Exemple #1
0
void KF_joseph_update(VectorXf &x, MatrixXf &P,float v,float R, MatrixXf H)
{
    VectorXf PHt = P*H.transpose();
    MatrixXf S = H*PHt;
    S(0,0) += R;
    MatrixXf Si = S.inverse();
    Si = make_symmetric(Si);
    MatrixXf PSD_check = Si.llt().matrixL(); //chol of scalar is sqrt
    PSD_check.transpose();
    PSD_check.conjugate();

    VectorXf W = PHt*Si;
    x = x+W*v;
    
    //Joseph-form covariance update
    MatrixXf eye(P.rows(), P.cols());
    eye.setIdentity();
    MatrixXf C = eye - W*H;
    P = C*P*C.transpose() + W*R*W.transpose();  

    float eps = 2.2204*pow(10.0,-16); //numerical safety 
    P = P+eye*eps;

    PSD_check = P.llt().matrixL();
    PSD_check.transpose();
    PSD_check.conjugate(); //for upper tri
}
VectorXf param_sensitivity_widget::computeSensitivity(
    MatrixXf &parameterMatrix, VectorXf &responseVector)
{
    MatrixXf Ctemp = parameterMatrix.transpose()*parameterMatrix;
    MatrixXf C;
    C = Ctemp.inverse();

    VectorXf b = C*parameterMatrix.transpose()*responseVector;

    VectorXf Y_hat = parameterMatrix*b;

    int p = b.rows();

    VectorXf sigma2Vec = responseVector-Y_hat;

    float sigma2 = sigma2Vec.squaredNorm();
    sigma2= sigma2/(parameterMatrix.rows() - p);

    Ctemp = C*sigma2;

    MatrixXf denominator = Ctemp.diagonal();

    // Do element-wise division
    VectorXf t = b;
    for (int i = 0; i < b.rows(); i++)
    {
        t(i) = abs(b(i)/sqrt(denominator(i)));
    }

    return t;
}
MatrixXf Arm::pseudo_inverse() {
    MatrixXf Jacovian = compute_Jacobian();
    MatrixXf jjtInv = (Jacovian * Jacovian.transpose());
    jjtInv = jjtInv.inverse();
    
    return (Jacovian.transpose() * jjtInv);
}
Exemple #4
0
void call_ref()
{
  VectorXcf ca  = VectorXcf::Random(10);
  VectorXf a    = VectorXf::Random(10);
  RowVectorXf b = RowVectorXf::Random(10);
  MatrixXf A    = MatrixXf::Random(10,10);
  RowVector3f c = RowVector3f::Random();
  const VectorXf& ac(a);
  VectorBlock<VectorXf> ab(a,0,3);
  const VectorBlock<VectorXf> abc(a,0,3);
  

  VERIFY_EVALUATION_COUNT( call_ref_1(a,a), 0);
  VERIFY_EVALUATION_COUNT( call_ref_1(b,b.transpose()), 0);
//   call_ref_1(ac,a<c);           // does not compile because ac is const
  VERIFY_EVALUATION_COUNT( call_ref_1(ab,ab), 0);
  VERIFY_EVALUATION_COUNT( call_ref_1(a.head(4),a.head(4)), 0);
  VERIFY_EVALUATION_COUNT( call_ref_1(abc,abc), 0);
  VERIFY_EVALUATION_COUNT( call_ref_1(A.col(3),A.col(3)), 0);
//   call_ref_1(A.row(3),A.row(3));    // does not compile because innerstride!=1
  VERIFY_EVALUATION_COUNT( call_ref_3(A.row(3),A.row(3).transpose()), 0);
  VERIFY_EVALUATION_COUNT( call_ref_4(A.row(3),A.row(3).transpose()), 0);
//   call_ref_1(a+a, a+a);          // does not compile for obvious reason

  MatrixXf tmp = A*A.col(1);
  VERIFY_EVALUATION_COUNT( call_ref_2(A*A.col(1), tmp), 1);     // evaluated into a temp
  VERIFY_EVALUATION_COUNT( call_ref_2(ac.head(5),ac.head(5)), 0);
  VERIFY_EVALUATION_COUNT( call_ref_2(ac,ac), 0);
  VERIFY_EVALUATION_COUNT( call_ref_2(a,a), 0);
  VERIFY_EVALUATION_COUNT( call_ref_2(ab,ab), 0);
  VERIFY_EVALUATION_COUNT( call_ref_2(a.head(4),a.head(4)), 0);
  tmp = a+a;
  VERIFY_EVALUATION_COUNT( call_ref_2(a+a,tmp), 1);            // evaluated into a temp
  VERIFY_EVALUATION_COUNT( call_ref_2(ca.imag(),ca.imag()), 1);      // evaluated into a temp

  VERIFY_EVALUATION_COUNT( call_ref_4(ac.head(5),ac.head(5)), 0);
  tmp = a+a;
  VERIFY_EVALUATION_COUNT( call_ref_4(a+a,tmp), 1);           // evaluated into a temp
  VERIFY_EVALUATION_COUNT( call_ref_4(ca.imag(),ca.imag()), 0);

  VERIFY_EVALUATION_COUNT( call_ref_5(a,a), 0);
  VERIFY_EVALUATION_COUNT( call_ref_5(a.head(3),a.head(3)), 0);
  VERIFY_EVALUATION_COUNT( call_ref_5(A,A), 0);
//   call_ref_5(A.transpose(),A.transpose());   // does not compile because storage order does not match
  VERIFY_EVALUATION_COUNT( call_ref_5(A.block(1,1,2,2),A.block(1,1,2,2)), 0);
  VERIFY_EVALUATION_COUNT( call_ref_5(b,b), 0);             // storage order do not match, but this is a degenerate case that should work
  VERIFY_EVALUATION_COUNT( call_ref_5(a.row(3),a.row(3)), 0);

  VERIFY_EVALUATION_COUNT( call_ref_6(a,a), 0);
  VERIFY_EVALUATION_COUNT( call_ref_6(a.head(3),a.head(3)), 0);
  VERIFY_EVALUATION_COUNT( call_ref_6(A.row(3),A.row(3)), 1);           // evaluated into a temp thouth it could be avoided by viewing it as a 1xn matrix
  tmp = A+A;
  VERIFY_EVALUATION_COUNT( call_ref_6(A+A,tmp), 1);                // evaluated into a temp
  VERIFY_EVALUATION_COUNT( call_ref_6(A,A), 0);
  VERIFY_EVALUATION_COUNT( call_ref_6(A.transpose(),A.transpose()), 1);      // evaluated into a temp because the storage orders do not match
  VERIFY_EVALUATION_COUNT( call_ref_6(A.block(1,1,2,2),A.block(1,1,2,2)), 0);
  
