddress(&Layout.getAssembler().getSymbolData(*Data->End),
                       Layout);
    DEBUG(dbgs() << "data in code region-- kind: " << Data->Kind
                 << "  start: " << Start << "(" << Data->Start->getName() << ")"
                 << "  end: " << End << "(" << Data->End->getName() << ")"
                 << "  size: " << End - Start
                 << "\n");
    Write32(Start);
    Write16(End - Start);
    Write16(Data->Kind);
  }

  // Write out the loh commands, if there is one.
  if (LOHSize) {
#ifndef NDEBUG
    unsigned Start = OS.tell();
#endif
    Asm.getLOHContainer().Emit(*this, Layout);
    // Pad to a multiple of the pointer size.
    WriteBytes("", OffsetToAlignment(LOHRawSize, is64Bit() ? 8 : 4));
    assert(OS.tell() - Start == LOHSize);
  }

  // Write the symbol table data, if used.
  if (NumSymbols) {
    // Write the indirect symbol entries.
    for (MCAssembler::const_indirect_symbol_iterator
           it = Asm.indirect_symbol_begin(),
           ie = Asm.indirect_symbol_end(); it != ie; ++it) {
      // Indirect symbols in the non-lazy symbol pointer section have some
      // special handling.
      const MCSectionMachO &Section =
        static_cast<const MCSectionMachO&>(it->SectionData->getSection());
      if (Section.getType() == MachO::S_NON_LAZY_SYMBOL_POINTERS) {
        // If this symbol is defined and internal, mark it as such.
        if (it->Symbol->isDefined() &&
            !Asm.getSymbolData(*it->Symbol).isExternal()) {
          uint32_t Flags = MachO::INDIRECT_SYMBOL_LOCAL;
          if (it->Symbol->isAbsolute())
            Flags |= MachO::INDIRECT_SYMBOL_ABS;
          Write32(Flags);
          continue;
        }
      }

      Write32(Asm.getSymbolData(*it->Symbol).getIndex());
    }

    // FIXME: Check that offsets match computed ones.

    // Write the symbol table entries.
    for (unsigned i = 0, e = LocalSymbolData.size(); i != e; ++i)
      WriteNlist(LocalSymbolData[i], Layout);
    for (unsigned i = 0, e = ExternalSymbolData.size(); i != e; ++i)
      WriteNlist(ExternalSymbolData[i], Layout);
    for (unsigned i = 0, e = UndefinedSymbolData.size(); i != e; ++i)
      WriteNlist(UndefinedSymbolData[i], Layout);

    // Write the string table.
    OS << StringTable.data();
  }
}
void WinCOFFObjectWriter::RecordRelocation(const MCAssembler &Asm,
                                           const MCAsmLayout &Layout,
                                           const MCFragment *Fragment,
                                           const MCFixup &Fixup,
                                           MCValue Target,
                                           bool &IsPCRel,
                                           uint64_t &FixedValue) {
  assert(Target.getSymA() && "Relocation must reference a symbol!");

  const MCSymbol &Symbol = Target.getSymA()->getSymbol();
  const MCSymbol &A = Symbol.AliasedSymbol();
  if (!Asm.hasSymbolData(A))
    Asm.getContext().FatalError(
        Fixup.getLoc(),
        Twine("symbol '") + A.getName() + "' can not be undefined");

  const MCSymbolData &A_SD = Asm.getSymbolData(A);

  MCSectionData const *SectionData = Fragment->getParent();

  // Mark this symbol as requiring an entry in the symbol table.
  assert(SectionMap.find(&SectionData->getSection()) != SectionMap.end() &&
         "Section must already have been defined in ExecutePostLayoutBinding!");
  assert(SymbolMap.find(&A_SD.getSymbol()) != SymbolMap.end() &&
         "Symbol must already have been defined in ExecutePostLayoutBinding!");

