Exemple #1
0
// Main code function
void PredModeCodec::DoWorkCode( MvData& in_data )
{
    int step,max; 
    int split_depth;  

    for (m_sb_yp = 0, m_sb_tlb_y = 0;  m_sb_yp < in_data.SBSplit().LengthY();  ++m_sb_yp, m_sb_tlb_y += 4)
    {
        for (m_sb_xp = 0,m_sb_tlb_x = 0; m_sb_xp < in_data.SBSplit().LengthX(); ++m_sb_xp,m_sb_tlb_x += 4)
        {
            split_depth = in_data.SBSplit()[m_sb_yp][m_sb_xp]; 

            step = 4  >>  (split_depth); 
            max = (1 << split_depth); 
                        
            //now do all the block modes and mvs in the mb            
            for (m_b_yp = m_sb_tlb_y; m_b_yp < m_sb_tlb_y+4; m_b_yp += step)
            {
                for (m_b_xp = m_sb_tlb_x; m_b_xp < m_sb_tlb_x+4; m_b_xp += step)
                {
                    CodeVal(in_data);
                }//m_b_xp
            }//m_b_yp    
            
        }//m_sb_xp
    }//m_sb_yp    
} 
Exemple #2
0
void SplitModeCodec::CodeVal(const MvData& in_data)
{
    int val = in_data.SBSplit()[m_sb_yp][m_sb_xp] - Prediction( in_data.SBSplit() ); 
    
    if (val < 0) val+=3; //produce prediction mod 3

    EncodeUInt(val, SB_SPLIT_BIN1_CTX, SB_SPLIT_BIN2_CTX);
}
Exemple #3
0
// Main code function
void SplitModeCodec::DoWorkCode( MvData& in_data )
{
    for (m_sb_yp = 0;  m_sb_yp < in_data.SBSplit().LengthY();  ++m_sb_yp)
    {
        for (m_sb_xp = 0; m_sb_xp < in_data.SBSplit().LengthX(); ++m_sb_xp)
        {
            CodeVal(in_data);
        }//m_sb_xp
    }//m_sb_yp
} 
Exemple #4
0
// Main decode function
void SplitModeCodec::DoWorkDecode( MvData& out_data)
{

    for (m_sb_yp = 0; m_sb_yp < out_data.SBSplit().LengthY(); ++m_sb_yp)
    {
        for (m_sb_xp = 0; m_sb_xp < out_data.SBSplit().LengthX(); ++m_sb_xp)
        {
            DecodeVal( out_data );
        }//m_sb_xp
    }//m_sb_yp
}  
Exemple #5
0
// Main decode function
void PredModeCodec::DoWorkDecode( MvData& out_data)
{
    int step,max; 
    int split_depth; 
    int xstart,ystart;     

    // Then the prediction mode
    for (m_sb_yp = 0,m_sb_tlb_y = 0; m_sb_yp < out_data.SBSplit().LengthY(); ++m_sb_yp,m_sb_tlb_y += 4)
    {
        for (m_sb_xp = 0,m_sb_tlb_x = 0; m_sb_xp < out_data.SBSplit().LengthX(); ++m_sb_xp,m_sb_tlb_x += 4)
        {
            split_depth = out_data.SBSplit()[m_sb_yp][m_sb_xp]; 
            step =  4  >>  (split_depth); 
            max  = (1 << split_depth); 

            //now do all the block mvs in the mb
            for (int j = 0; j < max; ++j)
            {                
                for (int i = 0; i < max; ++i)
                {
                    xstart = m_b_xp = m_sb_tlb_x + i * step; 
                    ystart = m_b_yp = m_sb_tlb_y + j * step;                                             
                    
                    DecodeVal(out_data); 

                    // propagate throughout SB    
                    for (m_b_yp = ystart; m_b_yp < ystart+step; m_b_yp++)
                    {
                        for (m_b_xp = xstart; m_b_xp < xstart+step; m_b_xp++)
                        {                    
                            out_data.Mode()[m_b_yp][m_b_xp] = out_data.Mode()[ystart][xstart]; 
                        }//m_b_xp
                    }//m_b_yp
                }//i                    
            }//j