  VERIFY_EVALUATION_COUNT( call_ref_7(c,c), 0);
}
FeatureModel::FeatureModel(	const CamModel & _camera,
								const MotionModel & _motion,
								const FeaturesState & _featuresState,
								const Mat & frame,
								const Point2f & pf,
								int patchSize,
								float rho_0,
								float sigma_rho):
								camera(_camera),
								motion(_motion),
								features(_featuresState)
	{
    Mat newPatch(cv::Mat(frame, cv::Rect(pf.x-patchSize/2, pf.y-patchSize/2, patchSize,patchSize)));
    this->imageLocation << pf.x, pf.y;

    this->Patch = newPatch.clone();


    Vector2f hd = (Vector2f << (float)pf.x, (float)pf.y);

    // TODO: convert using motionmodel
    Vector3f r = motion->get_r();
    Quatenionf q = motion->get_q();


    Vector3f hC = this->camera.unproject(hd, true);
    Matrix3f Jac_hCHd = this->camera.getUnprojectionJacobian();

    Matrix3f Rot = quat2rot(q);

    Vector3f hW = Rot*hC;

    float hx = hW(0);
    float hy = hW(1);
    float hz = hW(2);



    float theta = atan2(hx,hz);
    float phi = atan2(-hy, sqrt(hx*hx+hz*hz));

	// Updating state and Sigma
    MatrixXf Jx = this->computeJx();
	MatrixXf Jm = this->computeJm();
	Matrix2f Sigma_mm = this->computeSigma_mm(sigma_pixel, sigma_pixel);

	this->f = (VectorXf(6) << r, theta, phi, rho_0);
	this->Sigma_ii = Jm*Sigma_mm*Jm.transpose() + Jx*motion->getSigma_xx()*Jx.transpose();

	this->motion->updateVariaceBlocks(Jx);
	this->features->updateVariaceBlocks(Jx);
	this->features.push_back((*this));
    return 1;

}
MatrixXf LinkedStructure::pseudoInverse()
{
  // Simple math that represents the mathematics
  // explained on the website to computing the
  // pseudo inverse. this is exactly the math
  // discussed in the tutorial!!!
    MatrixXf j = jacobian();
    MatrixXf jjtInv = (j * j.transpose());
    jjtInv = jjtInv.inverse();

    return (j.transpose() * jjtInv);
}
Exemple #7
0
void Lu::Initialize(MatrixXf x3d_h,MatrixXf x2d_h,  Matrix3f A) {
 

 

 x2d=x2d_h.transpose();
  // std::cout<<"x2dtrasn"<<x2d<<std::endl;
 x3d=x3d_h.transpose();
 //std::cout<<"x3dtrasn"<<x3d<<std::endl;

 x2dn=A.inverse ()*x2d;
 //std::cout<<"x2dn"<<x2dn<<std::endl;
 K=A;
  //std::cout<<"Intialize points "<<std::endl; 
}
Exemple #8
0
void multi(dym tdim,MatrixXf &c)
{
 	 if(dim==tdim)
 	     data=data*c.transpose();
     else
         rotate_top(tdim),data=c*data;
}
void computeHomographyResidue(MatrixXf pts1, MatrixXf pts2, const Matrix3f &H, MatrixXf &residue){
  // cross residue
  filterPointAtInfinity(pts1, pts2);
  residue.resize(pts1.rows(), 1);
  MatrixXf Hx1 = (H*pts1.transpose()).transpose();
  MatrixXf invHx2 = (H.inverse()*pts2.transpose()).transpose();

  noHomogeneous(Hx1);
  noHomogeneous(invHx2);
  noHomogeneous(pts1);
  noHomogeneous(pts2);

  MatrixXf diffHx1pts2 = Hx1 - pts2;
  MatrixXf diffinvHx2pts1 = invHx2 - pts1;
  residue = diffHx1pts2.rowwise().squaredNorm() + diffinvHx2pts1.rowwise().squaredNorm();
}
Exemple #10
0
void TestLeastSquares() {
	MatrixXf A = MatrixXf::Random(10, 2);
	VectorXf b = VectorXf::Random(10);
	Vector2f x;

	std::cout << "=============================" << std::endl;
	std::cout << "Testing least squares solvers" << std::endl;
	std::cout << "=============================" << std::endl;

	x = A.jacobiSvd(ComputeThinU | ComputeThinV).solve(b);
	std::cout << "Solution using Jacobi SVD = " << x.transpose() << std::endl;

	x = A.colPivHouseholderQr().solve(b);
	std::cout << "Solution using column pivoting Householder QR = " << x.transpose() << std::endl;

	// If the matrix A is ill-conditioned, then this is not a good method
	x = (A.transpose() * A).ldlt().solve(A.transpose() * b);
	std::cout << "Solution using normal equation = " << x.transpose() << std::endl;
}
Exemple #11
0
	virtual VectorXf gradient( const MatrixXf & a, const MatrixXf & b ) const {
		if (ktype_ == CONST_KERNEL)
			return VectorXf();
		MatrixXf fg = featureGradient( a, b );
		if (ktype_ == DIAG_KERNEL)
			return (f_.array()*fg.array()).rowwise().sum();
		else {
			MatrixXf p = fg*f_.transpose();
			p.resize( p.cols()*p.rows(), 1 );
			return p;
		}
	}
VectorXf project1D( const RMatrixXf & Y, int * rep_label=NULL ) {
// 	const int MAX_SAMPLE = 20000;
	const bool fast = true, very_fast = true;
	// Remove the DC (Y : N x M)
	RMatrixXf dY = Y.rowwise() - Y.colwise().mean();
// 	RMatrixXf sY = dY;
// 	if( 0 < MAX_SAMPLE && MAX_SAMPLE < dY.rows() ) {
// 		VectorXi samples = randomChoose( dY.rows(), MAX_SAMPLE );
// 		std::sort( samples.data(), samples.data()+samples.size() );
// 		sY = RMatrixXf( samples.size(), dY.cols() );
// 		for( int i=0; i<samples.size(); i++ )
// 			sY.row(i) = dY.row( samples[i] );
// 	}
	
	// ... and use (pc > 0)
	VectorXf lbl = VectorXf::Zero( Y.rows() );
	
	// Find the largest PC of (dY.T * dY) and project onto it
	if( very_fast ) {
		// Find the largest PC using poweriterations
		VectorXf U = VectorXf::Random( dY.cols() );
		U = U.array() / U.norm()+std::numeric_limits<float>::min();
		for( int it=0; it<20; it++ ){
			// Normalize
			VectorXf s = dY.transpose()*(dY*U);
			s.array() /= s.norm()+std::numeric_limits<float>::min();
			if ( (U-s).norm() < 1e-6 )
				break;
			U = s;
		}
		// Project onto the PC
		lbl = dY*U;
	}
	else if(fast) {
		// Compute the eigen values of the covariance (and project onto the largest eigenvector)
		MatrixXf cov = dY.transpose()*dY;
		SelfAdjointEigenSolver<MatrixXf> eigensolver(0.5*(cov+cov.transpose()));
		MatrixXf ev = eigensolver.eigenvectors();
		lbl = dY * ev.col( ev.cols()-1 );
	}
	else {
		// Use the SVD
		JacobiSVD<RMatrixXf> svd = dY.jacobiSvd(ComputeThinU | ComputeThinV );
		// Project onto the largest PC
		lbl = svd.matrixU().col(0) * svd.singularValues()[0];
	}
	// Find the representative label
	if( rep_label )
		dY.array().square().rowwise().sum().minCoeff( rep_label );
	
