void IndefBlockedDiagonalSmoother<Scalar, LocalOrdinal, GlobalOrdinal, Node, LocalMatOps>::Apply(MultiVector& X, const MultiVector& B, bool InitialGuessIsZero) const { TEUCHOS_TEST_FOR_EXCEPTION(SmootherPrototype::IsSetup() == false, Exceptions::RuntimeError, "MueLu::IndefBlockedDiagonalSmoother::Apply(): Setup() has not been called"); Teuchos::RCP<Teuchos::FancyOStream> fos = Teuchos::getFancyOStream(Teuchos::rcpFromRef(std::cout)); SC zero = Teuchos::ScalarTraits<SC>::zero(), one = Teuchos::ScalarTraits<SC>::one(); // extract parameters from internal parameter list const ParameterList & pL = Factory::GetParameterList(); LocalOrdinal nSweeps = pL.get<LocalOrdinal>("Sweeps"); Scalar omega = pL.get<Scalar>("Damping factor"); // wrap current solution vector in RCP RCP<MultiVector> rcpX = Teuchos::rcpFromRef(X); // create residual vector // contains current residual of current solution X with rhs B RCP<MultiVector> residual = MultiVectorFactory::Build(B.getMap(), B.getNumVectors()); // incrementally improve solution vector X for (LocalOrdinal run = 0; run < nSweeps; ++run) { // 1) calculate current residual residual->update(one,B,zero); // residual = B A_->apply(*rcpX, *residual, Teuchos::NO_TRANS, -one, one); // split residual vector Teuchos::RCP<MultiVector> r1 = rangeMapExtractor_->ExtractVector(residual, 0); Teuchos::RCP<MultiVector> r2 = rangeMapExtractor_->ExtractVector(residual, 1); // 2) solve F * \Delta \tilde{x}_1 = r_1 // start with zero guess \Delta \tilde{x}_1 RCP<MultiVector> xtilde1 = MultiVectorFactory::Build(F_->getRowMap(),1); xtilde1->putScalar(zero); velPredictSmoo_->Apply(*xtilde1,*r1); // 3) solve SchurComp equation // start with zero guess \Delta \tilde{x}_2 RCP<MultiVector> xtilde2 = MultiVectorFactory::Build(Z_->getRowMap(),1); xtilde2->putScalar(zero); schurCompSmoo_->Apply(*xtilde2,*r2); // 4) extract parts of solution vector X Teuchos::RCP<MultiVector> x1 = domainMapExtractor_->ExtractVector(rcpX, 0); Teuchos::RCP<MultiVector> x2 = domainMapExtractor_->ExtractVector(rcpX, 1); // 5) update solution vector with increments xhat1 and xhat2 // rescale increment for x2 with omega_ x1->update(omega,*xtilde1,one); // x1 = x1_old + omega xtilde1 x2->update(omega,*xtilde2,one); // x2 = x2_old + omega xtilde2 // write back solution in global vector X domainMapExtractor_->InsertVector(x1, 0, rcpX); domainMapExtractor_->InsertVector(x2, 1, rcpX); } }
void PermutingSmoother<Scalar, LocalOrdinal, GlobalOrdinal, Node, LocalMatOps>::Apply(MultiVector &X, MultiVector const &B, bool const &InitialGuessIsZero) const { TEUCHOS_TEST_FOR_EXCEPTION(SmootherPrototype::IsSetup() == false, Exceptions::RuntimeError, "MueLu::PermutingSmoother::Apply(): Setup() has not been called"); TEUCHOS_TEST_FOR_EXCEPTION(s_ == Teuchos::null, Exceptions::RuntimeError, "IsSetup() == true but s_ == Teuchos::null. This does not make sense"); Teuchos::RCP<MultiVector> Xtemp = MultiVectorFactory::Build(X.getMap(),1,true); Xtemp->update(1.0,X,0.0); // TODO: unify scaling and left permutation operator Teuchos::RCP<MultiVector> Btemp = MultiVectorFactory::Build(B.getMap(),1,true); Teuchos::RCP<MultiVector> Btemp2 = MultiVectorFactory::Build(B.getMap(),1,true); permP_->apply(B, *Btemp, Teuchos::NO_TRANS); // apply permutation operator to rhs diagScalingOp_->apply(*Btemp,*Btemp2, Teuchos::NO_TRANS); // apply scaling operator to rhs // apply smoother to permuted linear system s_->Apply(*Xtemp, *Btemp2, InitialGuessIsZero); // retransform smooth solution permQT_->apply(*Xtemp, X, Teuchos::NO_TRANS); }
