void pcl::ihs::Integration::age (const MeshPtr& mesh, const bool cleanup) const { for (Mesh::VertexIterator it = mesh->beginVertexes (); it!=mesh->endVertexes (); ++it) { if(it->age < age_max_) { // Point survives ++it->age; } else if(it->age == age_max_) // Judgement Day { if(it->visconf.getValue () < visconf_min_) { // Point dies (no need to transform it) mesh->deleteVertex (*it); } else { // Point becomes immortal it->age = std::numeric_limits <unsigned int>::max (); } } } if (cleanup) { mesh->cleanUp (); } }
bool pcl::ihs::Integration::merge (const CloudProcessedConstPtr& cloud_data, const MeshPtr& mesh_model, const Transformation& T) const { if (!cloud_data->isOrganized ()) { std::cerr << "ERROR in integration.cpp: Data cloud is not organized\n"; return (false); } const uint32_t width = cloud_data->width; const uint32_t height = cloud_data->height; const size_t size = cloud_data->size (); if (!mesh_model->sizeVertexes ()) { std::cerr << "ERROR in integration.cpp: Model mesh is empty\n"; return (false); } // Nearest neighbor search // TODO: remove this unnecessary copy CloudXYZPtr xyz_model (new CloudXYZ ()); xyz_model->reserve (mesh_model->sizeVertexes ()); for (VertexConstIterator it=mesh_model->beginVertexes (); it!=mesh_model->endVertexes (); ++it) { xyz_model->push_back (PointXYZ (it->x, it->y, it->z)); } kd_tree_->setInputCloud (xyz_model); std::vector <int> index (1); std::vector <float> squared_distance (1); mesh_model->reserveVertexes (mesh_model->sizeVertexes () + cloud_data->size ()); mesh_model->reserveFaces (mesh_model->sizeFaces () + 2 * (width-1) * (height-1)); // Data cloud in model coordinates (this does not change the connectivity information) and weights CloudModelPtr cloud_data_transformed (new CloudModel ()); cloud_data_transformed->resize (size); // Sensor position in model coordinates const Eigen::Vector4f& sensor_eye = T * Eigen::Vector4f (0.f, 0.f, 0.f, 1.f); // Store which vertex is set at which position (initialized with invalid indexes) VertexIndexes vertex_indexes (size, VertexIndex ()); // Set the transformed points not reached by the main loop for (uint32_t c=0; c<width; ++c) { const PointProcessed& pt_d = cloud_data->operator [] (c); const float weight = -pt_d.normal_z; // weight = -dot (normal, [0; 0; 1]) if (pcl::isFinite (pt_d) && weight >= weight_min_) { PointModel& pt_d_t = cloud_data_transformed->operator [] (c); pt_d_t = PointModel (pt_d, weight); pt_d_t.getVector4fMap () = T * pt_d_t.getVector4fMap (); pt_d_t.getNormalVector4fMap () = T * pt_d_t.getNormalVector4fMap (); } } for (uint32_t r=1; r<height; ++r) { for (uint32_t c=0; c<2; ++c) { const PointProcessed& pt_d = cloud_data->operator [] (r*width + c); const float weight = -pt_d.normal_z; // weight = -dot (normal, [0; 0; 1]) if (pcl::isFinite (pt_d) && weight >= weight_min_) { PointModel& pt_d_t = cloud_data_transformed->operator [] (r*width + c); pt_d_t = PointModel (pt_d, weight); pt_d_t.getVector4fMap () = T * pt_d_t.getVector4fMap (); pt_d_t.getNormalVector4fMap () = T * pt_d_t.getNormalVector4fMap (); } } } // 4 2 - 1 // // | | // // * 3 - 0 // // // // 4 - 2 1 // // \ \ // // * 3 - 0 // CloudProcessed::const_iterator it_d_0 = cloud_data->begin () + width + 2; CloudModel::iterator it_d_t_0 = cloud_data_transformed->begin () + width + 2; CloudModel::const_iterator it_d_t_1 = cloud_data_transformed->begin () + 2; CloudModel::const_iterator it_d_t_2 = cloud_data_transformed->begin () + 1; CloudModel::const_iterator it_d_t_3 = cloud_data_transformed->begin () + width + 1; CloudModel::const_iterator it_d_t_4 = cloud_data_transformed->begin () ; VertexIndexes::iterator it_vi_0 = vertex_indexes.begin () + width + 2; VertexIndexes::iterator it_vi_1 = vertex_indexes.begin () + 2; VertexIndexes::iterator it_vi_2 = vertex_indexes.begin () + 1; VertexIndexes::iterator it_vi_3 = vertex_indexes.begin () + width + 1; VertexIndexes::iterator it_vi_4 = vertex_indexes.begin () ; for (uint32_t r=1; r<height; ++r) { for (uint32_t c=2; c<width; ++c) { const float weight = -it_d_0->normal_z; // weight = -dot (normal, [0; 0; 1]) if (pcl::isFinite (*it_d_0) && weight >= weight_min_) { *it_d_t_0 = PointModel (*it_d_0, weight); it_d_t_0->getVector4fMap () = T * it_d_t_0->getVector4fMap (); it_d_t_0->getNormalVector4fMap () = T * it_d_t_0->getNormalVector4fMap (); // NN search if (!kd_tree_->nearestKSearchT (*it_d_t_0, 1, index, squared_distance)) { std::cerr << "ERROR in integration.cpp: nearestKSearch failed!\n"; return (false); } // Average out corresponding points if (squared_distance[0] <= squared_distance_max_) { Vertex& v_m = mesh_model->getElement (VertexIndex (index[0])); // Non-const reference! if (v_m.getNormalVector4fMap ().dot (it_d_t_0->getNormalVector4fMap ()) >= dot_normal_min_) { *it_vi_0 = VertexIndex (index[0]); const float W = v_m.weight; // Old accumulated weight const float w = it_d_t_0->weight; // Weight of new point const float WW = v_m.weight = W + w; // New accumulated weight const float r_m = static_cast <float> (v_m.r); const float g_m = static_cast <float> (v_m.g); const float b_m = static_cast <float> (v_m.b); const float r_d = static_cast <float> (it_d_t_0->r); const float g_d = static_cast <float> (it_d_t_0->g); const float b_d = static_cast <float> (it_d_t_0->b); v_m.getVector4fMap () = ( W*v_m.getVector4fMap () + w*it_d_t_0->getVector4fMap ()) / WW; v_m.getNormalVector4fMap () = ((W*v_m.getNormalVector4fMap () + w*it_d_t_0->getNormalVector4fMap ()) / WW).normalized (); v_m.r = this->trimRGB ((W*r_m + w*r_d) / WW); v_m.g = this->trimRGB ((W*g_m + w*g_d) / WW); v_m.b = this->trimRGB ((W*b_m + w*b_d) / WW); // Point has been observed again -> give it some extra time to live v_m.age = 0; // add a direction to the visibility confidence v_m.visconf.addDirection (v_m.getNormalVector4fMap (), sensor_eye-v_m.getVector4fMap (), w); } // dot normals } // squared distance } // isfinite && min weight // Connect // 4 2 - 1 // // | | // // * 3 - 0 // // // // 4 - 2 1 // // \ \ // // * 3 - 0 // this->addToMesh (it_d_t_0, it_d_t_1, it_d_t_2, it_d_t_3, it_vi_0, it_vi_1, it_vi_2, it_vi_3, mesh_model); this->addToMesh (it_d_t_0, it_d_t_2, it_d_t_4, it_d_t_3, it_vi_0, it_vi_2, it_vi_4, it_vi_3, mesh_model); ++it_d_0; ++it_d_t_0; ++it_d_t_1; ++it_d_t_2; ++it_d_t_3; ++it_d_t_4; ++it_vi_0; ++it_vi_1; ++it_vi_2; ++it_vi_3; ++it_vi_4; } // for (uint32_t c=2; c<width; ++c) it_d_0 += 2; it_d_t_0 += 2; it_d_t_1 += 2; it_d_t_2 += 2; it_d_t_3 += 2, it_d_t_4 += 2; it_vi_0 += 2; it_vi_1 += 2; it_vi_2 += 2; it_vi_3 += 2, it_vi_4 += 2; } // for (uint32_t r=1; r<height; ++r) return (true); }