	return (lbl.array() < 0).cast<float>();
}
Exemple #13
0
Image smooth_detector(const Image& source, Interpolation level, int r) {
  Image output(source.rows(), source.columns(), 1, numeric_limits<float>::max());
  const MatrixXf reg_matrix = ComputeRegMatrix(level, r);
  const LDLT<MatrixXf> solver = (reg_matrix.transpose() * reg_matrix).ldlt();
  for (int pr = 0; pr <= source.rows() - r; ++pr) {
    for (int pc = 0; pc <= source.columns() - r; ++pc) {
      VectorXf dist = VectorXf::Zero(r * r);
      for (int ch = 0; ch < source.channels(); ++ch) {
        EigenImage y = ExtractPatch(source, r, pr, pc, ch);
        VectorXf reg_surf = solver.solve(reg_matrix.transpose() * y.asvector());
        dist += (reg_matrix * reg_surf - y.asvector()).cwiseAbs2();
      }
      dist = dist.cwiseSqrt();
      for (int row = pr; row < min(output.rows(), pr + r); ++row) {
        for (int col = pc; col < min(output.columns(), pc + r); ++col) {
          output.val(col, row) = min(output.val(col, row), dist((row - pr) * r + col - pc));
        }
      }
    }
  }
  return output;
}
int main(int, char**)
{
  cout.precision(3);
  SelfAdjointEigenSolver<MatrixXf> es(4);
MatrixXf X = MatrixXf::Random(4,4);
MatrixXf A = X + X.transpose();
es.compute(A);
cout << "The eigenvalues of A are: " << es.eigenvalues().transpose() << endl;
es.compute(A + MatrixXf::Identity(4,4)); // re-use es to compute eigenvalues of A+I
cout << "The eigenvalues of A+I are: " << es.eigenvalues().transpose() << endl;

  return 0;
}
// todo: some weighting scheme
SparseArray calcCorrNN(const vector<btVector3>& estPts, const vector<btVector3>& obsPts, const vector<float>& pVis) {
  int nEst = estPts.size();
  int nObs = obsPts.size();
  float r = (float)nObs/nEst;
  SparseArray out(nEst);
  MatrixXf distsEstObs = pairwiseSquareDist(toEigenMatrix(estPts), toEigenMatrix(obsPts));
  vector<int> estToObs = argminAlongRows(distsEstObs);
  vector<int> obsToEst = argminAlongRows(distsEstObs.transpose());
  for (int iEst=0; iEst<nEst; iEst++) 
    out[iEst].push_back(IndVal(estToObs[iEst],.5*pVis[iEst]));
  for (int iObs=0; iObs<nObs; iObs++) out[obsToEst[iObs]].push_back(IndVal(iObs,.5/r));
  return out;
}
int main(int, char**)
{
  cout.precision(3);
  Matrix4f A = MatrixXf::Random(4,4);
cout << "Here is a random 4x4 matrix:" << endl << A << endl;
HessenbergDecomposition<MatrixXf> hessOfA(A);
MatrixXf H = hessOfA.matrixH();
cout << "The Hessenberg matrix H is:" << endl << H << endl;
MatrixXf Q = hessOfA.matrixQ();
cout << "The orthogonal matrix Q is:" << endl << Q << endl;
cout << "Q H Q^T is:" << endl << Q * H * Q.transpose() << endl;

  return 0;
}
int main(int, char**)
{
  cout.precision(3);
  Tridiagonalization<MatrixXf> tri;
MatrixXf X = MatrixXf::Random(4,4);
MatrixXf A = X + X.transpose();
tri.compute(A);
cout << "The matrix T in the tridiagonal decomposition of A is: " << endl;
cout << tri.matrixT() << endl;
tri.compute(2*A); // re-use tri to compute eigenvalues of 2A
cout << "The matrix T in the tridiagonal decomposition of 2A is: " << endl;
cout << tri.matrixT() << endl;

  return 0;
}
Exemple #18
0
double MapOptimizer::compute_relentropy_gpu (MatrixXf & dH) const
{
  initialize_P_gpu();

  const MatrixXf & H = m_conditional;

  MatrixXf PHt = H.transpose();
  MatrixXf PtHt = PHt;

  //TODO run cusparse in two different cuda streams
  m_P->left_imul(PtHt, true);
  m_Pt->left_imul(PHt, true);

  MatrixXf HPHt(H.rows(), H.rows());
#ifdef HACK_TO_LIMIT_GPU_POWER_USAGE
  HPHt.noalias() = H * PHt;
#else // HACK_TO_LIMIT_GPU_POWER_USAGE
  Gpu::matrix_multiply(H, false, PHt, false, HPHt);
#endif // HACK_TO_LIMIT_GPU_POWER_USAGE

  const float sum_P = m_dom_flow_sum;
  const float sum_Q = m_cod_flow_sum;
  const float dQ_scale = sum_P / sum_Q;

  const MatrixSf & Q = cod_flow.joint;
  MatrixSf & dQ = m_temp_dQ;
  MatrixSf & dQt = m_temp_dQt;

  double relentropy = 0;
  for (int i = 0; i < Q.outerSize(); ++i) {
    for (MatrixSf::InnerIterator iter(Q,i); iter; ++iter) {

      const float Q_yy = iter.value();
      const float HPH_yy = HPHt(iter.row(), iter.col());
      const float dQ_yy = dQ_scale * Q_yy / HPH_yy;

      relentropy += Q_yy * log(dQ_yy);

      dQ.coeffRef(iter.row(), iter.col()) = dQ_yy;
      dQt.coeffRef(iter.col(), iter.row()) = dQ_yy;
    }
  }
  relentropy /= sum_Q;
  ASSERT_LE(0, relentropy);

  MatrixXf HP(H.rows(), H.cols());
  MatrixXf HPt(H.rows(), H.cols());

  #pragma omp sections
  {
    #pragma omp section
    HP = PtHt.transpose();

    #pragma omp section
    HPt = PHt.transpose();
  }

  //TODO run cusparse in two different cuda streams
  Gpu::SparseMultiplier(dQ).left_mul(HP, dH, true);
  Gpu::SparseMultiplier(dQt).left_fma(HPt, dH, true);

  return relentropy;
}
double NHitSeedFinder::fitTrack(SimpleTrack3D& track, vector<double>& chi2_hit)
{
  if(using_vertex == true)
  {
    track.hits.push_back(SimpleHit3D(0.,0., 0.,0., 0.,0., 0, 0));
  }
  
  chi2_hit.clear();
  chi2_hit.resize(track.hits.size(), 0.);
  
  MatrixXf y = MatrixXf::Zero(track.hits.size(), 1);
  for(unsigned int i=0;i<track.hits.size();i++)
  {
    y(i, 0) = ( pow(track.hits[i].x,2) + pow(track.hits[i].y,2) );
    if((using_vertex==true ) && (i == (track.hits.size() - 1))){y(i, 0) /= vertex_sigma_xy;}
    else{y(i, 0) /= layer_xy_resolution[track.hits[i].layer];}
  }
  