void PermutingSmoother<Scalar, LocalOrdinal, GlobalOrdinal, Node, LocalMatOps>::Apply(MultiVector& X, const MultiVector& B, bool InitialGuessIsZero) const { TEUCHOS_TEST_FOR_EXCEPTION(SmootherPrototype::IsSetup() == false, Exceptions::RuntimeError, "MueLu::PermutingSmoother::Apply(): Setup() has not been called"); typedef Teuchos::ScalarTraits<Scalar> STS; Teuchos::RCP<MultiVector> Xtemp = MultiVectorFactory::Build(X.getMap(), 1, true); Xtemp->update(STS::one(), X, STS::zero()); // TODO: unify scaling and left permutation operator Teuchos::RCP<MultiVector> Btemp = MultiVectorFactory::Build(B.getMap(), 1, true); Teuchos::RCP<MultiVector> Btemp2 = MultiVectorFactory::Build(B.getMap(), 1, true); permP_->apply(B, *Btemp, Teuchos::NO_TRANS); // apply permutation operator to rhs diagScalingOp_->apply(*Btemp, *Btemp2, Teuchos::NO_TRANS); // apply scaling operator to rhs // apply smoother to permuted linear system s_->Apply(*Xtemp, *Btemp2, InitialGuessIsZero); // retransform smooth solution permQT_->apply(*Xtemp, X, Teuchos::NO_TRANS); }
void BraessSarazinSmoother<Scalar, LocalOrdinal, GlobalOrdinal, Node>::Apply(MultiVector& X, const MultiVector& B, bool InitialGuessIsZero) const { TEUCHOS_TEST_FOR_EXCEPTION(SmootherPrototype::IsSetup() == false, Exceptions::RuntimeError, "MueLu::BraessSarazinSmoother::Apply(): Setup() has not been called"); RCP<MultiVector> rcpX = rcpFromRef(X); RCP<MultiVector> deltaX0 = MultiVectorFactory::Build(A00_->getRowMap(), 1); RCP<MultiVector> deltaX1 = MultiVectorFactory::Build(A10_->getRowMap(), 1); RCP<MultiVector> Rtmp = MultiVectorFactory::Build(A10_->getRowMap(), 1); typedef Teuchos::ScalarTraits<SC> STS; SC one = STS::one(), zero = STS::zero(); // extract parameters from internal parameter list const ParameterList& pL = Factory::GetParameterList(); LO nSweeps = pL.get<LO>("Sweeps"); RCP<MultiVector> R; if (InitialGuessIsZero) { R = MultiVectorFactory::Build(B.getMap(), B.getNumVectors()); R->update(one, B, zero); } else { R = Utilities::Residual(*A_, X, B); } for (LO run = 0; run < nSweeps; ++run) { // Extract corresponding subvectors from X and R RCP<MultiVector> R0 = rangeMapExtractor_ ->ExtractVector(R, 0); RCP<MultiVector> R1 = rangeMapExtractor_ ->ExtractVector(R, 1); RCP<MultiVector> X0 = domainMapExtractor_->ExtractVector(rcpX, 0); RCP<MultiVector> X1 = domainMapExtractor_->ExtractVector(rcpX, 1); // Calculate Rtmp = R1 - D * deltaX0 (equation 8.14) deltaX0->putScalar(zero); deltaX0->elementWiseMultiply(one, *D_, *R0, zero); // deltaX0 = D * R0 (equation 8.13) A10_->apply(*deltaX0, *Rtmp); // Rtmp = A10*D*deltaX0 (intermediate step) Rtmp->update(one, *R1, -one); // Rtmp = R1 - A10*D*deltaX0 // Compute deltaX1 (pressure correction) // We use user provided preconditioner deltaX1->putScalar(zero); // just for safety smoo_->Apply(*deltaX1, *Rtmp); // Compute deltaX0 deltaX0->putScalar(zero); // just for safety A01_->apply(*deltaX1, *deltaX0); // deltaX0 = A01*deltaX1 deltaX0->update(one, *R0, -one); // deltaX0 = R0 - A01*deltaX1 R0.swap(deltaX0); deltaX0->elementWiseMultiply(one, *D_, *R0, zero); // deltaX0 = D*(R0 - A01*deltaX1) // Update solution X0->update(one, *deltaX0, one); X1->update(one, *deltaX1, one); domainMapExtractor_->InsertVector(X0, 0, rcpX); domainMapExtractor_->InsertVector(X1, 1, rcpX); if (run < nSweeps-1) R = Utilities::Residual(*A_, X, B); } }
void BlockedGaussSeidelSmoother<Scalar, LocalOrdinal, GlobalOrdinal, Node>::Apply(MultiVector &X, const MultiVector& B, bool InitialGuessIsZero) const { TEUCHOS_TEST_FOR_EXCEPTION(SmootherPrototype::IsSetup() == false, Exceptions::RuntimeError, "MueLu::BlockedGaussSeidelSmoother::Apply(): Setup() has not been called"); RCP<Xpetra::MultiVector<Scalar, LocalOrdinal, GlobalOrdinal, Node> > residual = MultiVectorFactory::Build(B.getMap(), B.getNumVectors()); RCP<Xpetra::MultiVector<Scalar, LocalOrdinal, GlobalOrdinal, Node> > tempres = MultiVectorFactory::Build(B.getMap(), B.getNumVectors()); RCP<MultiVector> rcpX = Teuchos::rcpFromRef(X); //Teuchos::RCP<Teuchos::FancyOStream> fos = Teuchos::getFancyOStream(Teuchos::rcpFromRef(std::cout)); // extract parameters from internal parameter list const ParameterList & pL = Factory::GetParameterList(); LocalOrdinal