  COFFSection *coff_section = SectionMap[&SectionData->getSection()];
  COFFSymbol *coff_symbol = SymbolMap[&A_SD.getSymbol()];
  const MCSymbolRefExpr *SymB = Target.getSymB();
  bool CrossSection = false;

  if (SymB) {
    const MCSymbol *B = &SymB->getSymbol();
    const MCSymbolData &B_SD = Asm.getSymbolData(*B);
    if (!B_SD.getFragment())
      Asm.getContext().FatalError(
          Fixup.getLoc(),
          Twine("symbol '") + B->getName() +
              "' can not be undefined in a subtraction expression");

    if (!A_SD.getFragment())
      Asm.getContext().FatalError(
          Fixup.getLoc(),
          Twine("symbol '") + Symbol.getName() +
              "' can not be undefined in a subtraction expression");

    CrossSection = &Symbol.getSection() != &B->getSection();

    // Offset of the symbol in the section
    int64_t a = Layout.getSymbolOffset(&B_SD);

    // Ofeset of the relocation in the section
    int64_t b = Layout.getFragmentOffset(Fragment) + Fixup.getOffset();

    FixedValue = b - a;
    // In the case where we have SymbA and SymB, we just need to store the delta
    // between the two symbols.  Update FixedValue to account for the delta, and
    // skip recording the relocation.
    if (!CrossSection)
      return;
  } else {
    FixedValue = Target.getConstant();
  }

  COFFRelocation Reloc;

  Reloc.Data.SymbolTableIndex = 0;
  Reloc.Data.VirtualAddress = Layout.getFragmentOffset(Fragment);

  // Turn relocations for temporary symbols into section relocations.
  if (coff_symbol->MCData->getSymbol().isTemporary() || CrossSection) {
    Reloc.Symb = coff_symbol->Section->Symbol;
    FixedValue += Layout.getFragmentOffset(coff_symbol->MCData->Fragment)
                + coff_symbol->MCData->getOffset();
  } else
    Reloc.Symb = coff_symbol;

  ++Reloc.Symb->Relocations;

  Reloc.Data.VirtualAddress += Fixup.getOffset();
  Reloc.Data.Type = TargetObjectWriter->getRelocType(Target, Fixup,
                                                     CrossSection);

  // FIXME: Can anyone explain what this does other than adjust for the size
  // of the offset?
  if ((Header.Machine == COFF::IMAGE_FILE_MACHINE_AMD64 &&
       Reloc.Data.Type == COFF::IMAGE_REL_AMD64_REL32) ||
      (Header.Machine == COFF::IMAGE_FILE_MACHINE_I386 &&
       Reloc.Data.Type == COFF::IMAGE_REL_I386_REL32))
    FixedValue += 4;

  if (Header.Machine == COFF::IMAGE_FILE_MACHINE_ARMNT) {
    switch (Reloc.Data.Type) {
    case COFF::IMAGE_REL_ARM_ABSOLUTE:
    case COFF::IMAGE_REL_ARM_ADDR32:
    case COFF::IMAGE_REL_ARM_ADDR32NB:
    case COFF::IMAGE_REL_ARM_TOKEN:
    case COFF::IMAGE_REL_ARM_SECTION:
    case COFF::IMAGE_REL_ARM_SECREL:
      break;
    case COFF::IMAGE_REL_ARM_BRANCH11:
    case COFF::IMAGE_REL_ARM_BLX11:
      // IMAGE_REL_ARM_BRANCH11 and IMAGE_REL_ARM_BLX11 are only used for
      // pre-ARMv7, which implicitly rules it out of ARMNT (it would be valid
      // for Windows CE).
    case COFF::IMAGE_REL_ARM_BRANCH24:
    case COFF::IMAGE_REL_ARM_BLX24:
    case COFF::IMAGE_REL_ARM_MOV32A:
      // IMAGE_REL_ARM_BRANCH24, IMAGE_REL_ARM_BLX24, IMAGE_REL_ARM_MOV32A are
      // only used for ARM mode code, which is documented as being unsupported
      // by Windows on ARM.  Emperical proof indicates that masm is able to
      // generate the relocations however the rest of the MSVC toolchain is
      // unable to handle it.
      llvm_unreachable("unsupported relocation");
      break;
    case COFF::IMAGE_REL_ARM_MOV32T:
      break;
    case COFF::IMAGE_REL_ARM_BRANCH20T:
    case COFF::IMAGE_REL_ARM_BRANCH24T:
    case COFF::IMAGE_REL_ARM_BLX23T:
      // IMAGE_REL_BRANCH20T, IMAGE_REL_ARM_BRANCH24T, IMAGE_REL_ARM_BLX23T all
      // perform a 4 byte adjustment to the relocation.  Relative branches are
      // offset by 4 on ARM, however, because there is no RELA relocations, all
      // branches are offset by 4.
      FixedValue = FixedValue + 4;
      break;
    }
  }