  MatrixXf X = MatrixXf::Zero(track.hits.size(), 3);
  for(unsigned int i=0;i<track.hits.size();i++)
  {
    X(i, 0) = track.hits[i].x;
    X(i, 1) = track.hits[i].y;
    X(i, 2) = -1.;
    if((using_vertex==true ) && (i == (track.hits.size() - 1)))
    {
      X(i, 0) /= vertex_sigma_xy;
      X(i, 1) /= vertex_sigma_xy;
      X(i, 2) /= vertex_sigma_xy;
    }
    else
    {
      X(i, 0) /= layer_xy_resolution[track.hits[i].layer];
      X(i, 1) /= layer_xy_resolution[track.hits[i].layer];
      X(i, 2) /= layer_xy_resolution[track.hits[i].layer];
    }
  }
  
  MatrixXf Xt = X.transpose();
  
  MatrixXf prod = Xt*X;
  MatrixXf inv = prod.fullPivLu().inverse();
  
  MatrixXf beta = inv*Xt*y;
  
  float cx = beta(0,0)*0.5;
  float cy = beta(1,0)*0.5;
  float r = sqrt(cx*cx + cy*cy - beta(2,0));
  
  float phi = atan2(cy, cx);
  float d = sqrt(cx*cx + cy*cy) - r;
  float k = 1./r;
  
  MatrixXf diff = y - (X*beta);
  MatrixXf chi2 = (diff.transpose())*diff;
  
  float dx = d*cos(phi);
  float dy = d*sin(phi);
  
  MatrixXf y2 = MatrixXf::Zero(track.hits.size(), 1);
  for(unsigned int i=0;i<track.hits.size();i++)
  {
    y2(i,0) = track.hits[i].z;
    if((using_vertex==true ) && (i == (track.hits.size() - 1))){y2(i, 0) /= vertex_sigma_z;}
    else{y2(i, 0) /= layer_z_resolution[track.hits[i].layer];}
  }
  
  MatrixXf X2 = MatrixXf::Zero(track.hits.size(), 2);
  for(unsigned int i=0;i<track.hits.size();i++)
  {
    float D = sqrt( pow(dx - track.hits[i].x, 2) + pow(dy - track.hits[i].y,2));
    float s = 0.0;
    
    if(0.5*k*D > 0.1)
    {
      float v = 0.5*k*D;
      if(v >= 0.999999){v = 0.999999;}
      s = 2.*asin(v)/k;
    }
    else
    {
      float temp1 = k*D*0.5;temp1*=temp1;
      float temp2 = D*0.5;
      s += 2.*temp2;
      temp2*=temp1;
      s += temp2/3.;
      temp2*=temp1;
      s += (3./20.)*temp2;
      temp2*=temp1;
      s += (5./56.)*temp2;
    }
    
    X2(i,0) = s;  
    X2(i,1) = 1.0;
    
    if((using_vertex==true ) && (i == (track.hits.size() - 1)))
    {
      X2(i, 0) /= vertex_sigma_z;
      X2(i, 1) /= vertex_sigma_z;
    }
    else
    {
      X2(i, 0) /= layer_z_resolution[track.hits[i].layer];
      X2(i, 1) /= layer_z_resolution[track.hits[i].layer];
    }
  }
  
  MatrixXf Xt2 = X2.transpose();
  MatrixXf prod2 = Xt2*X2;
  MatrixXf inv2 = prod2.fullPivLu().inverse();
  MatrixXf beta2 = inv2*Xt2*y2;
  
  MatrixXf diff2 = y2 - (X2*beta2);
  MatrixXf chi2_z = (diff2.transpose())*diff2;
  
  float z0 = beta2(1,0);
  float dzdl = beta2(0,0)/sqrt(1. + beta2(0,0)*beta2(0,0));
  
  track.phi = phi;
  track.d = d;
  track.kappa = k;
  track.dzdl = dzdl;
  track.z0 = z0;
  
  if(track.kappa!=0.)
  {
    r=1./track.kappa;
  }
  else
  {
    r=1.0e10;
  }
  
  cx = (track.d+r)*cos(track.phi);
  cy = (track.d+r)*sin(track.phi);
  
  float chi2_tot = 0.;
  for(unsigned int h=0;h<track.hits.size();h++)
  {
    float dx1 = track.hits[h].x - cx;
    float dy1 = track.hits[h].y - cy;
    
    float dx2 = track.hits[h].x + cx;
    float dy2 = track.hits[h].y + cy;
    
    float xydiff1 = sqrt(dx1*dx1 + dy1*dy1) - r;
    float xydiff2 = sqrt(dx2*dx2 + dy2*dy2) - r;
    float xydiff = xydiff2;
    if(fabs(xydiff1) < fabs(xydiff2)){ xydiff = xydiff1; }
    
    float ls_xy = layer_xy_resolution[track.hits[h].layer];
    if((using_vertex == true) && (h == (track.hits.size() - 1)))
    {
      ls_xy = vertex_sigma_xy;
    }
    
    chi2_hit[h] = 0.;
    chi2_hit[h] += xydiff*xydiff/(ls_xy*ls_xy);
    chi2_hit[h] += diff2(h,0)*diff2(h,0);
    
    chi2_tot += chi2_hit[h];
  }
  
  unsigned int deg_of_freedom = 2*track.hits.size() - 5;
  
  if(using_vertex == true)
  {
    track.hits.pop_back();
    chi2_hit.pop_back();
  }
    
  return (chi2_tot)/((double)(deg_of_freedom));
}
Exemple #20
0
inline
void r_and_t(MatrixXf &rot_cw, VectorXf &pos_cw,MatrixXf start_points, MatrixXf end_points,
             MatrixXf P1w,MatrixXf P2w,MatrixXf initRot_cw,VectorXf initPos_cw,
             int maxIterNum,float TerminateTh,int nargin)
{
    if(nargin<6)
    {
        return;
    }

    if(nargin<8)
    {
        maxIterNum = 8;
        TerminateTh = 1e-5;
    }

    int n = start_points.cols();

    if(n != end_points.cols() || n!= P1w.cols() || n!= P2w.cols())
    {
        return;
    }

    if(n<4)
    {
        return;
    }

    //first compute the weight of each line and the normal of
    //the interpretation plane passing through to camera center and the line

    VectorXf w = VectorXf::Zero(n);
    MatrixXf nc = MatrixXf::Zero(3,n);

    for(int i = 0 ; i < n ; i++)
    {
        //the weight of a line is the inverse of its image length
        w[i] = 1/(start_points.col(i)-end_points.col(i)).norm();
        vfloat3 v1 = start_points.col(i);
        vfloat3 v2 = end_points.col(i);
        vfloat3 temp = v1.cross(v2);
        nc.col(i) = temp/temp.norm();
    }