nSweeps = pL.get<LocalOrdinal>("Sweeps"); Scalar omega = pL.get<Scalar>("Damping factor"); // outer Richardson loop for (LocalOrdinal run = 0; run < nSweeps; ++run) { // one BGS sweep // loop over all block rows for(size_t i = 0; i<Inverse_.size(); i++) { // calculate block residual r = B-A*X // note: A_ is the full blocked operator residual->update(1.0,B,0.0); // r = B A_->apply(X, *residual, Teuchos::NO_TRANS, -1.0, 1.0); // extract corresponding subvectors from X and residual size_t blockRowIndex = at(bgsOrderingIndex2blockRowIndex_, i); // == bgsOrderingIndex2blockRowIndex_.at(i) (only available since C++11) Teuchos::RCP<MultiVector> Xi = domainMapExtractor_->ExtractVector(rcpX, blockRowIndex); Teuchos::RCP<MultiVector> ri = rangeMapExtractor_->ExtractVector(residual, blockRowIndex); Teuchos::RCP<MultiVector> tXi = domainMapExtractor_->getVector(blockRowIndex, X.getNumVectors()); // apply solver/smoother Inverse_.at(i)->Apply(*tXi, *ri, false); // update vector Xi->update(omega,*tXi,1.0); // X_{i+1} = X_i + omega \Delta X_i // update corresponding part of rhs and lhs domainMapExtractor_->InsertVector(Xi, blockRowIndex, rcpX); // TODO wrong! fix me } } }
void IndefBlockedDiagonalSmoother<Scalar, LocalOrdinal, GlobalOrdinal, Node>::Apply(MultiVector& X, const MultiVector& B, bool InitialGuessIsZero) const { TEUCHOS_TEST_FOR_EXCEPTION(SmootherPrototype::IsSetup() == false, Exceptions::RuntimeError, "MueLu::IndefBlockedDiagonalSmoother::Apply(): Setup() has not been called"); Teuchos::RCP<Teuchos::FancyOStream> fos = Teuchos::getFancyOStream(Teuchos::rcpFromRef(std::cout)); SC zero = Teuchos::ScalarTraits<SC>::zero(), one = Teuchos::ScalarTraits<SC>::one(); // The following boolean flags catch the case where we need special transformation // for the GIDs when calling the subsmoothers. RCP<BlockedCrsMatrix> bA00 = Teuchos::rcp_dynamic_cast<BlockedCrsMatrix>(F_); RCP<BlockedCrsMatrix> bA11 = Teuchos::rcp_dynamic_cast<BlockedCrsMatrix>(Z_); bool bA00ThyraSpecialTreatment = false; bool bA11ThyraSpecialTreatment = false; if (bA00 != Teuchos::null) { if(bA00->Rows() == 1 && bA00->Cols() == 1 && rangeMapExtractor_->getThyraMode() == true) bA00ThyraSpecialTreatment = true; } if (bA11 != Teuchos::null) { if(bA11->Rows() == 1 && bA11->Cols() == 1 && rangeMapExtractor_->getThyraMode() == true) bA11ThyraSpecialTreatment = true; } // extract parameters from internal parameter list const ParameterList & pL = Factory::GetParameterList(); LocalOrdinal nSweeps = pL.get<LocalOrdinal>("Sweeps"); Scalar omega = pL.get<Scalar>("Damping factor"); // wrap current solution vector in RCP RCP<MultiVector> rcpX = Teuchos::rcpFromRef(X); // create residual vector // contains current residual of current solution X with rhs B RCP<MultiVector> residual = MultiVectorFactory::Build(B.getMap(), B.getNumVectors()); // incrementally improve solution vector X for (LocalOrdinal run = 0; run < nSweeps; ++run) { // 1) calculate current residual residual->update(one,B,zero); // residual = B A_->apply(*rcpX, *residual, Teuchos::NO_TRANS, -one, one); // split residual vector Teuchos::RCP<MultiVector> r1 = rangeMapExtractor_->ExtractVector(residual, 0); Teuchos::RCP<MultiVector> r2 = rangeMapExtractor_->ExtractVector(residual, 1); // 2) solve F * \Delta \tilde{x}_1 = r_1 // start with zero guess \Delta \tilde{x}_1 RCP<MultiVector> xtilde1 = MultiVectorFactory::Build(F_->getRowMap(),X.getNumVectors(),true); // Special handling if SchurComplement operator was a 1x1 blocked operator in Thyra mode // Then, we have to translate the Xpetra offset GIDs to plain Thyra GIDs and vice versa if(bA00ThyraSpecialTreatment == true) { RCP<MultiVector> xtilde1_thyra = domainMapExtractor_->getVector(0, X.getNumVectors(), true); RCP<MultiVector> r1_thyra = rangeMapExtractor_->getVector(0, B.getNumVectors(), true); // transform vector for(size_t k=0; k < r1->getNumVectors(); k++) { Teuchos::ArrayRCP<const Scalar> xpetraVecData = r1->getData(k); Teuchos::ArrayRCP<Scalar> thyraVecData = r1_thyra->getDataNonConst(k); for(size_t i=0; i < r1->getLocalLength(); i++) { thyraVecData[i] = xpetraVecData[i]; } } velPredictSmoo_->Apply(*xtilde1_thyra,*r1_thyra); for(size_t k=0; k < xtilde1_thyra->getNumVectors(); k++) { Teuchos::ArrayRCP<Scalar> xpetraVecData = xtilde1->getDataNonConst(k); Teuchos::ArrayRCP<const Scalar> thyraVecData = xtilde1_thyra->getData(k); for(size_t i=0; i < xtilde1_thyra->getLocalLength(); i++) { xpetraVecData[i] = thyraVecData[i]; } } } else { velPredictSmoo_->Apply(*xtilde1,*r1); } // 3) solve SchurComp equation // start with zero guess \Delta \tilde{x}_2 RCP<MultiVector> xtilde2 = MultiVectorFactory::Build(Z_->getRowMap(),X.getNumVectors(),true); // Special handling if SchurComplement operator was a 1x1 blocked operator in Thyra mode // Then, we have to translate the Xpetra offset GIDs to plain Thyra GIDs and vice versa if(bA11ThyraSpecialTreatment == true) { RCP<MultiVector> xtilde2_thyra = domainMapExtractor_->getVector(1, X.getNumVectors(), true); RCP<MultiVector> r2_thyra = rangeMapExtractor_->getVector(1, B.getNumVectors(), true); // transform vector for(size_t k=0; k < r2->getNumVectors(); k++) { Teuchos::ArrayRCP<const Scalar> xpetraVecData = r2->getData(k); Teuchos::ArrayRCP<Scalar> thyraVecData = r2_thyra->getDataNonConst(k); for(size_t i=0; i < r2->getLocalLength(); i++) { thyraVecData[i] = xpetraVecData[i]; } } schurCompSmoo_->Apply(*xtilde2_thyra,*r2_thyra); for(size_t k=0; k < xtilde2_thyra->getNumVectors(); k++) { Teuchos::ArrayRCP<Scalar> xpetraVecData = xtilde2->getDataNonConst(k); Teuchos::ArrayRCP<const Scalar> thyraVecData = xtilde2_thyra->getData(k); for(size_t i=0; i < xtilde2_thyra->getLocalLength(); i++) { xpetraVecData[i] = thyraVecData[i]; } } } else { schurCompSmoo_->Apply(*xtilde2,*r2); } // 4) extract parts of solution vector X Teuchos::RCP<MultiVector> x1 = domainMapExtractor_->ExtractVector(rcpX, 0); Teuchos::RCP<MultiVector> x2 = domainMapExtractor_->ExtractVector(rcpX, 1); // 5) update solution vector with increments xhat1 and xhat2 // rescale increment for x2 with omega_ x1->update(omega,*xtilde1,one); // x1 = x1_old + omega xtilde1 x2->update(omega,*xtilde2,one); // x2 = x2_old + omega xtilde2 // write back solution in global vector X domainMapExtractor_->InsertVector(x1, 0, rcpX); domainMapExtractor_->InsertVector(x2, 1, rcpX); } }
void SimpleSmoother<Scalar, LocalOrdinal, GlobalOrdinal, Node>::Apply(MultiVector& X, const MultiVector& B, bool InitialGuessIsZero) const { TEUCHOS_TEST_FOR_EXCEPTION(SmootherPrototype::IsSetup() == false, Exceptions::RuntimeError, "MueLu::SimpleSmoother::Apply(): Setup() has not been called"); #ifdef HAVE_MUELU_DEBUG TEUCHOS_TEST_FOR_EXCEPTION(A_->getRangeMap()->isSameAs(*(B.getMap())) == false, Exceptions::RuntimeError, "MueLu::SimpleSmoother::Apply(): The map of RHS vector B is not the same as range map of the blocked operator A. Please check the map of B and A."); TEUCHOS_TEST_FOR_EXCEPTION(A_->getDomainMap()->isSameAs(*(X.getMap())) == false, Exceptions::RuntimeError, "MueLu::SimpleSmoother::Apply(): The map of the solution vector X is not the same as domain map of the blocked operator A. Please check the map of X and A."); #endif Teuchos::RCP<Teuchos::FancyOStream> fos = Teuchos::getFancyOStream(Teuchos::rcpFromRef(std::cout)); SC zero = Teuchos::ScalarTraits<SC>::zero(), one = Teuchos::ScalarTraits<SC>::one(); // extract parameters from internal parameter list const ParameterList & pL = Factory::GetParameterList(); LocalOrdinal nSweeps = pL.get<LocalOrdinal>("Sweeps"); Scalar omega = pL.get<Scalar>("Damping factor"); // The boolean flags check whether we use Thyra or Xpetra style GIDs // However, assuming that SIMPLE always only works for 2x2 blocked operators, we // most often have to use