  coff_section->Relocations.push_back(Reloc);
}
SVMSymbolInfo SVMMemoryLayout::getSymbol(const MCAssembler &Asm,
    const MCAsmLayout &Layout, const MCSymbol *S, bool useCodeAddresses) const
{
    SVMSymbolInfo SI;
    SVMDecorations Deco;
    StringRef Name = Deco.Decode(S->getName());
    const MCSymbol *AS = &S->AliasedSymbol();
    const MCSymbolData *SD = &Asm.getSymbolData(*AS);

    if (Deco.isSys) {
        // Numeric syscall

        if (Deco.sysNumber > 0x3FFF)
            report_fatal_error("Syscall number " + Twine(Deco.sysNumber) +
                " is out of range.");

        SI.Kind = SVMSymbolInfo::SYS;
        SI.Value = 0x80000000 | (Deco.sysNumber << 16) | Deco.isTailCall;
        return SI;
    }

    if (!AS->isDefined())
        report_fatal_error("Taking address of undefined symbol '" +
            Twine(Name) + "'");

    // Symbol has a value in our module. Calculate the full virtual address.
    uint32_t Offset = Layout.getSymbolOffset(SD);
    const MCSectionData *SecD = &Asm.getSectionData(AS->getSection());
    uint32_t VA = getSectionMemAddress(SecD) + Offset + Deco.offset;

    if (useCodeAddresses && AS->getSection().getKind().isText()) {
        /*
         * Code address:
         *   - Relative to segment base
         *   - Must be 32-bit aligned
         *   - Includes optional SP adjustment from FNSTACK pseudo-ops
         *   - Includes optional call / tail-call decoration
         */
         
        assert(Deco.offset == 0);
        uint32_t shortVA = VA & 0xfffffc;

        /*
         * We can reach this error if some code wasn't aligned properly,
         * or if someone is calling this function with useCodeAddresses==true
         * when they shouldn't be!
         */
        if ((VA & 0xfffffffc) != VA)
            report_fatal_error("Code symbol '" + Twine(Name) +
                "' has illegal address 0x" + Twine::utohexstr(VA));

        FNStackMap_t::const_iterator I = FNStackMap.find(std::make_pair(SecD, Offset));
        int SPAdj = I == FNStackMap.end() ? 0 : I->second;
        assert(SPAdj >= 0 && !(SPAdj & 3) && SPAdj <= (0x7F * 4));
        SPAdj <<= 22;

        if (Deco.isCall) {
            // A Call, with SP adjustment and tail-call flag
            SI.Value = shortVA | SPAdj | Deco.isTailCall;
            SI.Kind = SVMSymbolInfo::CALL;

        } else if (Deco.isLongBranch) {
            // Encode the Long Branch addrop
            SI.Value = 0xE0000000 | shortVA;
            SI.Kind = SVMSymbolInfo::LB;

        } else {
            // Normal undecorated address. Still includes an SP adjustment
            // if one is present for this symbol's address, though.
            // This is important for function pointers, including the entry
            // point address for main().
            //
            // We also set the LSB, in order to differentiate a valid function
            // address from a possible NULL. We could set either of the two LSBs
            // or the MSB, but this approach makes function addresses clearly
            // distinct from normal VAs even with SPAdj==0.

            SI.Value = shortVA | SPAdj | 1;
            SI.Kind = SVMSymbolInfo::LOCAL;
        }

    } else {
        /*
         * Data address. No decoration at all.
         */

        SI.Value = VA;
        SI.Kind = SVMSymbolInfo::LOCAL;
    }

    return SI;
}