    MatrixXf rot_wc = initPos_cw.transpose();
    MatrixXf pos_wc = - initRot_cw.transpose() * initPos_cw;


    for(int iter = 1 ; iter < maxIterNum ; iter++)
    {
        //construct the equation (31)
        MatrixXf A = MatrixXf::Zero(6,7);
        MatrixXf C = MatrixXf::Zero(3,3);
        MatrixXf D = MatrixXf::Zero(3,3);
        MatrixXf F = MatrixXf::Zero(3,3);
        vfloat3 c_bar = vfloat3(0,0,0);
        vfloat3 d_bar = vfloat3(0,0,0);
        for(int i = 0 ; i < n ; i++)
        {
            //for first point on line
            vfloat3 Pi = rot_wc * P1w.col(i);
            vfloat3 Ni = nc.col(i);
            float wi = w[i];
            vfloat3 bi = Pi.cross(Ni);
            C = C + wi*Ni*Ni.transpose();
            D = D + wi*bi*bi.transpose();
            F = F + wi*Ni*bi.transpose();
            vfloat3 tempi = Pi + pos_wc;
            float scale = Ni.transpose() * tempi;
            scale *= wi;
            c_bar = c_bar + scale * Ni;
            d_bar = d_bar + scale*bi;
            //for second point on line
            Pi = rot_wc * P2w.col(i);
            Ni = nc.col(i);
            wi = w[i];
            bi = Pi.cross(Ni);
            C  = C + wi*Ni*Ni.transpose();
            D  = D + wi*bi*bi.transpose();
            F  = F + wi*Ni*bi.transpose();
            scale = (Ni.transpose() * (Pi + pos_wc));
            scale *= wi;
            c_bar = c_bar + scale * Ni;
            d_bar = d_bar + scale * bi;
        }
        A.block<3,3>(0,0) = C;
        A.block<3,3>(0,3) = F;
        (A.col(6)).segment(0,2) = c_bar;
        A.block<3,3>(3,0) = F.transpose();
        A.block<3,3>(2,2) = D;
        (A.col(6)).segment(3,5) = d_bar;
        //sovle the system by using SVD;
        JacobiSVD<MatrixXf> svd(A, ComputeThinU | ComputeThinV);
        VectorXf vec(7);
        //the last column of Vmat;
        vec = (svd.matrixV()).col(6);
        //the condition that the last element of vec should be 1.
        vec = vec/vec[6];

        //update the rotation and translation parameters;
        vfloat3 dT = vec.segment(0,2);
        vfloat3 dOmiga = vec.segment(3,5);
        MatrixXf rtemp(3,3);
        rtemp << 1, -dOmiga[2], dOmiga[1], dOmiga[2], 1, -dOmiga[1], -dOmiga[1], dOmiga[0], 1;
        rot_wc = rtemp * rot_wc;
        //newRot_wc = ( I + [dOmiga]x ) oldRot_wc
        //may be we can compute new R using rodrigues(r+dr)
        pos_wc = pos_wc + dT;

        if(dT.norm() < TerminateTh && dOmiga.norm() < 0.1*TerminateTh)
        {
            break;
        }
    }
    rot_cw = rot_wc.transpose();
    pos_cw = -rot_cw * pos_wc;
}
Tridiagonalization<MatrixXf> tri;
MatrixXf X = MatrixXf::Random(4,4);
MatrixXf A = X + X.transpose();
tri.compute(A);
cout << "The matrix T in the tridiagonal decomposition of A is: " << endl;
cout << tri.matrixT() << endl;
tri.compute(2*A); // re-use tri to compute eigenvalues of 2A
cout << "The matrix T in the tridiagonal decomposition of 2A is: " << endl;
cout << tri.matrixT() << endl;
Exemple #22
0
//compute proposal distribution, then sample from it, and compute new particle weight
void sample_proposal(Particle &particle, vector<VectorXf> z, vector<int> idf, MatrixXf R)
{
    assert(isfinite(particle.w()));
    VectorXf xv = VectorXf(particle.xv()); //robot position
    MatrixXf Pv = MatrixXf(particle.Pv()); //controls (motion command)

    VectorXf xv0 = VectorXf(xv);
    MatrixXf Pv0 = MatrixXf(Pv);	

    vector<MatrixXf> Hv;
    vector<MatrixXf> Hf;
    vector<MatrixXf> Sf;
    vector<VectorXf> zp;

    VectorXf zpi;
    MatrixXf Hvi;
    MatrixXf Hfi;
    MatrixXf Sfi;

    //process each feature, incrementally refine proposal distribution
    unsigned i,r;
    vector<int> j;
    for (i =0; i<idf.size(); i++) {
        j.clear();
        j.push_back(idf[i]);

        Hv.clear();
        Hf.clear();
        Sf.clear();
        zp.clear();

        compute_jacobians(particle,j,R,zp,&Hv,&Hf,&Sf);

        zpi = zp[0];
        Hvi = Hv[0];
        Hfi = Hf[0];
        Sfi = Sf[0];

        VectorXf vi = z[i] - zpi;
        vi[1] = pi_to_pi(vi[1]);

        //proposal covariance
        Pv = Hvi.transpose() * Sfi * Hvi + Pv.inverse();
        Pv = Pv.inverse();

        //proposal mean
        xv = xv + Pv * Hvi.transpose() * Sfi * vi;
        particle.setXv(xv);
        particle.setPv(Pv); 
    }

    //sample from proposal distribution
    VectorXf xvs = multivariate_gauss(xv,Pv,1); 
    particle.setXv(xvs);
    MatrixXf zeros(3,3);
    zeros.setZero();
    particle.setPv(zeros);

    //compute sample weight: w = w* p(z|xk) p(xk|xk-1) / proposal
    float like = likelihood_given_xv(particle, z, idf, R);
    float prior = gauss_evaluate(delta_xv(xv0,xvs), Pv0,0);
    float prop = gauss_evaluate(delta_xv(xv,xvs),Pv,0);
    assert(isfinite(particle.w()));

    float a = prior/prop;
    float b = particle.w() * a;
    float newW = like * b;
    //float newW = particle.w() * like * prior / prop;
    #if 0
    if (!isfinite(newW)) {
	cout<<"LIKELIHOOD GIVEN XV INPUTS"<<endl;   
	cout<<"particle.w()"<<endl;
	cout<<particle.w()<<endl;
	cout<<"particle.xv()"<<endl;
	cout<<particle.xv()<<endl;
	
	cout<<"particle.Pv()"<<endl;
	cout<<particle.Pv()<<endl;
	cout<<"particle.xf"<<endl;
	for (int i =0; i<particle.xf().size(); i++) {
	    cout<<particle.xf()[i]<<endl;
	}
	cout<<endl;
	cout<<"particle.Pf()"<<endl;
	for (int i =0; i< particle.Pf().size(); i++) {
	    cout<<particle.Pf()[i]<<endl;
	}
	cout<<endl;
	
	cout<<"z"<<endl;
	for (int i=0; i<z.size(); i++) {
	    cout<<z[i]<<endl;
	}   
	cout<<endl;
	