the ReorderedBlockedCrsOperator as input. If either the // F or Z (or SchurComplement block S) are 1x1 blocked operators with Thyra style // GIDs we need an extra transformation of vectors // In this case, we use the Xpetra (offset) GIDs for all operations and only transform // the input/output vectors before and after the subsolver calls! bool bRangeThyraModePredict = rangeMapExtractor_->getThyraMode() && (Teuchos::rcp_dynamic_cast<BlockedCrsMatrix>(F_) == Teuchos::null); bool bDomainThyraModePredict = domainMapExtractor_->getThyraMode() && (Teuchos::rcp_dynamic_cast<BlockedCrsMatrix>(F_) == Teuchos::null); bool bRangeThyraModeSchur = rangeMapExtractor_->getThyraMode() && (Teuchos::rcp_dynamic_cast<BlockedCrsMatrix>(Z_) == Teuchos::null); bool bDomainThyraModeSchur = domainMapExtractor_->getThyraMode() && (Teuchos::rcp_dynamic_cast<BlockedCrsMatrix>(Z_) == Teuchos::null); // The following boolean flags catch the case where we need special transformation // for the GIDs when calling the subsmoothers. RCP<BlockedCrsMatrix> bF = Teuchos::rcp_dynamic_cast<BlockedCrsMatrix>(F_); RCP<BlockedCrsMatrix> bZ = Teuchos::rcp_dynamic_cast<BlockedCrsMatrix>(Z_); bool bFThyraSpecialTreatment = false; bool bZThyraSpecialTreatment = false; if (bF != Teuchos::null) { if(bF->Rows() == 1 && bF->Cols() == 1 && rangeMapExtractor_->getThyraMode() == true) bFThyraSpecialTreatment = true; } if (bZ != Teuchos::null) { if(bZ->Rows() == 1 && bZ->Cols() == 1 && rangeMapExtractor_->getThyraMode() == true) bZThyraSpecialTreatment = true; } #if 1// new implementation // create a new vector for storing the current residual in a blocked multi vector RCP<MultiVector> res = MultiVectorFactory::Build(B.getMap(), B.getNumVectors()); RCP<BlockedMultiVector> residual = Teuchos::rcp(new BlockedMultiVector(rangeMapExtractor_,res)); // create a new solution vector as a blocked multi vector RCP<MultiVector> rcpX = Teuchos::rcpFromRef(X); RCP<BlockedMultiVector> bX = Teuchos::rcp(new BlockedMultiVector(domainMapExtractor_,rcpX)); // create a blocked rhs vector RCP<const MultiVector> rcpB = Teuchos::rcpFromRef(B); RCP<const BlockedMultiVector> bB = Teuchos::rcp(new const BlockedMultiVector(rangeMapExtractor_,rcpB)); // incrementally improve solution vector X for (LocalOrdinal run = 0; run < nSweeps; ++run) { // 1) calculate current residual residual->update(one,*bB,zero); // r = B A_->apply(*bX, *residual, Teuchos::NO_TRANS, -one, one); // split residual vector Teuchos::RCP<MultiVector> r1 = rangeMapExtractor_->ExtractVector(residual, 0, bRangeThyraModePredict); Teuchos::RCP<MultiVector> r2 = rangeMapExtractor_->ExtractVector(residual, 1, bRangeThyraModeSchur); // 2) solve F * \Delta \tilde{x}_1 = r_1 // start with zero guess \Delta \tilde{x}_1 RCP<MultiVector> xtilde1 = domainMapExtractor_->getVector(0, X.getNumVectors(), bDomainThyraModePredict); xtilde1->putScalar(zero); if(bFThyraSpecialTreatment == true) { xtilde1->replaceMap(domainMapExtractor_->getMap(0,true)); r1->replaceMap(rangeMapExtractor_->getMap(0,true)); velPredictSmoo_->Apply(*xtilde1,*r1); xtilde1->replaceMap(domainMapExtractor_->getMap(0,false)); } else { velPredictSmoo_->Apply(*xtilde1,*r1); } // 3) calculate rhs for SchurComp equation // r_2 - D \Delta \tilde{x}_1 RCP<MultiVector> schurCompRHS = rangeMapExtractor_->getVector(1, B.getNumVectors(), bRangeThyraModeSchur); D_->apply(*xtilde1,*schurCompRHS); schurCompRHS->update(one,*r2,-one); // 4) solve SchurComp equation // start with zero guess \Delta \tilde{x}_2 RCP<MultiVector> xtilde2 = domainMapExtractor_->getVector(1, X.getNumVectors(), bDomainThyraModeSchur); xtilde2->putScalar(zero); // Special handling if SchurComplement operator was a 1x1 blocked operator in Thyra mode // Then, we have to translate the Xpetra offset GIDs to plain Thyra GIDs and vice versa if(bZThyraSpecialTreatment == true) { xtilde2->replaceMap(domainMapExtractor_->getMap(1,true)); schurCompRHS->replaceMap(rangeMapExtractor_->getMap(1,true)); schurCompSmoo_->Apply(*xtilde2,*schurCompRHS); xtilde2->replaceMap(domainMapExtractor_->getMap(1,false)); } else { schurCompSmoo_->Apply(*xtilde2,*schurCompRHS); } // 5) scale xtilde2 with omega // store this in xhat2 RCP<MultiVector> xhat2 = domainMapExtractor_->getVector(1, X.getNumVectors(), bDomainThyraModeSchur); xhat2->update(omega,*xtilde2,zero); // 6) calculate xhat1 RCP<MultiVector> xhat1 = domainMapExtractor_->getVector(0, X.getNumVectors(), bDomainThyraModePredict); RCP<MultiVector> xhat1_temp = domainMapExtractor_->getVector(0, X.getNumVectors(), bDomainThyraModePredict); G_->apply(*xhat2,*xhat1_temp); // store result temporarely in xtilde1_temp xhat1->elementWiseMultiply(one/*/omega*/,*diagFinv_,*xhat1_temp,zero); xhat1->update(one,*xtilde1,-one); // 7) extract parts of solution vector X Teuchos::RCP<MultiVector> x1 = domainMapExtractor_->ExtractVector(bX, 0, bDomainThyraModePredict); Teuchos::RCP<MultiVector> x2 = domainMapExtractor_->ExtractVector(bX, 1, bDomainThyraModeSchur); // 8) update solution vector with increments xhat1 and xhat2 // rescale increment for x2 with omega_ x1->update(one,*xhat1,one); // x1 = x1_old + xhat1 x2->update(/*omega*/ one,*xhat2,one); // x2 = x2_old + omega xhat2 // write back solution in global vector X domainMapExtractor_->InsertVector(x1, 0, bX, bDomainThyraModePredict); domainMapExtractor_->InsertVector(x2, 1, bX, bDomainThyraModeSchur); } // write back solution domainMapExtractor_->InsertVector(bX->getMultiVector(0,bDomainThyraModePredict), 0, rcpX, bDomainThyraModePredict); domainMapExtractor_->InsertVector(bX->getMultiVector(1,bDomainThyraModeSchur), 1, rcpX, bDomainThyraModeSchur); #else // wrap current solution vector in RCP RCP<MultiVector> rcpX = Teuchos::rcpFromRef(X); // create residual vector // contains current residual of current solution X with rhs B RCP<MultiVector> residual = MultiVectorFactory::Build(B.getMap(), B.getNumVectors()); // incrementally improve solution vector X for (LocalOrdinal run = 0; run < nSweeps; ++run) { // 1) calculate current residual residual->update(one,B,zero); // residual = B A_->apply(*rcpX, *residual, Teuchos::NO_TRANS, -one, one); // split residual vector Teuchos::RCP<MultiVector> r1 = rangeMapExtractor_->ExtractVector(residual, 0, bRangeThyraModePredict); Teuchos::RCP<MultiVector> r2 = rangeMapExtractor_->ExtractVector(residual, 1, bRangeThyraModeSchur); // 2) solve F * \Delta \tilde{x}_1 = r_1 // start with zero guess \Delta \tilde{x}_1 RCP<MultiVector> xtilde1 = domainMapExtractor_->getVector(0, X.getNumVectors(), bDomainThyraModePredict); xtilde1->putScalar(zero); // Special handling in case that F block is a 1x1 blocked operator in Thyra mode // Then we have to feed the smoother with real Thyra-based vectors if(bFThyraSpecialTreatment == true) { // create empty solution vector based on Thyra GIDs RCP<MultiVector> xtilde1_thyra = domainMapExtractor_->getVector(0, X.getNumVectors(), true); // create new RHS vector based on Thyra GIDs Teuchos::RCP<MultiVector> r1_thyra = rangeMapExtractor_->ExtractVector(residual, 0, true); velPredictSmoo_->Apply(*xtilde1_thyra,*r1_thyra); for(size_t k=0; k < xtilde1_thyra->getNumVectors(); k++) { Teuchos::ArrayRCP<Scalar> xpetraVecData = xtilde1->getDataNonConst(k); Teuchos::ArrayRCP<const Scalar> thyraVecData = xtilde1_thyra->getData(k); for(size_t i=0; i < xtilde1_thyra->getLocalLength(); i++) { xpetraVecData[i] = thyraVecData[i]; } } } else { velPredictSmoo_->Apply(*xtilde1,*r1); } // 3) calculate rhs for SchurComp equation // r_2 - D \Delta \tilde{x}_1 RCP<MultiVector> schurCompRHS = rangeMapExtractor_->getVector(1, B.getNumVectors(), bRangeThyraModeSchur); D_->apply(*xtilde1,*schurCompRHS); schurCompRHS->update(one,*r2,-one); // 4) solve SchurComp equation // start with zero guess \Delta \tilde{x}_2 RCP<MultiVector> xtilde2 = domainMapExtractor_->getVector(1, X.getNumVectors(), bDomainThyraModeSchur); xtilde2->putScalar(zero); // Special handling if SchurComplement operator was a 1x1 blocked operator in Thyra mode // Then, we have to translate the Xpetra offset GIDs to plain Thyra GIDs and vice versa if(bZThyraSpecialTreatment == true) { // create empty solution vector based on Thyra GIDs RCP<MultiVector> xtilde2_thyra = domainMapExtractor_->getVector(1, X.getNumVectors(), true); // create new RHS vector based on Thyra GIDs RCP<MultiVector> schurCompRHS_thyra = rangeMapExtractor_->getVector(1, B.getNumVectors(), true); // transform vector for(size_t k=0; k < schurCompRHS->getNumVectors(); k++) { Teuchos::ArrayRCP<const Scalar> xpetraVecData = schurCompRHS->getData(k); Teuchos::ArrayRCP<Scalar> thyraVecData = schurCompRHS_thyra->getDataNonConst(k); for(size_t i=0; i < schurCompRHS->getLocalLength(); i++) { thyraVecData[i] = xpetraVecData[i]; } } schurCompSmoo_->Apply(*xtilde2_thyra,*schurCompRHS_thyra); for(size_t k=0; k < xtilde2_thyra->getNumVectors(); k++) { Teuchos::ArrayRCP<Scalar> xpetraVecData = xtilde2->getDataNonConst(k); Teuchos::ArrayRCP<const Scalar> thyraVecData = xtilde2_thyra->getData(k); for(size_t i=0; i < xtilde2_thyra->getLocalLength(); i++) { xpetraVecData[i] = thyraVecData[i]; } } } else { schurCompSmoo_->Apply(*xtilde2,*schurCompRHS); } // 5) scale xtilde2 with omega // store this in xhat2 RCP<MultiVector> xhat2 = domainMapExtractor_->getVector(1, X.getNumVectors(), bDomainThyraModeSchur); xhat2->update(omega,*xtilde2,zero); // 6) calculate xhat1 RCP<MultiVector> xhat1 = domainMapExtractor_->getVector(0, X.getNumVectors(), bDomainThyraModePredict); RCP<MultiVector> xhat1_temp = domainMapExtractor_->getVector(0, X.getNumVectors(), bDomainThyraModePredict); G_->apply(*xhat2,*xhat1_temp); // store result temporarely in xtilde1_temp xhat1->elementWiseMultiply(one/*/omega*/,*diagFinv_,*xhat1_temp,zero); xhat1->update(one,*xtilde1,-one); // 7) extract parts of solution vector X Teuchos::RCP<MultiVector> x1 = domainMapExtractor_->ExtractVector(rcpX, 0, bDomainThyraModePredict); Teuchos::RCP<MultiVector> x2 = domainMapExtractor_->ExtractVector(rcpX, 1, bDomainThyraModeSchur); // 8) update solution vector with increments xhat1 and xhat2 // rescale increment for x2 with omega_ x1->update(one,*xhat1,one); // x1 = x1_old + xhat1 x2->update(/*omega*/ one,*xhat2,one); // x2 = x2_old + omega xhat2 // write back solution in global vector X domainMapExtractor_->InsertVector(x1, 0, rcpX, bDomainThyraModePredict); domainMapExtractor_->InsertVector(x2, 1, rcpX, bDomainThyraModeSchur); } #endif }
void BraessSarazinSmoother<Scalar, LocalOrdinal, GlobalOrdinal, Node>::Apply(MultiVector& X, const MultiVector& B, bool InitialGuessIsZero) const { TEUCHOS_TEST_FOR_EXCEPTION(SmootherPrototype::IsSetup() == false, Exceptions::RuntimeError, "MueLu::BraessSarazinSmoother::Apply(): Setup() has not been called"); #ifdef HAVE_MUELU_DEBUG TEUCHOS_TEST_FOR_EXCEPTION(A_->getRangeMap()->isSameAs(*(B.getMap())) == false, Exceptions::RuntimeError, "MueLu::BlockedGaussSeidelSmoother::Apply(): The map of RHS vector B is not the same as range map of the blocked operator A. Please check the map of B and A."); TEUCHOS_TEST_FOR_EXCEPTION(A_->getDomainMap()->isSameAs(*(X.getMap())) == false, Exceptions::RuntimeError, "MueLu::BlockedGaussSeidelSmoother::Apply(): The map of the solution vector X is not the same as domain map of the blocked operator A. Please check the map of X and A."); #endif // The following boolean flags catch the case where we need special transformation // for the GIDs when calling the subsmoothers. RCP<BlockedCrsMatrix> bA11 = Teuchos::rcp_dynamic_cast<BlockedCrsMatrix>(A11_); bool bA11ThyraSpecialTreatment = false; if (bA11 != Teuchos::null) { if(bA11->Rows() == 1 && bA11->Cols() == 1 && rangeMapExtractor_->getThyraMode() == true) bA11ThyraSpecialTreatment = true; } RCP<MultiVector> rcpX = rcpFromRef(X); // use the GIDs of the sub blocks // This is valid as the subblocks actually represent the GIDs (either Thyra, Xpetra or pseudo Xpetra) RCP<MultiVector> deltaX0 = MultiVectorFactory::Build(A00_->getRowMap(), X.getNumVectors()); RCP<MultiVector> deltaX1 = MultiVectorFactory::Build(A10_->getRowMap(), X.getNumVectors()); RCP<MultiVector> Rtmp = MultiVectorFactory::Build(A10_->getRowMap(), B.getNumVectors()); typedef Teuchos::ScalarTraits<SC> STS; SC one = STS::one(), zero = STS::zero(); // extract parameters from internal parameter list const ParameterList& pL = Factory::GetParameterList(); LO nSweeps = pL.get<LO>("Sweeps"); RCP<MultiVector> R; if (InitialGuessIsZero) { R = MultiVectorFactory::Build(B.getMap(), B.getNumVectors()); R->update(one, B, zero); } else { R = Utilities::Residual(*A_, X, B); } // extract diagonal of Schur complement operator RCP<Vector> diagSVector = VectorFactory::Build(S_->getRowMap()); S_->getLocalDiagCopy(*diagSVector); ArrayRCP<SC> Sdiag = diagSVector->getDataNonConst(0); for (LO run = 0; run < nSweeps; ++run) { // Extract corresponding subvectors from X and R // Automatically detect whether we use Thyra or Xpetra GIDs // The GIDs should be always compatible with the GIDs of A00, A01, etc... RCP<MultiVector> R0 = rangeMapExtractor_ ->ExtractVector(R, 0); RCP<MultiVector> R1 = rangeMapExtractor_ ->ExtractVector(R, 1); RCP<MultiVector> X0 = domainMapExtractor_->ExtractVector(rcpX, 0); RCP<MultiVector> X1 = domainMapExtractor_->ExtractVector(rcpX, 1); // Calculate Rtmp = R1 - D * deltaX0 (equation 8.14) deltaX0->putScalar(zero); deltaX0->elementWiseMultiply(one, *D_, *R0, zero); // deltaX0 = D * R0 (equation 8.13) A10_->apply(*deltaX0, *Rtmp); // Rtmp = A10*D*deltaX0 (intermediate step) Rtmp->update(one, *R1, -one); // Rtmp = R1 - A10*D*deltaX0 if (!pL.get<bool>("q2q1 mode")) { deltaX1->putScalar(zero); } else { ArrayRCP<SC> deltaX1data = deltaX1->getDataNonConst(0); ArrayRCP<SC> Rtmpdata = Rtmp->getDataNonConst(0); for (GO row = 0; row < deltaX1data.size(); row++) deltaX1data[row] = 1.1*Rtmpdata[row] / Sdiag[row]; } // Special handling if SchurComplement operator was a 1x1 blocked operator in Thyra mode // Then, we have to translate the Xpetra offset GIDs to plain Thyra GIDs and vice versa if(bA11ThyraSpecialTreatment == true) { RCP<MultiVector> deltaX1_thyra = domainMapExtractor_->getVector(1, X.getNumVectors(), true); RCP<MultiVector> Rtmp_thyra = rangeMapExtractor_->getVector(1, B.getNumVectors(), true); // transform vector for(size_t k=0; k < Rtmp->getNumVectors(); k++) { Teuchos::ArrayRCP<const Scalar> xpetraVecData = Rtmp->getData(k); Teuchos::ArrayRCP<Scalar> thyraVecData = Rtmp_thyra->getDataNonConst(k); for(size_t i=0; i < Rtmp->getLocalLength(); i++) { thyraVecData[i] = xpetraVecData[i]; } } smoo_->Apply(*deltaX1_thyra,*Rtmp_thyra); for(size_t k=0; k < deltaX1_thyra->getNumVectors(); k++) { Teuchos::ArrayRCP<Scalar> xpetraVecData = deltaX1->getDataNonConst(k); Teuchos::ArrayRCP<const Scalar> thyraVecData = deltaX1_thyra->getData(k); for(size_t i=0; i < deltaX1_thyra->getLocalLength(); i++) { xpetraVecData[i] = thyraVecData[i]; } } } else { // Compute deltaX1 (pressure correction) // We use user provided preconditioner smoo_->Apply(*deltaX1,*Rtmp); } // Compute deltaX0 deltaX0->putScalar(zero); // just for safety A01_->apply(*deltaX1, *deltaX0); // deltaX0 = A01*deltaX1 deltaX0->update(one, *R0, -one); // deltaX0 = R0 - A01*deltaX1 R0.swap(deltaX0); deltaX0->elementWiseMultiply(one, *D_, *R0, zero); // deltaX0 = D*(R0 - A01*deltaX1) // Update solution X0->update(one, *deltaX0, one); X1->update(one, *deltaX1, one); domainMapExtractor_->InsertVector(X0, 0, rcpX); domainMapExtractor_->InsertVector(X1, 1, rcpX); if (run < nSweeps-1) R = Utilities::Residual(*A_, X, B); } }