        }//m_sb_xp
    }//m_sb_yp
}  
Exemple #6
0
void MotionCompensator::CompensateComponent( Picture* pic ,
                                             Picture* refsptr[2] ,
                                             const MvData& mv_data ,
                                             const CompSort cs )
{
    // Set up references to pictures and references
    PicArray& pic_data_out = pic->Data( cs );

    // Size of picture component being motion compensated

    const PicArray& ref1up = refsptr[0]->UpData( cs );
    const PicArray& ref2up = refsptr[1]->UpData( cs );

    // Set up a row of blocks which will contain the MC data, which
    // we'll add or subtract to pic_data_out
    TwoDArray<ValueType> pic_data(m_bparams.Yblen(), pic_data_out.LengthX(), 0 );

    // Factors to compensate for subsampling of chroma
    int xscale_shift = 0;
    int yscale_shift = 0;
    if ( cs != Y_COMP )
    {
        if (m_cformat == format420)
        {
            xscale_shift = 1;
            yscale_shift = 1;
        }
        else if (m_cformat == format422)
        {
            xscale_shift = 1;
            yscale_shift = 0;
        }
    }

    ImageCoords pic_size(pic->GetPparams().Xl(), pic->GetPparams().Yl());
    if ( cs != Y_COMP )
    {
        pic_size.x = pic->GetPparams().ChromaXl();
        pic_size.y = pic->GetPparams().ChromaYl();
    }


    // Reference to the relevant DC array
    const TwoDArray<ValueType>& dcarray = mv_data.DC( cs );

    // Set up references to the vectors
    const int num_refs = pic->GetPparams().Refs().size();
    const MvArray* mv_array1;
    const MvArray* mv_array2;
    mv_array1 = &mv_data.Vectors(1);
    if (num_refs ==2 )
        mv_array2 = &mv_data.Vectors(2);
    else
        mv_array2 = &mv_data.Vectors(1);

    ReConfig();//set all the weighting blocks up

    //Blocks are listed left to right, line by line.
    MVector mv1,mv2;
    PredMode block_mode;

    //Coords of the top-left corner of a block
    ImageCoords pos;

    //Loop for each block in the output image.
    //The CompensateBlock function will use the image pointed to by ref1up
    //and add the compensated pixels to the image pointed to by pic_data.
    size_t wgt_idx;

    int save_from_row = m_bparams.Ybsep()-m_bparams.Yoffset();

    // unpadded picture dimensions
    const int x_end_data = pic_data_out.FirstX() + std::min(pic_data_out.LengthX(), pic_size.x );
    const int y_end_data = pic_data_out.FirstY() + std::min(pic_data_out.LengthY(), pic_size.y );

    const int blocks_per_mb_row = m_predparams.XNumBlocks()/m_predparams.XNumSB();
    const int blocks_per_sb_row = blocks_per_mb_row>>1;

    // The picture does not contain integral number of blocks. So not all
    // blocks need to be processed. Compute the relevant blocks to be
    // processed 
    int y_num_blocks = std::min((NUM_USED_BLKS(pic_size.y,m_bparams.Ybsep(),m_bparams.Yblen())), 
                       m_predparams.YNumBlocks());
    int x_num_blocks = std::min((NUM_USED_BLKS(pic_size.x,m_bparams.Xbsep(),m_bparams.Xblen())),  
                       m_predparams.XNumBlocks());

    //Loop over all the block rows
    pos.y = -m_bparams.Yoffset();
    for(int yblock = 0; yblock < y_num_blocks; ++yblock)
    {
        pos.x = -m_bparams.Xoffset();
        int xincr, xb_incr = 0;
        //loop over all the blocks in a row
        for(int xblock = 0 ; xblock < x_num_blocks; xblock+=xb_incr)
        {
            int split_mode =  mv_data.SBSplit()[yblock/blocks_per_mb_row][xblock/blocks_per_mb_row];

            int blk_x, blk_y = 1;

            switch (split_mode)
            {
            case 0: // processing superblock
                blk_x = blocks_per_mb_row;
                break;
            case 1: // processing sub-superblock
                blk_x = blocks_per_sb_row;
                break;
            case 2: // processing block
            default:
                blk_x = 1;
                break;
            }