	cout<<"idf"<<endl;
	for (int i =0; i<idf.size(); i++){
	    cout<<idf[i]<<" ";
	}		
	cout<<endl;

	cout<<"R"<<endl;
	cout<<R<<endl;

	cout<<"GAUSS EVALUATE INPUTS"<<endl;
	cout<<"delta_xv(xv0,xvs)"<<endl;	
	cout<<delta_xv(xv0,xvs)<<endl;
	
	cout<<"Pv0"<<endl;
	cout<<Pv0<<endl;
	
	cout<<"delta_xv(xv,xvs)"<<endl;	
	cout<<delta_xv(xv,xvs)<<endl;
	
	cout<<"Pv"<<endl;
	cout<<Pv<<endl;
		
	
	cout<<"like"<<endl;
	cout<<like<<endl;
	cout<<"prior"<<endl;
	cout<<prior<<endl;
	cout<<"prop"<<endl;
	cout<<prop<<endl;
    }
    #endif
    particle.setW(newW);
} 
IplImage* CloudProjection::computeProjection(const sensor_msgs::PointCloud& data,
					     const std::vector<int>& interest_region_indices)
{
  // -- Put cluster points into matrix form.
  MatrixXf points(interest_region_indices.size(), 3);
  for(size_t i=0; i<interest_region_indices.size(); ++i) {
    points(i, 0) = data.points[interest_region_indices[i]].x;
    points(i, 1) = data.points[interest_region_indices[i]].y;
    points(i, 2) = data.points[interest_region_indices[i]].z;
  }

  // -- Subtract off the mean and flatten to z=0 to prepare for PCA.
  MatrixXf X = points;
  X.col(2) = VectorXf::Zero(X.rows());
  VectorXf pt_mean = X.colwise().sum() / (float)X.rows();
  for(int i=0; i<X.rows(); ++i) {
    X.row(i) -= pt_mean.transpose();
  }
  MatrixXf Xt = X.transpose();
  
  // -- Find the long axis.
  // Start with a random vector.
  VectorXf pc = VectorXf::Zero(3);
  pc(0) = 1; //Chosen by fair dice roll.
  pc(1) = 1;
  pc.normalize();
  
  // Power method.
  VectorXf prev = pc;
  double thresh = 1e-4;
  int ctr = 0;
  while(true) { 
    prev = pc;
    pc =  Xt * (X * pc);
    pc.normalize();
    ctr++;
    if((pc - prev).norm() < thresh)
      break;
  }
  assert(abs(pc(2)) < 1e-4);
  
  // -- Find the short axis.
  VectorXf shrt = VectorXf::Zero(3);
  shrt(1) = -pc(0);
  shrt(0) = pc(1);
  assert(abs(shrt.norm() - 1) < 1e-4);
  assert(abs(shrt.dot(pc)) < 1e-4);
  
  // -- Build the basis of normalized coordinates.
  MatrixXf basis = MatrixXf::Zero(3,3);
  basis.col(0) = pc;
  basis.col(1) = shrt;
  basis(2,2) = -1.0;
  assert(abs(basis.col(0).dot(basis.col(1))) < 1e-4);
  assert(abs(basis.col(0).norm() - 1) < 1e-4);
  assert(abs(basis.col(1).norm() - 1) < 1e-4);
  assert(abs(basis.col(2).norm() - 1) < 1e-4);


  // -- Put the cluster into normalized coordinates, and choose which axis to project on.
  MatrixXf projected_basis(3, 2);
  if(axis_ == 0) { 
    projected_basis.col(0) = basis.col(1);
    projected_basis.col(1) = basis.col(2);
  }
  else if(axis_ == 1) { 
    projected_basis.col(0) = basis.col(0);
    projected_basis.col(1) = basis.col(2);
  }
  else if(axis_ == 2) { 
    projected_basis.col(0) = basis.col(0);
    projected_basis.col(1) = basis.col(1);
  }
  MatrixXf projected = points * projected_basis;
    
  // -- Transform into pixel units.
  for(int i=0; i<projected.rows(); ++i) {
    projected(i, 0) *= pixels_per_meter_;
    projected(i, 1) *= pixels_per_meter_;
  }

  // -- Find min and max of u and v.  TODO: noise sensitivity?
  float min_v = FLT_MAX;
  float min_u = FLT_MAX;
  float max_v = -FLT_MAX;
  float max_u = -FLT_MAX;
  for(int i=0; i<projected.rows(); ++i) {
    float u = projected(i, 0);
    float v = projected(i, 1);
    if(u < min_u)
      min_u = u;
    if(u > max_u)
      max_u = u;
    if(v < min_v)
      min_v = v;
    if(v > max_v)
      max_v = v;
  }

  // -- Shift the origin based on {u,v}_offset_pct. 
  //    u_offset_pct_ is the percent of the way from min_u to max_u that the
  //    u_offset should be set to.  If this makes the window fall outside min_u or max_u,
  //    then shift the window so that it is inside.
  float u_offset = u_offset_pct_ * (max_u - min_u) + min_u;
  float v_offset = v_offset_pct_ * (max_v - min_v) + min_v;

  if(u_offset_pct_ > 0.5 && u_offset + cols_ / 2 > max_u)
    u_offset = max_u - cols_ / 2 + 1;
  if(u_offset_pct_ < 0.5 && u_offset - cols_ / 2 < min_u)
    u_offset = min_u + cols_ / 2 - 1;

  if(v_offset_pct_ > 0.5 && v_offset + rows_ / 2 > max_v)
    v_offset = max_v - rows_ / 2 + 1;
  if(v_offset_pct_ < 0.5 && v_offset - rows_ / 2 < min_v)
    v_offset = min_v + rows_ / 2 - 1;

  
  for(int i=0; i<projected.rows(); ++i) {
    projected(i, 0) -= u_offset - (float)cols_ / 2.0;
    projected(i, 1) -= v_offset - (float)rows_ / 2.0;
  }
  
  // -- Fill the IplImages.
  assert(sizeof(float) == 4);
  IplImage* acc = cvCreateImage(cvSize(cols_, rows_), IPL_DEPTH_32F, 1);
  IplImage* img = cvCreateImage(cvSize(cols_, rows_), IPL_DEPTH_32F, 1);
  cvSetZero(acc);
  cvSetZero(img);
  for(int i=0; i<projected.rows(); ++i) {
    int row = floor(projected(i, 1));
    int col = floor(projected(i, 0));
    if(row >= rows_ || col >= cols_ || row < 0 || col < 0)
      continue;

    float intensity = (float)data.channels[0].values[interest_region_indices[i]] / 255.0 * (3.0 / 4.0) + 0.25;
    //cout << i << ": " << interest_region_indices[i] << "/" << data.channels[0].values.size() << " " << (float)data.channels[0].values[interest_region_indices[i]] << " " << intensity << endl;
    assert(interest_region_indices[i] < (int)data.channels[0].values.size() && (int)interest_region_indices[i] >= 0);
    assert(intensity <= 1.0 && intensity >= 0.0);
    ((float*)(img->imageData + row * img->widthStep))[col] += intensity;
    ((float*)(acc->imageData + row * acc->widthStep))[col]++;
  }
  
