PyObject * get_bboxes(PyObject * image_, PyObject * seg_, int x1, int y1, int x2, int y2) { NDArrayConverter cvt; cv::Mat image = cvt.toMat(image_); cv::Mat seg = cvt.toMat(seg_); //cv::Mat bboxes = cvt.toMat(bboxes_); std::cout << x1 << " " << y1 << " " << x2 << " " << y2 << std::endl; return cvt.toNDArray(get_bboxes_(image, seg, x1, y1, x2, y2)); }
PyObject* from_grass_b_wrapper(PyObject *im) { NDArrayConverter cvt; cv::Mat _im = cvt.toMat(im); cv::Mat _imO; from_grass_b(_im, _imO); return cvt.toNDArray(_imO); }
PyObject* from_sand_wrapper(PyObject *im) { NDArrayConverter cvt; cv::Mat _im = cvt.toMat(im); cv::Mat _imO(_im.size(), CV_8UC1); from_sand(_im, _imO); return cvt.toNDArray(_imO); }
PyObject* detect_watanabe_wrapper(PyObject *im) { NDArrayConverter cvt; cv::Mat _im = cvt.toMat(im); cv::Point _itokawa; detect_watanabe(_im, _itokawa); cv::Mat res(2, 1, CV_32F); res.at<float>(0, 0) = _itokawa.x; res.at<float>(1, 0) = _itokawa.y; return cvt.toNDArray(res); }
PyObject* CannyNewFuncRGB(PyObject *srcImgPy, double threshLow, double threshHigh, int kernelSize) { NDArrayConverter cvt; cv::Mat srcImg = cvt.toMat(srcImgPy); cv::Mat returnedEdges; cppCannyBunk_RGB(srcImg, returnedEdges, threshLow, threshHigh, kernelSize); return cvt.toNDArray(returnedEdges); }
// cv::Mat segment(cv::Mat inputFrame) { PyObject *segment(PyObject *_inputFrame) { NDArrayConverter cvt; cv::Mat inputFrame = cvt.toMat(_inputFrame); cv::Mat patch; inputFrame(cv::Rect(p0.x, p0.y, p1.x - p0.x, p3.y - p0.y)).copyTo(patch); cv::imshow("Video Captured", inputFrame); cv::imshow("Patch", patch); return cvt.toNDArray(patch); }
static cv::Mat get_gray_img(PyObject *p_img) { // get image and convert if necessary NDArrayConverter cvt; cv::Mat img_temp = cvt.toMat(p_img); cv::Mat img; if (img_temp.channels() == 1) { img = img_temp; } else { cv::cvtColor(img_temp, img, CV_BGR2GRAY); } return img; }
cv::Mat createNumpyArrayWithMatWrapper(int cols, int rows, int type) { int sizes[] = {cols, rows}; PyObject *o = createNumArrayFromMatDimensions(2, sizes, type); NDArrayConverter conv; //The NDArrayConverter interface can only return a new Mat object //allocated on the heap. What we want is a Mat object on the stack. //So we assign it (cheap copy!) and then deallocate. cv::Mat *p = conv.toMat(o, 0); cv::Mat result = *p; delete p; return result; }
PyObject* mul(PyObject *left, PyObject *right) { NDArrayConverter cvt; cv::Mat leftMat, rightMat; leftMat = cvt.toMat(left); rightMat = cvt.toMat(right); auto r1 = leftMat.rows, c1 = leftMat.cols, r2 = rightMat.rows, c2 = rightMat.cols; // Work only with 2-D matrices that can be legally multiplied. if (c1 != r2) { PyErr_SetString(PyExc_TypeError, "Incompatible sizes for matrix multiplication."); py::throw_error_already_set(); } cv::Mat result = leftMat * rightMat; PyObject* ret = cvt.toNDArray(result); return ret; }
PyObject* CannyVanilla(PyObject *srcImgPy, double threshLow, double threshHigh, int kernelSize) { NDArrayConverter cvt; cv::Mat srcImg = cvt.toMat(srcImgPy); cv::Mat returnedEdges; if(srcImg.channels() > 1) { cv::cvtColor(srcImg, srcImg, CV_BGR2GRAY); } cv::Canny(srcImg, returnedEdges, threshLow, threshHigh, kernelSize, true); return cvt.toNDArray(returnedEdges); }