            //Decide which weights to use.
            if (pos.x >=0 && (xblock+blk_x) < x_num_blocks)
            {
                // block is entirely within picture in x direction
                if (pos.y < 0)
                    wgt_idx = 1;
                else if ((yblock+blk_y) < y_num_blocks)
                    wgt_idx = 4;
                else
                    wgt_idx = 7;
            }
            else if (pos.x < 0)
            {
                // left edge of block is outside picture in x direction
                if (pos.y < 0)
                    wgt_idx = 0;
                else if ((yblock+blk_y) < y_num_blocks)
                    wgt_idx = 3;
                else
                    wgt_idx = 6;
            }
            else
            {
                // right edge of block is outside picture in x direction
                if (pos.y < 0)
                    wgt_idx = 2;
                else if ((yblock+blk_y) < y_num_blocks)
                    wgt_idx = 5;
                else
                    wgt_idx = 8;
            }


            block_mode = mv_data.Mode()[yblock][xblock];

            TwoDArray<ValueType> *wt;

            if (split_mode == 0) //Block part of a MacroBlock
            {
                wt = &m_macro_block_weights[wgt_idx];
                xb_incr = blocks_per_mb_row;
            }
            else if (split_mode == 1) //Block part of a SubBlock
            {
                wt = &m_sub_block_weights[wgt_idx];
                xb_incr = blocks_per_sb_row;
            }
            else
            {
                wt = &m_block_weights[wgt_idx];
                xb_incr = 1;
            }
            xincr = m_bparams.Xbsep() * xb_incr;

            mv1 = (*mv_array1)[yblock][xblock];
            mv1.x >>= xscale_shift;
            mv1.y >>= yscale_shift;

            mv2 = (*mv_array2)[yblock][xblock];
            mv2.x >>= xscale_shift;
            mv2.y >>= yscale_shift;

            CompensateBlock(pic_data, pos, pic_size, block_mode, dcarray[yblock][xblock], ref1up, mv1, ref2up, mv2, *wt);

            //Increment the block horizontal position
            pos.x += xincr;

        }//xblock

        // Update the pic data
        // Use only the first Ybsep rows since the remaining rows are
        // needed for the next row of blocks since we are using overlapped
        // blocks motion compensation
        if (m_add_or_sub == SUBTRACT)
        {
            int start_y = std::max(pic_data_out.FirstY() , pos.y) ;
            int end_y = std::min (pic_data_out.FirstY() + pos.y + m_bparams.Ybsep() , y_end_data);

            if (yblock == y_num_blocks - 1)
            {
                end_y = pic_data_out.LengthY();
                if (end_y > y_end_data)
                    end_y = y_end_data;

            }

            for ( int i = start_y, pos_y = 0; i < end_y; i++, pos_y++)
            {
                ValueType *pic_row = pic_data[pos_y];
                ValueType *out_row = pic_data_out[i];

                for ( int j =pic_data_out.FirstX(); j < x_end_data; ++j)
                {
                    out_row[j] -= static_cast<ValueType>( (pic_row[j] + 32) >> 6 );
                }

                // Okay, we've done all the actual blocks. Now if the picture is further padded
                // we need to set the padded values to zero beyond the last block in the row,
                // for all the picture lines in the block row. Need only do this when we're
                // subtracting.

                for (int j=pic_size.x; j<pic_data_out.LengthX() ; ++j )
                {
                    out_row[pic_data_out.FirstX()+j] = 0;
                }
            }
        }
        else // (m_add_or_sub == ADD)
        {
Exemple #7
0
void SplitModeCodec::DecodeVal(MvData& out_data)
{
    out_data.SBSplit()[m_sb_yp][m_sb_xp] =
                             (DecodeUInt(SB_SPLIT_BIN1_CTX, SB_SPLIT_BIN2_CTX) +
                             Prediction(out_data.SBSplit())) % 3;
}