  // -- Normalize by the number of points falling in each pixel.
  for(int v=0; v<rows_; ++v) {
    float* img_ptr = (float*)(img->imageData + v * img->widthStep);
    float* acc_ptr = (float*)(acc->imageData + v * acc->widthStep);
    for(int u=0; u<cols_; ++u) {
      if(*acc_ptr == 0)
	*img_ptr = 0;
      else
	*img_ptr = *img_ptr / *acc_ptr;

      img_ptr++;
      acc_ptr++;
    }
  }

  // -- Clean up and return.
  cvReleaseImage(&acc);
  return img;  
}
void CloudOrienter::_compute() {
    assert(input_cloud_);
    assert(input_intensities_);
    assert(!output_cloud_);
    //cout << input_intensities_->rows() << " " << input_cloud_->rows() << endl;
    assert(input_cloud_->rows() == input_intensities_->rows());
    assert(input_cloud_->rows() > 2);

    // -- Subtract off the mean of the points.
    MatrixXf& points = *input_cloud_;
    VectorXf pt_mean = points.colwise().sum() / (float)points.rows();
    for(int i=0; i<points.rows(); ++i)
        points.row(i) -= pt_mean.transpose();

    // -- Flatten to z == 0.
    MatrixXf X = points;
    X.col(2) = VectorXf::Zero(X.rows());
    MatrixXf Xt = X.transpose();

    // -- Find the long axis.
    // Start with a random vector.
    VectorXf pc = VectorXf::Zero(3);
    pc(0) = 1; //Chosen by fair dice roll.
    pc(1) = 1;
    pc.normalize();

    // Power method.
    VectorXf prev = pc;
    double thresh = 1e-4;
    int ctr = 0;
    while(true) {
        prev = pc;
        pc =  Xt * (X * pc);
        pc.normalize();
        ctr++;
        if((pc - prev).norm() < thresh)
            break;
        // -- In some degenerate cases, it is possible for the vector
        //    to never settle down to the first PC.
        if(ctr > 100)
            break;

    }
    assert(abs(pc(2)) < 1e-4);

    // -- Find the short axis.
    VectorXf shrt = VectorXf::Zero(3);
    shrt(1) = -pc(0);
    shrt(0) = pc(1);
    assert(abs(shrt.norm() - 1) < 1e-4);
    assert(abs(shrt.dot(pc)) < 1e-4);

    // -- Build the basis of normalized coordinates.
    MatrixXf basis = MatrixXf::Zero(3,3);
    basis.col(0) = pc;
    basis.col(1) = shrt;
    basis(2,2) = 1.0;
    assert(abs(basis.col(0).dot(basis.col(1))) < 1e-4);
    assert(abs(basis.col(0).norm() - 1) < 1e-4);
    assert(abs(basis.col(1).norm() - 1) < 1e-4);
    assert(abs(basis.col(2).norm() - 1) < 1e-4);

    // -- Rotate and set the output_cloud_.
    output_cloud_ = shared_ptr<MatrixXf>(new MatrixXf);
    *output_cloud_ = points * basis;
    assert(output_cloud_->rows() == input_cloud_->rows());
}
visualization_msgs::MarkerArray RosVSLAM::getFeatures() {
	visualization_msgs::Marker pointsINV;
	pointsINV.header.frame_id = "/world";
	pointsINV.header.stamp = ros::Time::now();
	pointsINV.ns  = "points_and_lines";
	pointsINV.action = visualization_msgs::Marker::ADD;
	pointsINV.pose.orientation.w = 1.0;
	pointsINV.id = 0;
	pointsINV.type = visualization_msgs::Marker::SPHERE_LIST;
	pointsINV.scale.x = 0.1;
	pointsINV.scale.y = 0.1;
	pointsINV.scale.z = 0.1;
	pointsINV.color.r = 0.0f;
	pointsINV.color.g = 0.0f;
	pointsINV.color.b = 0.0f;
	pointsINV.color.a = 1.0;


	visualization_msgs::MarkerArray points;

	for (int i = 0; i < this->patches.size(); ++i) {
		int pos = this->patches[i].position_in_state;
		Vector3f d;
		Matrix3f Cov;
		if (!patches[i].isXYZ()) {
			MatrixXf Jf;
			d = depth2XYZ(mu.segment<6>(pos), Jf);
			geometry_msgs::Point p;
			p.x = d(0)*map_scale;
			p.y = d(1)*map_scale;
			p.z = d(2)*map_scale;
			pointsINV.points.push_back(p);
			Cov = Jf*Sigma.block<6,6>(pos,pos)*Jf.transpose();

	        SelfAdjointEigenSolver<MatrixXf> eigenSolver(Cov);
	        Vector3f eigs = eigenSolver.eigenvalues();
	        Matrix3f vecs = eigenSolver.eigenvectors();
	        Quaternionf q(vecs);

	    	visualization_msgs::Marker pointsINV;
	    	pointsINV.header.frame_id = "/world";
	    	pointsINV.header.stamp = ros::Time::now();
	    	char name[20];
	    	sprintf(name, "F%d",i);
	    	std::stringstream ss;
	    	ss << i;

	    	pointsINV.ns  = name;
	    	pointsINV.action = visualization_msgs::Marker::ADD;
	       // pointsXYZ.pose.orientation.w = 1.0;
	    	pointsINV.id = i;
	        pointsINV.type = visualization_msgs::Marker::SPHERE;
	        pointsINV.scale.x = eigs(0)*map_scale;
	        pointsINV.scale.y = eigs(1)*map_scale;
	        pointsINV.scale.z = eigs(2)*map_scale;
	        pointsINV.pose.orientation.w = q.w();
	        pointsINV.pose.orientation.x = q.x();
	        pointsINV.pose.orientation.y = q.y();
	        pointsINV.pose.orientation.z = q.z();
	        pointsINV.pose.position.x = d(0)*map_scale;
	        pointsINV.pose.position.y = d(1)*map_scale;
	        pointsINV.pose.position.z = d(2)*map_scale;
	        pointsINV.color.g = 1.0f;
	        pointsINV.color.a = 0.5;
	        pointsINV.lifetime.sec = 1;

	    	// points.markers.push_back(pointsINV);