// Convert obj_ptr into a cv::Mat static void construct(PyObject* obj_ptr, boost::python::converter::rvalue_from_python_stage1_data* data) { using namespace boost::python; typedef converter::rvalue_from_python_storage< T > storage_t; storage_t* the_storage = reinterpret_cast<storage_t*>( data ); void* memory_chunk = the_storage->storage.bytes; NDArrayConverter cvt; T* newvec = new (memory_chunk) T(cvt.toMat(obj_ptr)); data->convertible = memory_chunk; return; }
bool calibrate(PyObject *_inputFrame_BGR, int key) { NDArrayConverter cvt; cv::Mat inputFrame_BGR = cvt.toMat(_inputFrame_BGR); // Convert input image to HSV cv::Mat inputFrame_HSV; // cv::GaussianBlur(inputFrame_BGR, inputFrame_BGR, cv::Size(5, 5), 0, 0); // cv::resize(inputFrame_BGR, inputFrame_BGR, cv::Size(inputFrame_BGR.cols / 2, inputFrame_BGR.rows / 2)); cv::cvtColor(inputFrame_BGR, inputFrame_HSV, CV_BGR2HSV); // Threshold the HSV image, keep only the red pixels cv::Mat lowerRedHueImg; cv::Mat upperRedHueImg; cv::Mat redHueImg; cv::inRange(inputFrame_HSV, cv::Scalar(0, 100, 100), cv::Scalar(10, 255, 255), lowerRedHueImg); cv::inRange(inputFrame_HSV, cv::Scalar(160, 100, 100), cv::Scalar(179, 255, 255), upperRedHueImg); cv::addWeighted(lowerRedHueImg, 1.0, upperRedHueImg, 1.0, 0.0, redHueImg); // Find four centers of red pixels in the combined threshold image std::vector< std::vector<cv::Point> > contours; cv::findContours(redHueImg, contours, CV_RETR_EXTERNAL, CV_CHAIN_APPROX_NONE); if (contours.size() == 4) { for (int i = 0; i < contours.size(); i++) { cv::Point center(0, 0); for (int j = 0; j < contours.at(i).size(); j++) center += contours.at(i).at(j); center = cv::Point(center.x / contours.at(i).size(), center.y / contours.at(i).size()); if (center.x < redHueImg.cols / 2 && center.y < redHueImg.rows / 2) p0 = center; else if (center.x > redHueImg.cols / 2 && center.y < redHueImg.rows / 2) p1 = center; else if (center.x > redHueImg.cols / 2 && center.y > redHueImg.rows / 2) p2 = center; else p3 = center; cv::drawContours(inputFrame_BGR, contours, i, cv::Scalar(255, 0, 0)); cv::circle(inputFrame_BGR, center, 3, cv::Scalar(255, 0, 0), -1); } if (p0 != p1 && p0 != p2 && p0 != p3 && p1 != p2 && p1 != p3 && p2 != p3 && (key & 0xFF) == 27) // 'Esc' key return true; } cv::imshow("Video Captured", inputFrame_BGR); return false; }
bp::object doBPySpectralResidualSaliency(bp::object FullsizedImage) { NDArrayConverter cvt; cv::Mat srcImgCPP = cvt.toMat(FullsizedImage.ptr()); std::vector<cv::Mat> foundCrops; std::vector<std::pair<double,double>> cropGeolocations; SpectralResidualSaliencyClass saldoer; saldoer.ProcessSaliency(&srcImgCPP, &foundCrops, &cropGeolocations, 0); consoleOutput.Level1() << "SpectralResidualSaliency found " << to_istring(foundCrops.size()) << " crops" << std::endl; std::vector<bp::object> foundCropsPy; for(int ii=0; ii<foundCrops.size(); ii++) { foundCropsPy.append(bp::object(cvt.toNDArray())); } return bp::str(shapename.c_str()); }
bp::object ClusterKmeansPPwithMask(PyObject *filteredCropImage, PyObject *maskForClustering, int k_num_cores, int num_lloyd_iterations, int num_kmeanspp_iterations, bool print_debug_console_output, double use5DclusteringScale) { #if PROFILING_KMEANS cout << "KMEANS_CPP_WITH_MASK ----------- start" << endl; auto tstart = std::chrono::steady_clock::now(); #endif NDArrayConverter cvt; cv::Mat srcCropImage = cvt.toMat(filteredCropImage); cv::Mat srcMaskImage = cvt.toMat(maskForClustering); if(srcCropImage.empty()) { cout<<"ClusterKmeansPPwithMask() -- error: srcCropImage was empty"<<endl<<std::flush; return bp::object(); } if(srcCropImage.channels() != 3) { cout<<"ClusterKmeansPPwithMask() -- error: srcCropImage was not a 3-channel image"<<endl<<std::flush; return bp::object(); } if(cv::countNonZero(srcMaskImage) < k_num_cores) { cout<<"Error: num masked pixels < num k cores"<<endl; return bp::object(); } if(srcCropImage.type() != CV_32FC3) { srcCropImage.convertTo(srcCropImage, CV_32FC3); } //---------------------------------------------------- // clustering / processing // get clusterable pixels std::vector<ClusterablePoint*>* clusterablePixels(GetSetOfPixelColors_WithMask_3Df(&srcCropImage, &srcMaskImage, use5DclusteringScale)); double returned_potential; #if PROFILING_KMEANS auto tstartclustering = std::chrono::steady_clock::now(); #endif // do kmeans++ std::vector<std::vector<ClusterablePoint*>> resultsClusters(KMEANSPLUSPLUS(clusterablePixels, &myrng, k_num_cores, num_lloyd_iterations, num_kmeanspp_iterations, print_debug_console_output, &returned_potential)); #if PROFILING_KMEANS auto tendclustering = std::chrono::steady_clock::now(); #endif // get the color of each cluster std::vector<ClusterablePoint*> clusterColors(GetClusterMeanColors_3Df(resultsClusters)); // get the binary masks of each cluster std::vector<cv::Mat> returnedMasksCPP(GetClusterMasks_3Df(resultsClusters, clusterColors, srcCropImage.rows, srcCropImage.cols)); // draw the result to a color-clustered image cv::Mat drawnClusters(GetClusteredImage_3Df(resultsClusters, clusterColors, srcCropImage.rows, srcCropImage.cols)); //---------------------------------------------------- // now prepare to ship results to Python from C++ int numClustersFound = (int)resultsClusters.size(); bp::list returnedClusterColors; //will be a list of 3-element-lists bp::list returnedClusterMasks; //will be a list of cv2 numpy images for(int ii=0; ii<numClustersFound; ii++) { //get color of each cluster std::vector<double> thisClustersColors(3); ClusterablePoint_OpenCV* thiscluster_pixelcolor = dynamic_cast<ClusterablePoint_OpenCV*>(clusterColors[ii]); thisClustersColors[0] = thiscluster_pixelcolor->GetPixel()[0]; thisClustersColors[1] = thiscluster_pixelcolor->GetPixel()[1]; thisClustersColors[2] = thiscluster_pixelcolor->GetPixel()[2]; returnedClusterColors.append(std_vector_to_py_list<double>(thisClustersColors)); //get mask of each cluster PyObject* thisImgCPP = cvt.toNDArray(returnedMasksCPP[ii]); returnedClusterMasks.append(bp::object(bp::handle<>(bp::borrowed(thisImgCPP)))); } //get mask of each cluster PyObject* drawnClustersCPP = cvt.toNDArray(drawnClusters); bp::object drawnClustersPython(bp::handle<>(bp::borrowed(drawnClustersCPP))); #if PROFILING_KMEANS auto tend = std::chrono::steady_clock::now(); cout << "CPP_KMEANS_WITHMASK -- total time: " << std::chrono::duration<double, std::milli>(tend-tstart).count() << " milliseconds" << endl; cout << "CPP_KMEANS_WITHMASK -- clustering time: " << std::chrono::duration<double, std::milli>(tendclustering-tstartclustering).count() << " milliseconds" << endl; #endif return bp::make_tuple(drawnClustersPython, returnedClusterColors, returnedClusterMasks, returned_potential); }
PyObject * get_bboxes(PyObject * seg_, uint32_t max_size, float sigma, uint32_t n) { NDArrayConverter cvt; cv::Mat seg = cvt.toMat(seg_); return cvt.toNDArray(get_bboxes_(seg, max_size, sigma, n)); }