		} else {
			d = mu.segment<3>(pos);
			Cov = Sigma.block<3,3>(pos,pos);
			Cov.eigenvalues();
	        SelfAdjointEigenSolver<MatrixXf> eigenSolver(Cov);
	        Vector3f eigs = eigenSolver.eigenvalues();
	        Matrix3f vecs = eigenSolver.eigenvectors();
	        Quaternion<float> q(vecs);

	        visualization_msgs::Marker pointsXYZ;
	    	pointsXYZ.header.frame_id = "/world";
	    	pointsXYZ.header.stamp = ros::Time::now();
	    	char name[20];
	    	sprintf(name, "F%d",i);
	    	std::stringstream ss;
	    	ss << i;
	    	pointsXYZ.ns = name;
	    	pointsXYZ.action = visualization_msgs::Marker::ADD;
	        pointsXYZ.id = i;
	        pointsXYZ.type = visualization_msgs::Marker::SPHERE;
	        pointsXYZ.scale.x = eigs(0)*map_scale;
	        pointsXYZ.scale.y = eigs(1)*map_scale;
	        pointsXYZ.scale.z = eigs(2)*map_scale;
	        pointsXYZ.pose.orientation.w = q.w();
	        pointsXYZ.pose.orientation.x = q.x();
	        pointsXYZ.pose.orientation.y = q.y();
	        pointsXYZ.pose.orientation.z = q.z();
	        pointsXYZ.pose.position.x = d(0)*map_scale;
	        pointsXYZ.pose.position.y = d(1)*map_scale;
	        pointsXYZ.pose.position.z = d(2)*map_scale;
	        pointsXYZ.color.r = 1.0f;
	        pointsXYZ.color.a = 0.5;
	        pointsXYZ.lifetime.sec = 1;
	    	//points.markers.push_back(pointsXYZ);

	        visualization_msgs::Marker textpointsXYZ;
	        textpointsXYZ.header.frame_id = "/world";
	        textpointsXYZ.header.stamp = ros::Time::now();
	    	sprintf(name, "name%d",i);
	    	textpointsXYZ.ns = name;
	    	textpointsXYZ.text = ss.str();
	    	textpointsXYZ.action = visualization_msgs::Marker::ADD;
	       // pointsXYZ.pose.orientation.w = 1.0;
	    	textpointsXYZ.id = 0;
	    	textpointsXYZ.type = visualization_msgs::Marker::TEXT_VIEW_FACING;
	    	textpointsXYZ.scale.x = 1;
	        textpointsXYZ.scale.y = 1;
	        textpointsXYZ.scale.z = 1;
	        textpointsXYZ.pose.position.x = d(0)*map_scale;
	        textpointsXYZ.pose.position.y = d(1)*map_scale;
	        textpointsXYZ.pose.position.z = d(2)*map_scale;
	        textpointsXYZ.color.r = 0.0f;
	        textpointsXYZ.color.g = 0.0f;
	        textpointsXYZ.color.b = 0.0f;
	        textpointsXYZ.color.a = 1;
	        textpointsXYZ.lifetime.sec = 1;
	    	// points.markers.push_back(textpointsXYZ);







			geometry_msgs::Point p;
			p.x = d(0)*map_scale;
			p.y = d(1)*map_scale;
			p.z = d(2)*map_scale;
			pointsINV.points.push_back(p);


		}

    }

	points.markers.push_back(pointsINV);




	static int count_OLD = 0;
	char name[100];
	visualization_msgs::Marker pointsOLD;
	pointsOLD.header.frame_id = "/world";
	pointsOLD.header.stamp = ros::Time::now();
	pointsOLD.action = visualization_msgs::Marker::ADD;
	pointsOLD.pose.orientation.w = 1.0;
	pointsOLD.id = 0;
	pointsOLD.type = visualization_msgs::Marker::SPHERE_LIST;
	pointsOLD.scale.x = 0.1;
	pointsOLD.scale.y = 0.1;
	pointsOLD.scale.z = 0.1;
	pointsOLD.color.r = 0.0f;
	pointsOLD.color.g = 0.0f;
	pointsOLD.color.b = 0.0f;
	pointsOLD.color.a = 1.0;



	std::cout << "size = " <<deleted_patches.size() << std::endl;
	if (deleted_patches.size() > 1000) {
		for (int i = 0; i < deleted_patches.size(); i++) {
			sprintf(name, "OLD_points%d", count_OLD++);
			pointsOLD.ns  = name;
			geometry_msgs::Point p;
			p.x = deleted_patches[i].XYZ_pos(0)*map_scale;
			p.y = deleted_patches[i].XYZ_pos(1)*map_scale;
			p.z = deleted_patches[i].XYZ_pos(2)*map_scale;
			pointsOLD.points.push_back(p);
		}
		deleted_patches.clear();
	} else {
		for (int i = 0; i < deleted_patches.size(); i++) {
			pointsOLD.ns  = "OLD_points";
			geometry_msgs::Point p;
			p.x = deleted_patches[i].XYZ_pos(0)*map_scale;
			p.y = deleted_patches[i].XYZ_pos(1)*map_scale;
			p.z = deleted_patches[i].XYZ_pos(2)*map_scale;
			pointsOLD.points.push_back(p);
		}
	}

	points.markers.push_back(pointsOLD);


    return points;
}
MatrixXf D3DCloudOrienter::orientCloud(const sensor_msgs::PointCloud& data,
				    const std::vector<int>& interest_region_indices)
{
  // -- Put cluster points into matrix form.
  MatrixXf points(interest_region_indices.size(), 3);
  for(size_t i=0; i<interest_region_indices.size(); ++i) {
    points(i, 0) = data.points[interest_region_indices[i]].x;
    points(i, 1) = data.points[interest_region_indices[i]].y;
    points(i, 2) = data.points[interest_region_indices[i]].z;
  }

  // -- Subtract off the mean of the points.
  VectorXf pt_mean = points.colwise().sum() / (float)points.rows();
  for(int i=0; i<points.rows(); ++i)
    points.row(i) -= pt_mean.transpose();

  // -- Flatten to z == 0.
  MatrixXf X = points;
  X.col(2) = VectorXf::Zero(X.rows());
  MatrixXf Xt = X.transpose();
  
  // -- Find the long axis.
  // Start with a random vector.
  VectorXf pc = VectorXf::Zero(3);
  pc(0) = 1; //Chosen by fair dice roll.
  pc(1) = 1;
  pc.normalize();
  
  // Power method.
  VectorXf prev = pc;
  double thresh = 1e-4;
  int ctr = 0;
  while(true) { 
    prev = pc;
    pc =  Xt * (X * pc);
    pc.normalize();
    ctr++;
    if((pc - prev).norm() < thresh)
      break;
  }
  assert(abs(pc(2)) < 1e-4);
  
  // -- Find the short axis.
  VectorXf shrt = VectorXf::Zero(3);
  shrt(1) = -pc(0);
  shrt(0) = pc(1);
  assert(abs(shrt.norm() - 1) < 1e-4);
  assert(abs(shrt.dot(pc)) < 1e-4);
  
  // -- Build the basis of normalized coordinates.
  MatrixXf basis = MatrixXf::Zero(3,3);
  basis.col(0) = pc;
  basis.col(1) = shrt;
  basis(2,2) = 1.0;
  assert(abs(basis.col(0).dot(basis.col(1))) < 1e-4);
  assert(abs(basis.col(0).norm() - 1) < 1e-4);
  assert(abs(basis.col(1).norm() - 1) < 1e-4);
  assert(abs(basis.col(2).norm() - 1) < 1e-4);

  // -- Rotate and return.
  MatrixXf oriented = points * basis;
  return oriented;
}
Exemple #27
0
MatrixXf make_symmetric(MatrixXf P)
{
    return (P + P.transpose())*0.5;
}